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Abstract

Background: Trypanosoma cruzi is a protozoan parasite that causes severe disease in millions of habitants of developing
countries. Currently there is no vaccine to prevent this disease and the available drugs have the consequences of side
effects. Live vaccines are likely to be more effective in inducing protection than recombinant proteins or DNA vaccines;
however, safety problems associated to their use have been pointed out. In recent years, increasing knowledge on the
molecular genetics of Trypanosomes has allowed the identification and elimination of genes that may be necessary for
parasite infectivity and survival. In this sense, targeted deletion or disruption of specific genes in the parasite genome may
protect against such reversion to virulent genotypes.

Methods and Findings: By targeted gene disruption we generated monoallelic mutant parasites for the dhfr-ts gene in a T.
cruzi strain that has been shown to be naturally attenuated. In comparison to T. cruzi wild type epimastigotes, impairment in
growth of dhfr-ts+/2 mutant parasites was observed and mutant clones displayed decreased virulence in mice. Also, a lower
number of T. cruzi-specific CD8+ T cells, in comparison to those induced by wild type parasites, was detected in mice
infected with mutant parasites. However, no remarkable differences in the protective effect of TCC wild type versus TCC
mutant parasites were observed. Mice challenged with virulent parasites a year after the original infection with the mutant
parasites still displayed a significant control over the secondary infection.

Conclusion: This study indicates that it is possible to generate genetically attenuated T. cruzi parasites able to confer
protection against further T. cruzi infections.
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Introduction

Chagas disease is one of the major health problems in Latin and

Central America, where an estimated of 7.7 million people are

infected [1]. This disease is the consequence of the infection by the

protozoan parasite Trypanosoma cruzi. This flagellate is transmitted

to mammalian hosts, including humans, by the feces of infected

triatomine insects. Infection is also possible via mother to fetus

during pregnancy and by contaminated blood transfusion. So far

there is no effective vaccine against Chagas disease and the current

available drugs have considerable side effects.

Animals surviving infection by T. cruzi become resistant to

subsequent homologous infections. This resistance exceeds, both

in strength and duration, the protection achieved with various

experimental T. cruzi vaccines. Several naturally attenuated strains

have been used in immunization-infection assays in experimental

models [2,3]. TCC is a naturally attenuated strain of T. cruzi that

was thought to be unable to persistently infect immunocompetent

mice [4]; however, recent experiments demonstrated that this

strain does persist in experimental animals (Padilla AM,

unpublished data). The results of immunization with this

attenuated strain were promising since inoculation of live TCC

epimastigotes provided protection against infection with the

virulent Tulahuen strain and against each of 17 wild isolates

obtained from an endemic area for Chagas in Argentina [5]. The

protective capacity of this naturally attenuated strain was also

evaluated in field trials against natural vector-derived infection; the

TCC strain was not naturally transmitted in either guinea pigs or

dogs and these TCC inoculated animals were protected against

secondary natural infections [6–8]. Unfortunately, the potential of

reversion of the TCC strain to a virulent phenotype or persistence

in immunocompromised hosts cannot be foretold, rendering this

method not completely safe for broad application in domestic

reservoirs.

Gene targeting methods have provided a better understanding

of trypanosomatid genetics, allowing the introduction or removal

of specific genes from the genome of these organisms. The

generation of attenuated parasites unable to sustain infection and

cause pathology through removal of virulence or metabolic factors

is now a reasonable possibility. A range of genetically altered
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parasites has been used as experimental vaccines [9,10] but

according to the literature, only four T. cruzi knockout lines have

been evaluated as experimental immunogens. In one approach, a

monoallelic mutant clone for the calmodulin-ubiquitin gene was

obtained from the virulent Tulahuen strain of T. cruzi. Mice

inoculated with different doses of mutant epimastigotes and later

challenged with virulent wild type Tulahuen trypomastigotes were

strongly protected, as shown by a reduction in parasite burden

[11]. The second approach involved a T. cruzi line (L16) carrying a

targeted biallelic deletion of the lyt-1 gene. Also in this case, long-

term protection against a virulent challenge was observed in mice

pre-inoculated with L16 parasites as shown by a reduction in

parasite load in blood [12]. In the third study, a biallelic knockout

of the gp72 gene in Y T. cruzi strain was shown to be highly

attenuated and able to induce long lasting protection against a

subsequent infection by virulent T. cruzi [13]. Recently, T. cruzi

parasites lacking enoyl co-A hydratase genes (ech1+/2 ech22/2)

were used for oral route immunization assays, showing that

vaccination with genetically modified T. cruzi parasites confers

protection against a further virulent challenge [14].

In the case of other parasitic protozoa, like Plasmodium sp or

Leishmania sp, the generation of genetically attenuated parasites for

use as protective vaccines has been more frequently reported

[10,15–18]. One particular approach was the generation of

Leishmania major dhfr-ts null mutants. In trypanosomatids dhfr-ts is

a single copy gene which codes for the bifunctional enzyme

dihydrofolate reductase-thymidylate synthase (DHFR-TS) [19,20].

