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Abstract

Exposure of Entamoeba histolytica to specific ligands induces cell polarization via the activation of signalling pathways and
cytoskeletal elements. The process leads to formation of a protruding pseudopod at the front of the cell and a retracting
uropod at the rear. In the present study, we show that the uropod forms during the exposure of trophozoites to serum
isolated from humans suffering of amoebiasis. To investigate uropod assembly, we used LC-MS/MS technology to identify
protein components in isolated uropod fractions. The galactose/N-acetylgalactosamine lectin, the immunodominant
antigen M17 (which is specifically recognized by serum from amoeba-infected persons) and a few other cells adhesion-
related molecules were primarily involved. Actin-rich cytoskeleton components, GTPases from the Rac and Rab families,
filamin, a-actinin and a newly identified ezrin-moesin-radixin protein were the main factors found to potentially interact
with capped receptors. A set of specific cysteine proteases and a serine protease were enriched in isolated uropod fractions.
However, biological assays indicated that cysteine proteases are not involved in uropod formation in E. histolytica, a fact in
contrast to the situation in human motile immune cells. The surface proteins identified here are testable biomarkers which
may be either recognized by the immune system and/or released into the circulation during amoebiasis.

Citation: Marquay Markiewicz J, Syan S, Hon C-C, Weber C, Faust D, et al. (2011) A Proteomic and Cellular Analysis of Uropods in the Pathogen Entamoeba
histolytica. PLoS Negl Trop Dis 5(4): e1002. doi:10.1371/journal.pntd.0001002

Editor: Anuradha Lohia, Bose Institute, India

Received August 18, 2010; Accepted March 7, 2011; Published April 5, 2011

Copyright: � 2011 Marquay Markiewicz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by an INCO-DEV grant as part of the EU Fifth RTD Framework Programme and was supported by a grant from the Pasteur-
Weizmann Research Council and by a grant from ARN-MIE8 to NG. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: nguillen@pasteur.fr

Introduction

The acquisition of cell polarity is a crucial requirement for

motility in a variety of cells, including activated leukocytes and

fast-moving amoebae. Cell polarization is defined by the presence

of an anterioposterior cell axis and two functionally and

morphologically distinct poles: the leading edge, which guides

the cell’s directional movements, and the trailing edge (i.e. the

uropod), which accumulates adhesion molecules. Following

surface receptor activation and subsequent patching and capping,

uropods form concomitantly with a retrograde flow of the cortical

actomyosin cytoskeleton. It has been suggested that these dynamic

properties are closely related to how cells move [1,2]. However, an

important body of evidence indicates that uropods are essential for

other relevant cell functions, such as cell-cell communication and

cell adhesion. Uropods are found in neutrophils, monocytes,

natural killer cells and amoebae and appear to have an important

role in immune-related interactions [3]. For instance, adhesion

molecules are recruited into cellular uropods following exposure to

chemokines. This process constitutes an important step in the

mechanism responsible for the recruitment of leukocytes to the

inflammation site. Although these phenomena are involved in

immune responses during inflammation (in the case of leukocytes)

or infection (in the case of amoebic parasites), the interplay

between uropod formation and surface receptor capping is still

poorly characterized.

Human amoebiasis is a persistent, infectious disease whose

symptoms vary from amoebic colitis with destruction of the

intestinal epithelium and severe dysentery to extra-intestinal

abscesses particularly in the liver [4,5]. In amoebiasis, the parasite

Entamoeba histolytica employs a range of diverse strategies for

immune evasion. The most distinctive strategy is surface receptor

capping, in which surface targets for host immune components are

translocated towards the uropod and then released into the culture

medium [6,7]. This membrane shedding also enables E. histolytica

to discard bound, harmful substances such as anti-amoeba

antibodies and complement. Surface receptors circulate between

the cell surface and the intracellular compartment via internali-

zation in active endocytic processes. The residence time of these

surface receptors in the endocytic compartment depends on the

receptors’ functions. The fact that uropods are discarded from the

cells (thus reducing the extentn of endocytosis) suggests that (i) the

isolated fraction concentrates various molecules to the plasma

membrane and (ii) the excreted molecules are likely to have a

relevant effect on the establishment of amoebiasis. Therefore it is

essential to identify the major components of discarded fractions to

understand the mechanism of uropod formation.