This enzyme catalyzes sequential reactions in the biosynthesis of

dTMP. Therefore inhibition of this enzyme results in thymidine-

less death. Leishmania major parasites completely lacking the dhfr-ts

gene were generated through gene targeted deletion by homolo-

gous recombination [21]. As expected, these mutant parasites were

auxotrophic and their safety and protective potential as experi-

mental vaccines were evaluated [22]. dhfr-ts2/2 parasites were able

to persist in mice for up to 2 months; however, they were

incapable of causing disease in both susceptible and immunode-

ficient mouse models. A substantial resistance to challenge with

virulent L. major parasites was detected [22]. Moreover, heterol-

ogous protection against challenges with different Leishmania

species was also observed [23].

Here we studied the biological effect of introducing a mutation

in the dhfr-ts gene of the naturally attenuated TCC strain of T. cruzi

as a safety device to avoid the potential reversion to virulent

variants. Moreover, the effect of the same mutation was evaluated

in dhfr-ts+/2 mutant clones of the virulent Tulahuen strain. We

also investigated the persistence of these parasites and their

capacity to induce an immune response in infected hosts and

protect against a subsequent infection.

Methods

Ethics statement
All animal protocols adhered to the National Institutes of

Health (NIH) ‘‘Guide for the care and use of laboratory animals’’

and were approved by the School of Health Sciences, National

University of Salta and the University of Georgia Institutional

Animal Care and Use Committee.

Parasites and culture procedures
Wild type forms of the naturally attenuated TCC and the virulent

Tulahuen strains of T. cruzi were used, as well as two mutant clones

derived from the Tulahuen strain carrying a targeted mutation of one

dhfr-ts allele [24]. Epimastigote forms were grown at 28uC in liver

digested neutralized tryptose medium (LDNT), supplemented with

10% fetal bovine serum (FBS). Metacyclic trypomastigotes were either

obtained from stationary phase epimastigote cultures or by adding 1%

triatomine gut homogenate [25] to epimastigote cultures and

harvesting the parasites after 7 to 10 days. In both cases, complement

resistant forms were purified using normal non decomplemented

serum, quantified in a hemocytometer and further used to inoculate

experimental animals. For the challenge experiments, fluorescent CL-

tdTomato [26] as well as Tulahuen and CL wild type trypomastigotes

were used. These trypomastigote forms were obtained either from

Vero cell monolayers cultures or from infected mice. Infected Vero

cells were cultured in RPMI 1640 medium with 10% FBS in a humid

atmosphere containing 5% CO2 at 37uC.

Generation of Trypanosoma cruzi mutant parasites
To generate parasites of the TCC strain of T. cruzi with a

disruption of the dhfr-ts gene, the plasmid pBSdh1f8Neo was used.

This plasmid contains the coding sequence of the dhfr-ts gene

interrupted by the coding sequence of the neomycin phospho-

transferase gene and it has been previously used for the generation

of single knockout parasites, by homologous recombination, of the

Tulahuen strain of T. cruzi [24]. Transgenic parasites were

generated as previously described [24]. A total of 107 early-log

epimastigotes were centrifuged at 1,620 g for 10 min and

suspended in 100 ml Human T Cell NucleofectorTM Solution

(Lonza, Cologne) at room temperature. The resuspended parasites

were then mixed with 10 mg DNA in a total volume of 10 ml and

electroporated using the program ‘‘U-33’’ in an AMAXA

Nucleofector Device (Lonza). The electroporated parasites were

then cultured in 25 cm2 culture flasks with 10 ml LDNT medium

and 300 mg/ml of G418 were added at 24 h post-transfection.

Individual clones were obtained by single cell sorting into a 96-well

plate using MoFlow cell sorter (Dako-Cytomation-Denmark).

Molecular characterization of mutant parasites
For Southern blot analysis, genomic DNA from a selected TCC

clone and from TCC wild type parasites was purified using the

Phenol-Chloroform method. The DNA was then digested,

separated by 0.7% agarose gel electrophoresis and the gels were

blotted onto nylon membranes (Hybond-N 0.45-mm-pore-size

filters; Amersham Life Science) using standard methods [27]. For

probes generation, a 795 bp DNA segment corresponding to

Neomycin Phosphotransferase gene was amplified from plasmid

Author Summary

Chagas disease is the clinical manifestation of the infection
produced by the flagellate parasite Trypanosoma cruzi and
currently there is no vaccine to prevent this disease.
Therefore, different approaches or alternatives are urgently
needed. Vaccination with live attenuated parasites has
been used effectively in mice to reduce parasitemia and
histological damage. However, the use of live parasites as
inmunogens is controversial due to the risk of reversion to
a virulent phenotype. In this work we genetically
manipulated a naturally attenuated strain of T. cruzi in
order to produce parasites with impaired replication and
infectivity, using the mutation as a safety device against
reversion to virulence. We show that genetically modified
parasites display a lower proliferation rate in vitro and
induced almost undetectable levels of T. cruzi specific
CD8+ T cells when injected in mice. Furthermore, the
immune response induced by these live mutant parasites
confers protection against a subsequent virulent infection
even a year after the original immunization.

T. cruzi dhfr-ts KO Vaccine
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pBSSK-neo1f8 [28] using primers Neo_for (59 ATGATTGAA-

CAAGATGGATT 39) and Neo_rev (59 AGAACTCGTCAA-

GAAGGCGA 39) while dhfr-ts gene was amplified from genomic

DNA of TCC wild type parasites using primers DH5_f (59

TGTCGCTGTTTAAGATCCGC 39) and DH6_r (59 CCAT-

GAAGATGGCGGTTTAG 39). Labeling of the probes and DNA

hybridization were performed according to the protocol supplied

with the PCR-DIG DNA-labeling and detection kit (Roche Applied

Science).

PCR analyses were carried out using as template DNA from

TCC wild type as well as TCC dhfr-ts+/2 parasites. The primers

used for PCR analysis were specific for the upstream gene of the

dhfr-ts gene (PG1 59 CTTCGAGGAGCTTTGCTGTT 39 and

PG2 59 GATCCAACCAACTGGAGGAA 39 ) in combination

with a primer specific for the neomycin phosphotransferase gene

(N 59 GATCTCCTGTCATCTCACCT 39).

Epimastigote growth assays
26105 epimastigotes from mutant and wild type parasites were

grown in 6-wells plates containing 5 ml of LDNT medium per

well. Samples were done by triplicate and the number of growing

parasites was quantified daily in a hemocytometer.

Infectivity assays in mice
In order to evaluate the infectivity of dhfr-ts+/2 mutant parasites,

different mouse strains were used. C57BL/6J (B6) mice were

purchased from The Jackson Laboratory. IFNc2/2, Balb/c, Swiss

and nude (nu/nu) mice (1 to 2 months old) were bred and

maintained in our animal facility under specific pathogen-free

conditions. Animals were inoculated by intraperitoneal (i.p.) route

with metacyclic or trypomastigote forms of mutant and wild type

parasites as specified.

Immunization assays
To test the immunological protection induced by mutant clones,

mice were first inoculated with 56105 dhfr-ts+/2 metacyclic

parasites and later challenged, at different time points, with 104

blood trypomastigotes of the Tulahuen wild type strain or with

2.56105 culture trypomastigotes derived forms of the fluorescent

CL-tdTomato strain [26] or CL wild type.

Parasitological determinations
Blood (10 ml) was drawn from the tail tip of mice under slight

anesthesia, and the number of parasites per 100 fields (parasitemia)

was recorded from fresh blood mounts under microscope (6400).

For in vivo fluorescence detection, footpads of mice subcutaneously

infected with CL-tdTomato parasites were imaged every other day

using the Maestro2 In Vivo Imaging System (CRi, Woburn, MA)

with the green filter set (acquisition settings: 560 to 750 in 10 nm

steps; exposure time 88.18 ms and 262 binning). Collected images

were unmixed and analyzed with the Maestro software v2.8.0A.

Hemocultures were performed by seeding, under sterile conditions,

200 ml of heparinized blood into 2 ml of LIT medium (Liver

Infusion Tryptose) supplemented with 10% FBS. The cultures were

incubated at 28uC and analyzed at day 15, 30, 45, and 60. For PCR

detection of T. cruzi, 700 ml of blood from inoculated animals was

processed following strict PCR decontamination procedures.

Sample storage, DNA extraction, and amplification using primers

121 and 122 were performed as previously described [29].

Serological determinations
Total immunoglobulin G antibodies against T. cruzi were measured

by the enzyme-linked immunosorbent assay (ELISA) using T. cruzi

epimastigote homogenate as antigen. The antibody concentration was

expressed as the optical density at a 492-nm wavelength.

Trypanosoma cruzi specific CD8+ T cells determination
T. cruzi-infected mice were bled and whole blood was stained

with a MHC class I tetramer containing the T. cruzi specific

peptide TSKB20 (TSKB20/Kb-PE tetramer) as previously

described [30]. Cells were stained with anti-CD8–allophycocya-

nin, anti-CD11b–Cy5-PE, anti-CD4–Cy5-PE and anti-B220–

Cy5-PE (all from Caltag, Burlingame, CA). CD8+ T cells were

gated in the CD42 CD11b2 B2202 lymphocyte population. Flow

cytometry was carried out on a FACSCalibur flow cytometer

(Becton Dickinson, San Diego, CA), and data were analyzed with

FlowJo software (Tree Star, Inc., Ashland, OR).

Statistical analysis
Continuous variables, such as antibody titers and parasite

concentrations in blood samples, were analyzed with the two-tailed

Wilcoxon signed-rank test for time course plots and with the

Mann-Whitney or Kruskal-Wallis test for single-day measure-

ments. Values are expressed as mean 6 standard errors of the

mean from at least three separate experiments. Differences

between two groups were considered significant at p,0.05.