During invasive amoebiasis, E. histolytica attaches to its target cell

via the galactose/N-acetylgalactosamine lectin (Gal/GalNAc) and

performs contact-dependent cell killing [8]. Although the main

target cell-binding protein Gal/GalNAc is not exclusively

expressed at the cell surface, it is an immunodominant molecule
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which can induce IgA antibody secretion in amoebiasis patients

[9]. The Gal/GalNAc lectin is composed of two subunits: a

170 kDa heavy chain (HgL) with a transmembrane domain and a

cytoplasmic tail with motifs sheared with the signalling molecule

b2 integrin (an integrin receptor subunit involved in cell-cell

adhesion) [10], and a 30/35 kDa light chain (LgL). The LgL

subunit is attached to the membrane by a GPI anchor and to the

heavy chain via disulfide bonds. The complex is associated with

the 120-kDa intermediate subunit (IgL) [11,12], which also

contains a GPI anchor. When E. histolytica is incubated in the

presence of lectins such as concanavalin A (Con A, which has been

widely used to investigate receptor capping), the Gal/GalNAc

lectin accumulates at the uropod [13,14,15]. Remarkably,

blocking out-to-in signalling by using a dominant negative strategy

against the HgL subunit [10,15] leads to a reduction in parasite

adhesion to cells and in Gal/GalNAc lectin clustering of receptors

by Con A. The HgL dominant negative parasites are unable to

move and thus impact pathogenesis since these do not produce

effective liver infection in the hamster model of hepatic amoebiasis

[16,17]. However, these amoeba are still able to invade the human

colon effectively in an experimental model of intestinal amoebiasis

[18]. Interaction between the HgL carboxyl-terminal domain and

the amoebic cytoskeleton (via actin-binding proteins such as a-

actinin) [19] is a key step in this signalling pathway and determines

the tissue specificity of Gal/GalNAc lectin. Recently, the light

chains have also been found to be important for Gal/GalNAc

lectin capping activity, since the absence of LgL subunits 1 to 3

affects the parasites’ ability to cap and translocate the Gal/

GalNAc lectin to the uropod region [20]. Insight into the capping

process’s mechanism has also been gained recently: a serine

protease from the rhomboid family concentrates in the vicinity of

the uropod and cleaves the Gal/GalNAc HgL subunit in vitro [21].

These findings highlight the potential role of a large number of

amoebic proteases in surface receptor capping and uropod

formation. Functional links between proteinases and uropod

formation have also been observed in other eukaryotic cells. For

instance, leukocyte migration is promoted by the activity of

cathepsin X, a cysteine peptidase localized at the uropod and

which modulates the interaction between b2 integrin and the

actin-rich cytoskeleton [22,23]. In addition to the Gal/GalNAc

lectin, calreticulin (CRT) was found to be another antigen

localized in the uropod in addition to its localization in the

endoplasmic reticulum [24]. CRT has an important role in a

variety of cellular processes, including Calcium signalling and

protein folding. The fact that CRT is an immunodominant

antigen during hepatic amoebiasis [25] suggests that it may be

involved in the onset of inflammation and the immune response.

Receptor capping at the amoebic surface and then extrusion of

uropod fractions both require active remodelling of the actomy-

osin cytoskeleton [13,26]. These cytoskeleton functions are

regulated by a panel of important proteins, including the small

GTPases RacG [27] and RacA [28], their corresponding GTP

exchange factors [29,30,31], the PAK kinases [32,33] and the

actin-filament cross-linker Filamin A (previously referred to as

ABP120) [34]. Blocking myosin II inhibits surface receptor

capping and, as a result, trophozoites are unable to invade living

tissues [15].