Results

Generation of TCC dhfr-ts mutant parasites
Using constructs targeted for the interruption of the dhfr-ts gene,

single-allele knockout parasites (dhfr-ts+/2) for the TCC strain of T.

cruzi could easily be achieved by electroporation with the plasmid

pBSdh1f8Neo and selection in 300 mg/ml of G418, as it was

previously shown for the Tulahuen strain of this parasite [24]. The

genome locus of dhfr-ts gene is shown in Figure 1A. Southern Blot

analysis of a TCC dhfr-ts+/2 clone confirmed the correct insertion

of the neomycin phosphotransferase gene interrupting the coding

sequence of dhfr-ts in the parasite genome (Figure 1B). By using a

combination of the enzymes SalI and EcoRI, which cut outside the

recombination DNA fragment electroporated and by using

neomycin phosphotransferase sequence as a probe, we could

confirm the correct interruption of the target gene, since a 3 kb

band was obtained as expected. When hybridizing with the dhfr-ts

probe, bands of 2 kb and 3 kb were obtained, indicating successful

interruption of one dhfr-ts allele. PCR analyses using specifically

designed primers upstream of the dhfr-ts gene in combination with

primers for the neomycin phophotransferase gene also revealed

the correct insertion of the antibiotic marker interrupting the

target gene (Figure 1C). However, repeated attempts to interrupt

the second copy of this gene and create null mutant parasites did

not succeed, either for TCC dhfr-ts+/2 or Tulahuen dhfr-ts+/2

parasites. Moreover, thymidine addition to the culture media did

not help in obtaining null parasites, suggesting that the dhfr-ts gene

may be essential for T. cruzi survival in vitro. Only in one occasion

and after several attempts, we were able to obtain resistance to

both, neomycin and hygromycin, but these selected parasites still

retained a copy of the dhfr-ts gene (data not shown).

Cell growth in vitro is significantly affected in dhfr-ts+/2

mutant epimastigotes
To determine if the interruption of one allele of the dhfr-ts gene

affects the ability of T. cruzi to replicate in culture, dhfr-ts+/2

epimastigotes from the TCC and the Tulahuen strains, were

seeded in 6-well plates in LDNT medium without selecting

antibiotic pressure and parasites were counted daily until

stationary phase was reached. After day 5, significant impairment

T. cruzi dhfr-ts KO Vaccine
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in TCC dhfr-ts+/2 epimastigote growth was detected when

compared to TCC wild type (Figure 2A). However, these

differences were less evident in Tulahuen mutant parasites when

compared to Tulahuen wild type epimastigotes (Figure 2B).

Addition of thymidine (100 mg/ml) did not improve mutant

parasite growth (data not shown).

In vivo infectivity of Tulahuen dhfr-ts+/2 metacyclic
trypomastigotes

Infectivity of Tulahuen dhfr-ts+/2 metacyclic trypomastigotes

was determined by quantifying parasite load in blood from

animals independently inoculated with either individual mutant

clones or Tulahuen wild type parasites as a control. Nude mice as

well as IFNc2/2 mice infected with 56104 Tulahuen dhfr-ts+/2

parasites succumbed after 20–25 days of infection even though the

parasite load in these infected mice was significantly lower than

with Tulahuen wild type parasites (Figure 3A–B). In a Balb/c

mouse model differences in parasite load between mice receiving

Tulahuen wild type (26104 metacyclic trypomastigotes/mouse)

and mutant lines (26105 metacyclic trypomastigotes/mouse) were

evident, despite the fact that 10-fold fewer wild type parasites were

used to initiate these infections (p,0.05) (Figure 3C). In summary,

Figure 1. Disruption of one allele of the dhfr-ts gene in the TCC strain of T. cruzi. (A) Diagram of the expected genomic loci of dhfr-ts in
single knockout parasites. (B) Southern Blot analysis of genomic DNA of wild type and a dhfr-ts+/2 TCC clone digested by a combination of SalI/EcoRI
enzymes and hybridized with a DNA probe complementary to the neomycin phosphotransferase gene or the dhfr-ts gene. (C) PCR analysis using a
combination of specific primers complementary to the coding sequence of the upstream gene and the neomycin resistance gene.
doi:10.1371/journal.pntd.0001418.g001

Figure 2. In vitro growth for dhfr-ts+/2 and wild type epimastigotes. (A) Growth curve of TCC wild type versus TCC dhfr-ts+/2 clone and (B)
growth curve of Tulahuen wild type versus Tulahuen dhfr-ts+/2 clone. These results are representative of 3 independent experiments.
doi:10.1371/journal.pntd.0001418.g002

T. cruzi dhfr-ts KO Vaccine
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results from three independent experiments with three different

mouse strains led to the conclusion that the parasite load in mice

receiving Tulahuen dhfr-ts+/2 parasites was significantly lower than

in mice receiving wild type parasites.

In vivo infectivity of TCC dhfr-ts+/2 metacyclic
trypomastigotes

To determine if the naturally attenuated TCC strain could be

rendered even less infective via mutation of the dhfr-ts gene, we

evaluated the infectivity of wild type and dhfr-ts mutant TCC lines

in different mouse strains. Since TCC parasites naturally display

undetectable levels by direct blood examination in immunocom-

petent infected mice, the establishment of infection by TCC

mutant parasites was determined by PCR and hemoculture in

blood samples taken at day 15 post inoculation. No positive

hemocultures were obtained from immunocompetent Balb/c or

Swiss mice injected with 56105 TCC dhfr-ts+/2 metacyclic

parasites (Table 1). However, using nude mice infected with 105

TCC dhfr-ts+/2 metacyclic parasites, parasite recovery by hemo-

culture was demonstrated in 3/3 animals infected with TCC wild

type and in 4/5 animals infected with TCC dhfr-ts+/2 parasites.

Lower proportions of infected animals were detected by PCR in

immunocompetent Balb/c and Swiss mice inoculated with the

mutant as compared to wild type TCC (Table 1). No mortality was

observed in animals infected with mutant or wild type TCC

parasites. Thus, the natural attenuation of TCC leaves a narrow

range to measure further attenuation in the mutants. Nevertheless,

in every measurable case the rates of infection obtained with TCC

dhfr-ts+/2 were lower than those of TCC wild type. These results

led us to conclude that mutation of one allele of the dhfr-ts gene is

sufficient to render mutant parasites less virulent than their

parental line. We then wondered if these parasites were capable of

surviving for long periods of time in the infected hosts; therefore

we evaluated the persistence of TCC dhfr-ts+/2 parasites after 60

and 120 days post infection. Day 120 samples were obtained after

immunosupression with cyclophosphamide (5 doses of 250 mg/kg

of cyclophosphamide per mouse and samples taken 10 days after

the last dose). On day 60, all immunocompetent animals were

negative by both, PCR and hemoculture, whereas 80% (4/5) nude

mice still remained positive. On day 120, 3 surviving immuno-

competent animals (2 Balb/c and 1 Swiss) were negative by PCR

and hemoculture. Parallel determinations in TCC wild type

infected animals did not differ from TCC dhfr-ts+/2 in immuno-

competent mice, except for the fact that in 1 out of 3 animals, a

positive PCR signal was obtained. These results show that

parasites are maintained below detectable levels of our most

Figure 3. In vivo infectivity of Tulahuen dhfr-ts+/2 and Tulahuen wild type metacyclic trypomatigotes. (A) Parasitemia curves of IFNc2/2

mice inoculated with 56104 metacyclic trypomastigotes of Tulahuen wild type and dhfr-ts+/2 parasites. (B) Parasite load of nude mice inoculated with
56104 metacyclic trypomastigotes of Tulahuen wild type and dhfr-ts+/2 parasites at day 20 post-infection. (C) Parasitemia curves of Balb/c mice
inoculated with 26104 metacyclic trypomastigotes of Tulahuen wild type and 26105 metacyclic trypomastigotes of Tulahuen dhfr-ts+/2 metacyclic
trypomastigotes. Values are given as means; error bars indicate standard errors of the means.
doi:10.1371/journal.pntd.0001418.g003
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stringent techniques, opening the possibility that in some cases

might even be completely clear although total parasite elimination

is difficult to assess.

TCC dhfr-ts+/2 parasites inoculation induces a low level of
specific CD8+ T cells

Parasite–specific CD8+ T cells have been shown to be crucial in

the immunity against T. cruzi [31]. It has been shown that the wild

type TCC strain, despite being naturally attenuated, is able to

induce parasite-specific CD8+ T cells in infected mice (Padilla AM,

unpublished data). Therefore, and by staining with the MHC class

I tetramer containing the T. cruzi specific epitope TSKB20 [30],

we were able to determine the generation of specific CD8+ T cells

in peripheral blood of mice inoculated with TCC dhfr-ts+/2 and

wild type parasites. For this purpose C57BL/6J (B6) mice were

injected with 56105 TCC mutant parasites. Blood samples were

analyzed at day 15 post inoculation. As shown in Figure 4A, CD8+

T cells specific response was normal in mice infected with TCC

wild type parasites, while in mutant infected mice, the level of

CD8+ T cells positive for the staining with the MHC class I

tetramer containing the TSKB20 tetramer was not significantly

different from naı̈ve mice (Figure 4A). Since the attenuation of

TCC dhfr-ts+/2 parasites seems to be stronger than wild type

parasites we analyzed the CD8+ response in a more sensible mouse

model. For this purpose IFNc2/2 mice were inoculated with

56104 metacyclic trypomastigotes of mutant and wild type TCC

parasites. In this case, we also detected differences in the T. cruzi

specific CD8+ T cell profile displayed 22 days after infection. The

percentage of parasite-specific CD8+ T cell was significant lower in

mice infected with TCC dhfr-ts+/2 parasites when compared to

TCC wild type infected ones (Figure 4B). Only one mouse infected

with the dhfr-ts+/2 displayed a defined MHC class I tetramer

positive population different from the naive background levels and

more similar to the TCC wild type infected ones. These results

reinforce the previous one, demonstrating the high attenuation of

the TCC dhfr-ts+/2 parasites.