To gain insight into the molecular composition of uropods, we

performed a high-throughput LC-MS/MS proteomic analysis of

the uropod-extruded fraction following incubation of E. histolytica

with Con A. Our results confirmed the expected presence of the

Gal/GalNAc lectin and CRT. In addition, our results also suggest

the presence of immunodominant variable surface antigen M17

[35], a number of proteins involved in multiple drug resistance

[36] , a set of specific ATPases, a number of small GTPases,

cysteine proteases, at the uropod enriched fractions. Given the

potential roles of immunodominant M17 antigen and cysteine

proteases in the pathogenesis of amoebiasis, we verified the

enrichment of M17 at uropod and investigated the potential roles

cysteine proteases in uropod formation, using cell biology

approaches. To the best of our knowledge, this is the first report

on the uropod proteome in any cell. The E. histolytica surface

proteins identified in this study may provide new insights into the

biology of the parasite. Indeed, the uropod components appear to

be testable biomarkers which may be either recognized by the

immune system and/or released into the blood. The molecular

and cellular analysis of uropod extruded fractions thus opens up

opportunities for better understanding the mechanism of amoebic

infection.

Methods

Parasite culture and cysteine protease inhibition
The pathogenic Entamoeba histolytica (wild type, HM1: IMSS

strain) was cultured axenically in TYI-S-33 medium [37] at 37uC.

For protease inhibition tests, 1.86105 trophozoites in 1,5 ml of

TY-S-33 medium were incubated for 3 h at 37uC in the presence

of (2S, 3S)-trans-Epoxysuccinyl-L-leucylamido-3-methylbutane (E-

64c, Sigma) or (2S, 3S)-trans-Epoxysuccinyl-L-leucylamido-3-

methylbutane ethyl ester (E-64d, Sigma) [38]. 100 mM of both

E64 were used, at this concentration the enzymatic activity of

cysteine proteases is inhibited by 95% as measured by the

degradation of the synthetic substrate Z-RR-AMC (Sigma) (data

not shown). Then the parasites were washed in PBS twice,

resuspended in 1 ml of PBS and incubated in the presence of Con

A (20 mg/ml) as described below.

Imaging of live E. histolytica
For video microscopy, the parasites (105 per ml) in PBS were

seeded on glass bottom culture dishes (MatTeck) and incubated at

37uC in the presence of 5 mg/ml of fluorescent Con A (Alexa fluor

Author Summary

Uropods are membrane folds formed at the rear of moving
cells, e.g. lymphocytes during immune responses and the
amoebic parasite Entamoeba histolytica during amoebiasis.
Previous studies showed some surface receptors of E.
histolytica, e.g. the Gal/GalNAc lectin, which is involved in
adhesion, undergo capping and accumulate at the uropod,
and these processes are driven by the activities of the
actin-rich cytoskeleton. These uropods are then discarded
to the extracellular medium, suggesting the components
of uropods may induce anti-amoebic responses from the
host. In this study, we showed that the serum from
patients infected with E. histolytica, but not serum from
healthy individuals, is able to induce uropod formation. To
characterize the proteome of these induced uropods, we
performed a proteomic analysis of the discarded complex-
es. In addition to the presence of several proteases and
novel cytoskeleton factors, our proteomic results highlight
the presence of important surface components including
the Gal/GalNAc lectin, calreticulin, several adhesion mole-
cules and the immunodominant antigen M17. Finally, we
derived two important conclusions from further cellular
analyses. Firstly, cysteine proteases are not involved in
uropod formation in E. histolytica. Secondly, M17 was
confirmed to be recruited at the uropods induced by
serum from infected patients.

Uropods in Entamoeba
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488, Molecular Probes). Live parasites undergoing capping were

imaged using a confocal microscope (406 objective) with a

Nipkow disk device (Perkin Elmer). Images (10 per second) were

processed with ImageJ software (http://rsb.info.nih.gov/ij).

Induction of receptor capping and purification of uropod
extruded fractions

Amoeba trophozoites (56108) were incubated in the presence of

Con A (20 mg/ml) (grade VI; Sigma) at 4uC for 1 h. To induce cap

formation and release, the cells were moved to 37uC for 10 min

and then harvested. The protein fractions were extracted and

treated in accordance with previously published methods [13].