Protective immunity acquired by infection with TCC wild
type and dhfr-ts+/2 parasites

The TCC strain of T. cruzi has been extensively used by our

group as a live vaccine [7,8,32]. Since TCC dhfr-ts+/2 mutant

parasites displayed in several experiments a lower infectivity

than TCC wild type, we tested whether this attenuation would

affect the protective effect of TCC against a virulent challenge.

For this purpose we carried out two independent short term

immunization assays. In one experiment, groups of 4, 30-day-

old C57BL/6 female mice were inoculated with either 56105

metacyclic trypomastigotes of TCC wild type, similar forms of

TCC dhfr-ts+/2 parasites or PBS as a control group. At day 15

post first inoculation, the animals were boosted with the same

dose of parasites. To determine if this immunization regimen

induced a cellular immune response, blood samples were taken

during the immunization phase. In the protection assays mice

immunized with the TCC dhfr-ts+/2 parasites reached levels of

CD8+ T cells specific for the TSKB20 epitope different from the

naive background only after a second boost (Figure 5A). Fifteen

days after the boost, the animals were challenged with 104

metacyclic forms of the virulent CL strain of T. cruzi.

Parasitemia was measured in fresh blood mounts twice a week

in all animals. Mice previously inoculated with either TCC wild

type or TCC dhfr-ts+/2 showed a lower parasite load than

challenged naı̈ve mice (Figure 5B). Despite the lower number of

specific CD8+ T cells detected in mice immunized with mutant

parasites, no differences were found between the protection

conferred by wild type and dhfr-ts+/2 TCC, suggesting that the

interruption of one dhfr-ts allele did not affect their vaccine-

induced protection. Similar results were obtained in another

short term immunization assay with Balb/c male mice

immunized with the same doses and regimen as above but

Table 1. Infectivity of TCC dhfr-ts+/2 and TCC wild type
parasites in different mouse strains.

Mouse
strain Hemoculture PCR

TCC wild
type

TCC
dhfr-ts+/2

TCC wild
type

TCC
dhfr-ts+/2

Nude 3/3 4/5 ND* ND*

Balb/c 0/3 0/5 2/3 2/5

Swiss 0/4 0/5 2/4 0/5

*ND: not done.
doi:10.1371/journal.pntd.0001418.t001

Figure 4. T. cruzi CD8+ specific response in mice infected with TCC dhfr-ts+/2 and wild type parasites. Frequency of TSKB20-specific CD8+

T cells in (A) B6 mice infected with 56105 metacyclic parasites of mutant and wild type TCC parasites (n = 4) and (B) IFNc2/2 mice infected with 56104

metacyclic trypomastigotes of mutant and wild type TCC parasites (n = 6 and n = 3 respectively). Bars represent the mean frequencies of CD8+

tetramer-positive lymphocytes per group; error bars represent standard errors of the mean.
doi:10.1371/journal.pntd.0001418.g004
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challenged with 56103 blood trypomastigotes of the virulent

Tulahuen wild type strain. Specific anti-T. cruzi antibody levels

in sera were undetectable for mice immunized with TCC wild

type parasites or TCC dhfr-ts+/2 (Figure 5C) and clearly

different from the level for mice infected with Tulahuen wild

type parasites, as determined by ELISA at 14 days post-boost.

This was expected since previous results from our group showed

that the TCC strain per se is not a good inducer of a humoral

response [33]. However, Balb/c mice pre-infected with TCC

wild type or TCC dhfr-ts+/2 metacyclic trypomastigotes showed

reduced numbers of circulating parasites in the peripheral blood

when compared to the non immunized control group

(Figure 5D). Mortality on immunized and challenged mice

was null in this animal model. Again, in this experiment no

differences were detected in the protective capacity of dhfr-ts+/2

versus wild type TCC parasites.

dhfr-ts+/2 mutant parasites are able to confer long lasting
protection against a subsequent T. cruzi virulent infection