Briefly, trophozoites and cellular debris were eliminated by two

successive centrifugations at 3006 g for 5 min. Caps were pelleted

at 30,0006 g for 30 min at 4uC. The final pellet was resuspended

and washed twice in 100 ml of PBS containing 1 M a-methyl-D-

mannopyranoside and protease inhibitors (2 mM AEBSF, 1 mM

NEM, and 2 mM PHMB). Lipids were removed by washing the

pellet in methanol (600 ml), chloroform (150 ml), water (450 ml) and

centrifugation at 1000 g for 5 min. The aqueous phase was treated

with methanol (450 ml), centrifuged at 1000 g for 5 min and the

pellet was dried. The protein fraction and crude extract from

growing trophozoites (10 mg) were analyzed by western blot with

an anti-Gal/GalNAc lectin antibody prepared in our laboratory

[14] against the tail domain of HGL subunit (dilution 1:400) and

with an anti-ConA antibody (Sigma) diluted 1:500. Detection was

performed with a secondary anti-rabbit antibody and enhanced

chemoluminescence.

Protein analysis by liquid chromatography and tandem
mass spectrometry (LC-MS/MS)

Two independent experiments were performed. The dried

protein pellet (100 mg, obtained from 108 cells) was dissolved in

20 ml of 1% SDS and then slowly diluted with 50 mM ammonium

bicarbonate to a final concentration of 0.1% SDS. The sample was

reduced with DTT and alkylated with iodoacetamide before

digestion with 1 mg of modified trypsin (Promega) for 24 hrs at

RT. A second 1 mg of trypsin was added and digestion was allowed

to proceed for an additional 24 hrs. The sample was then desalted

and ion-exchanged before concentration. Around 30% of the

digest was introduced into the mass spectrometer for analysis. Two

runs (technical replicates) were performed using slightly different

instrument data acquisition parameters, so that as many different

proteins as possible could be identified. The full LC-MS/MS

procedure was performed by the Biomolecular Research Facility

at Virginia University (1300 Jefferson Park Avenue, Jordan Hall,

Room 1101, Charlottesville, VA 22908, USSA, tel. +1 434 924-

2356). The LC-MS system consisted of a Finnigan LTQ-FT ion

trap - ion cyclotron resonance mass spectrometer system with a

Protana nanospray ion source, interfaced to a self-packed

8 cm675 mm id Phenomenex Jupiter 10 mm C18 reversed-phase

capillary column. 0.5–10 ml volumes of the extract were injected

and the peptides were eluted from the column by an acetonitrile/

0.1 M acetic acid gradient at a flow rate of 0.25 ml/min. The

nanospray ion source was operated at 2.8 kV. The digest was

analyzed using the instrument’s double-play capability by

acquiring (i) full scan mass spectra to determine peptide molecular

weights and (ii) product ion spectra to determine the amino acid

sequence in sequential scans. This mode of analysis produces

approximately 10,000 collisionally-activated dissociation (CAD)

spectra of ions ranging in abundance over several orders of

magnitude. Not all CAD spectra were derived from peptides. The

data were processed using Sequest in the Thermo Electron

Bioworks program ver 3.3.1 (instrument software Xcalibur 2.0)

against the E. histolytica proteome downloaded from NCBI

(genome version 2005). Parent mass tolerance of 8 ppm, fragment

ion tolerance of 0.8 Da. The Xcorr scores adopted the following

thresholds: +1.1.8, +2.2.2, +3.2.7, +4(and higher).3.5. The

search included CAM Cys as a static modification and Ox Met as

a differential modification. Then Scaffold version 3_00_03

computer program was then used to analyse the data (569

proteins were identified with 0,2% of FDR). Then identity of

proteins was further confirmed in the E. histolytica reannotated

genome (Pathema, data version 5.0). The complete data set was

deposited to Tranche database (https://proteomecommons.org/

tranche/). The accession number of the dataset, which is called

‘‘hash’’, is: C94k72mNyTtPf6PDjuFbpsRJUviEokUNGt6joLkg-

wIJuSNl5SYz/iruupzJPKc1CZabar3up98e2syGVm/g75qEjnV-

QAAAAAAAAB3g == .