To determine the duration of the protection observed in short

term immunization-challenge experiments, we carried out a long

term immunization assay. For this purpose, B6 mice immunized

with TCC dhfr-ts+/2 or TCC wild type parasites were challenge

370 days post infection with virulent parasites. In this case, we

employed an approach of challenging with CL-tdTomato parasites

expressing the fluorescent protein td-tomato [26] which can be

tracked in vivo at the site of the infection. This technology allows us

a more quantitative determination of the parasite control at the

site of infection during the days following the challenge. This early

determination is important since one desirable characteristic of a

vaccine is to confer a rapid response and control of the parasites at

the entry location, limiting their proliferation and spread through

other organs. Groups of 3, 30-day-old C57BL/6 female mice were

inoculated with either 56105 TCC wild type metacyclic

trypomastigotes, TCC dhfr-ts+/2 parasites or PBS as a control

group. Blood samples were taken at day 300 post infection in order

to establish the percentage of T. cruzi specific CD8+ T cells. At 300

days post infection, only one mouse inoculated with TCC dhfr-ts+/2

have a detectable population of CD8+ T cells specific for the

TSKB20 epitope. However, TCC wild type infected mice displayed

a consistent TSKB20 specific population (Figure 6A). At day 370

post-infection, these mice were challenged in the footpad with

Figure 5. Short term protection in immunocompetent mice infected with TCC mutant parasites. (A) Lymphocytes were recovered from
blood of B6 mice immunized with TCC wild type (grey bar) and TCC dhfr-ts+/2 (white bar) 14 days after the boost and were stained with the TSKB20
MHC I tetramer. Bars represent the mean frequencies of CD8+ tetramer-positive lymphocytes for four mice per group; error bars represent standard
errors of the mean. (B) Parasitemia curve of B6 mice infected with 56105 TCC dhfr-ts+/2 metacyclic trypomastigotes, TCC wild type metacyclic
trypomastigotes and PBS and challenge with 104 virulent CL parasites. (C) Dispersion diagrams of antibody levels in either naive animals (non
immunized) and those immunized with 56105 metacyclic trypomastigotes of TCC dhfr-ts+/2 or TCC wild type. The results are expressed as the ratio of
the absorbance of each serum sample at a 490-nm optical density (OD) to the cutoff value. Dotted lines indicate the cutoff adopted for positivity,
calculated as the mean of the values determined for the naive controls plus three times the standard deviation. Positive controls were infected with
Tulahuen wild type parasites. (D) Parasitemia curve of Balb/c mice infected with TCC dhfr-ts+/2 metacyclic trypomastigotes, TCC wild type metacyclic
trypomastigotes or PBS and challenge with 56103 virulent Tulahuen blood trypomastigotes. Values are given as means; error bars indicate standard
errors of the mean.
doi:10.1371/journal.pntd.0001418.g005
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2.56105 metacyclic trypomastigotes of the fluorescent CL-

tdTomato strain. Fluorescence at the site of infection was

measured for 13 consecutive days as a surrogate measurement

of parasite load. Figure 6B depicts the evolution of parasite load

during 13 days. Mice previously infected with TCC wild type

metacyclic trypomastigotes a year before were still considerably

protected against the virulent challenge. Despite displaying a

more attenuated behavior, TCC dhfr-ts+/2 infection produced a

similar protective effect compared to TCC wild type parasites.

Overall, these observations indicate that both, wild type and

dhfr-ts+/2 TCC primo infection conferred a long-lasting protec-

tion against secondary infections.

Discussion

Targeted gene deletion has been one of the most important

tools for the study of gene functions, mainly in those organisms

where the current techniques for gene silencing by RNA

interference has failed [34]. The first T. cruzi mutant line carrying

a targeted deletion of a metabolic gene was generated over 18

years ago [35]. Unfortunately, the list of genes that have been

altered for reverse genetic studies in T. cruzi has so far not

increased considerably [24,35–49]. In our limited experience, the

complete deletion of an identified gene through homologous

recombination is not an easy task. The mutants at the dhfr-ts locus

obtained in this work attempting to delete both copies of the dhfr-ts

gene support this notion. Despite the correct replacement of the

endogenous dhfr-ts gene by different antibiotic resistance genes, the

presence of an extra copy in the genome may suggest an evasion

strategy by the parasite to avoid the loss of this essential gene.

Apparently, duplications of the target gene or the whole

chromosome may be taking place. Similar events showing target

locus amplification were observed when trying to obtained null

mutant T. cruzi parasites for the enoyl-CoA hydratase (ech) and

UDP-Glcp 49-epimerase (TcGALE) genes [24,38]. Identifying the

frequency at which duplication events take place could be

important for targeted deletion protocols and for probing the

plasticity of the genome of this intriguing parasite. Possibly,

trisomy and polyploidy are more frequent events than expected.

Overall, our attempts to create a null mutant of the DHFR-TS

enzyme strongly suggest that the dhfr-ts gene is essential in T. cruzi

epimastigotes, even when exogenous thymidine is provided.