Immunofluorescence staining and confocal microscopy
Trophozoites (26106/ml) were incubated in PBS containing

fluorescent Con A (5 mg/ml) and non-fluorescent Con A (10 mg/

ml) or human serum (40 ml/ml) for 5 min at 37uC. Naive human

serum (n = 3) was obtained through the Pasteur Institute’s

DIAGMICOLL project (registration nu RBM #816) and sera

from patients (n = 2) were a gift from Dr M. C. Rigothier (Faculty

of Pharmacy Châtenay-Malabry, France). Three experiments

were conducted. The parasites were fixed in 3.7% formaldehyde

for 30 min and incubated in 50 mM NH4Cl/PBS for 30 min. In

some cases, cells were permeabilized by adding 0.1% Triton6100

for 1 min and the samples were then blocked in 1% BSA/PBS for

30 min at 37uC. Preparations were then incubated with the

following antibodies (diluted 1:100) raised in rabbits: anti-M17

(raised against the peptides GTKPKEWTMKYTKYP and

ENNFESKYSIKRDST in this work), and anti CP-A5 or anti-

CP-A1-A2 [39], a kind gift of Dr Tomoyoshi Nozaki (National

Institute of Infectious Diseases, Japan). The anti-human or anti-

rabbit secondary antibodies coupled to Alexa 488 or Cy3

(Molecular Probes) were added at a dilution of 1:200 for 30 min

at 37uC. Amoeba were examined by confocal microscopy

(microscope LSM510, Zeiss). When necessary the number of

uropods was determined in the total fraction of counted parasites

summed from the three experiments.

Substrate gel electrophoresis
1 mg of uropod proteins was migrated on 10% SDS-polyacryl-

amide gel co-polymerized with 0.1% gelatine (w/v). After removal

of SDS by shaking the gel in 2.5% Triton X-100 for 30 min, and

subsequent incubation of the gels overnight at 37uC in 0.1 m

sodium phosphate buffer pH 6.5, containing 2,5 mM dithiothre-

itol, gelatinase activity was detected as a clear band in the

Coomassie Brilliant Blue-stained gels.

Results

Uropod formation and release from E. histolytica
To determine the kinetics of uropod formation and release, we

imaged live parasites incubated with fluorescent Con A (FITC-Con

A). The process was observed by rapid acquisition in confocal laser

microscopy using a Nipkow disk device (Video S1 and Figure 1).

Initially, Con A bound uniformly to the cell surface and indicated a

symmetrical receptor distribution. Activation of receptor capping

induced changes in the cell shape and probably accounted for the

asymmetrical distribution of the FITC-Con A ligand; the latter was

absent from the front of the cell but was concentrated in the uropod

(Figure 1A). Internalization of ligand-receptor complexes was

Uropods in Entamoeba
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observed in some cells as intracellular fluorescent spots, indicating

the presence of an active endocytic process during receptor capping.

The process of uropod formation and release occurred rapidly (in 5

to 10 seconds) (Figure 1B). The extruded fractions accumulated in

the medium and were observed as extracellular fluorescent

agglomerates.

Previous work had suggested the release of membrane fractions

from trophozoites after incubation with serum from patients

suffering from hepatic amoebiasis [7]. We analyzed the ability of

human serum (from both healthy individuals and E. histolytica-

infected patients) to induce surface receptor capping and uropod

formation. For each serum tested, parasites were fixed and the

presence of caps was determined by epifluorescence using an anti-

human secondary antibody (Figure 2). Sera from healthy

individuals bound weakly to the surface of E. histolytica. Small

membrane patches were seen in only 8% of cases (46 out of 582

amoebae, counted in three experiments). In contrast, cell binding

and efficient uropod formation (52%: 282 out of 542 amoebae,

counted in three experiments) was clearly observed when sera

from patients presenting liver abscess were used.