The enzyme dihydrofolate reductase thymidylate synthase of T.

cruzi is involved in a number of different vital processes, essential

for parasite survival. The impairment in dhfr-ts+/2 epimastigote

growth is in agreement with depletion of one allele, since the

enzyme product of this gene is involved in the synthesis of

thymidine monophosphate, needed for DNA assembly and

therefore, for cellular replication. The significant loss of the ability

of Tulahuen dhfr-ts+/2 parasites to develop blood parasitism in

immunocompetent mice suggests that this gene may be considered

as a virulence factor of T. cruzi. A reduction in the virulence of

knockout parasites in animal models has been previously observed

in other T. cruzi lines. Such is the case for the T. cruzi Ynull line,

carrying a biallelic targeted deletion of the gp72 gene. This

mutation impaired the ability of Y strain parasites to maintain a

latent infection in immunocompetent mice [13]. Similar results

were also obtained for other T. cruzi mutants [11,12,50]. Here we

report that the disruption of one copy of the dhfr-ts gene in the

naturally attenuated TCC strain of T. cruzi results in even more

attenuated parasites than the parental strain.

In experimental infections in mice with T. cruzi virulent

parasites a strong CD8+ T cell response against immunodominant

peptides encoded in trans-sialidase family genes is observed [30].

However, this specific CD8+ T cell response against a single

epitope (TSKB20) in mice infected with TCC dhfr-ts+/2 parasites

was considerably lower than in mice infected with TCC wild type.

The development of specific CD8+ T cells is determined not only

by the kind but by the amount of available antigen. The lower

proportion of T. cruzi specific CD8+ T cells in mice infected with

TCC dhfr-ts+/2 parasites could probably be correlated with the

inherent propagation rate previously observed for these mutant

parasites. Therefore, a late antigen presentation to dendritic cells

or a lower availability of parasite antigens capable of reaching sites

of priming for the CD8+ T cell response, may be taking place.

However; both TCC wild type and TCC dhfr-ts+/2 parasites,

activated a protective immune response against a second virulent

infection. Despite of generating a lower proportion of TSKB20

Figure 6. Long-term protective immunization with TCC dhfr-ts+/2 metacyclic trypomastigotes against virulent challenge with T. cruzi
CL-tdTomato. A) CD8+ T cells positive for TSKB20 at day 300 post infection in B6 mice inoculated with 56105 metacyclic trypomastigotes of mutant
and wild type TCC parasites. B) Parasite load after challenge, at day 370 post infection, with 2.56105 bloodstream forms of the virulent CL-tdTomato
strain. Fluorescence levels were measured during 13 days. Values are given as means; error bars indicate standard errors of the means.
doi:10.1371/journal.pntd.0001418.g006
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specific CD8+ T cells, dhfr-ts+/2 parasites were able to induce

protection in the immunized mice. This is in agreement with

previous work showing that TSKB20 specific CD8+ T cells

contribute to an optimal control of the acute infection, but are not

crucial for the development of immune resistance [51]. Consid-

ering that the TSKB20 specific CD8+ T cells account for

approximately 30% of the total CD8+ T cells in C57BL/6

infected mice at the peak of the response, it is interesting to see that

TCC dhfr-ts+/2 vaccinated mice are still protected, even when they

display a lower proportion of TSKB20+CD8+ T cells (compared to

TCC wild type infected mice) prior to challenge. This suggests that

other cell populations against alternative, still undefined, epitopes

may be induced by the vaccination with attenuated parasites with

an important role in the protection elicited. An alternative non

exclusive explanation is that the level of CD8+ T cell response

generated and maintained by the immunization, although barely

detectable may be efficient enough to crucially curb the initial

replication of challenging parasites resulting in lower local and

systemic parasite level. The elucidation of those mechanisms will

help in defining the desired characteristics of vaccines against T.

cruzi infection and their rational development.

A point worthy of mention is that the interruption of a copy of

the dhfr-ts gene in the already naturally attenuated TCC strain

seemed to render these parasites undetectable by highly sensitive

methods after 60 days post inoculation in immunocompetent mice.

Parasite recovery in low level infections is considerably difficult;

thus, dhfr-ts+/2 TCC parasites are not detected by a sensitive

technique previously used to demonstrate parasite clearance by

effective drug treatment [52] suggesting that these mutant

parasites may be kept at extremely low numbers without

significantly affecting their protective capacity. This result has

considerable implications since if genetically modified live

attenuated parasites are planned to be used in vaccination of

animal reservoirs, one crucial aspect is that vaccinating parasites

should be unable to be transmitted and integrated in the natural

cycle. Even if mutant parasites are not completely cleared from the

vaccinated animals, the considerable reduction in their number

and ability to develop in the insect vector [13] should decrease the

chances of being transmitted. Therefore this result opens the

possibility of developing a genetically modified line with increased

safety characteristics than naturally attenuated parasites without

compromising the protection induced. Although targeted deletion

of specific genes can be conceived as a potential approach to

generate attenuated lines, genetic manipulation or complete

abrogation of infectivity could lead to a loss of protective

immunity. Since the immune mechanisms of protection in T.

cruzi infection are not completely understood, it is still debatable if

in the case of live attenuated vaccines, the persistence of the

vaccinating parasites is required for maintaining the protection in

a long term. Our results support the hypothesis that a highly

controlled acute infection with genetically attenuated parasites is

enough to induce a protective response which can be maintained

for a long term under conditions of vaccinating-parasite

persistence below detection levels or even complete clearance.
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