LC-MS/MS analysis of protein content in uropod
extruded fractions

Uropod extruded fractions (UEF) were recovered, treated as

indicated in methods section and submitted to western blot

analysis in order to identify the heavy chain of the Gal/GalNAc

lectin and Con A as a control (Figure 3A). We applied a high-

throughput proteomics approach to uropod-extruded fractions

and gained insight into the potential mechanism of surface

receptor capping and the signal transduction pathways that

induces cap formation and release. After capping induction in

108 cells from two independent experiments, UEF were analyzed

by LC-MS/MS and the peptide sequence data were determined

(see Methods) with a Xcorr higher than 1.5 and 0,2% of

percentage of false discovery (FDR). A list of proteins was

generated taking into account for protein identification 99,9%

accuracy, among these we analyzed proteins represented at

minimum by two peptides. A set of 269 proteins was established

(The entire data files were submitted to Tranche database

(https://proteomecommons.org/tranche/). Whereas 36 of these

were hypothetical proteins with unknown functions, 104 proteins

were present in both experiments and could be categorized using

both functional GO-term annotations and manual annotation via

BLASTP and InterProScan (for protein domain searches) from the

EMBL database (Figure 3B and Table S1). Signalling molecules

accounted for a significant proportion of the UEF proteome, with

the most numerous being small GTPases from the Rho and Rab

families. Metabolic enzymes, biogenesis factors and trafficking-

related molecules were present in the UEF proteome. These

proteins are linked to plasma membrane and to the endocytic

process. Surface molecules, cytoskeletal proteins and amoebic

proteases were also identified. Lastly, a potential virulence factor

(KRiP3) was found in UEF. We further characterized the surface

proteins, the cytoskeleton proteins and the proteinases since these

categories are potentially involved in the surface receptor capping

process and the anti-amoeba immune reactions (Table 1). In

addition to the stringency of protein selection, one important

criteria allowing us to goes further in this analysis was the fact that

for example surface antigens such ARIEL [40], kinase receptors

abundant family [41] or b-tubulin (nucleus marker) were not

present in this proteomic analysis indicating that we have in the

analyzed fraction proteins mostly linked to UEF.

Amoebic proteins associated with the cell surface and
present in the uropod extruded fraction proteome

The Gal/GalNAc lectin protein complex (within which HgL

and LgL subunits were identified) and CRT were representative of

amoebic surface-related protein as expected (Table 1). The

presence of the lectin complex in caps has been observed by the

use of a range of molecular and cellular methods [11,15,42]; as

well as the presence of CRT [24]. One important surface protein

found at the UEF was the 125 kDa immunodominant antigen

M17, which is recognized by sera from patients with amoebic liver

abscesses [35]. In addition, the surface related proteins

Figure 1. Spatiotemporal analysis of the redistribution of Con A associated with the surface of E. histolytica. Trophozoites (of 20–30 mm
size) were incubated under the microscope at 37uC and fluorescent Con A was added at the starting time point. In vivo imaging was performed and
the uropod formation process was detected by frames (indicated by numbers) recorded in a confocal microscope with a Nipkow disk device. A: the
micrograph represents 100 images recorded as 10 images every second. Note the polarisation of fluorescent Con A over time and the increase in the
extrusion of particles into the medium (white arrow). B: Enlarged frames from a chosen cell are presented, with the white star marking the end of the
trophozoite at which the uropod is formed. The entire sequence lasted 11 seconds. See Video S1 for visualisation of details in real time.
doi:10.1371/journal.pntd.0001002.g001
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(EHI_100320, EHI_030830, EHI_016480 and EHI_074020)

contain an ATP-binding cassette from the ABC transporters

superfamily. Pgp6 (EHI_101230) is constitutively expressed in

parasites which are resistant to the anti-amoebic drug emetine and

is involved in the multiple drug resistance phenotype [36]. We also

identified the adhesin ADH112 (EHI_181220), which is part of a

surface and vacuolar heterodimer complex involved in adhesion,

cytopathic processes and phagocytosis [43,44]. ADH112 has a cell

adhesion domain at its carboxyl terminal and a Bro-1 signalling

domain at its amino terminal [45]. Interestingly, ADH112 shows

homology with Alix, a factor that regulates integrin-mediated cell

adhesions and extracellular matrix assembly [46]. Another

parasite adhesion protein found in the UEF was the serine-,

threonine- and isoleucine-rich protein (STIRP). The latter is

predicted to be a transmembrane protein encoded by a five

member multigene family. It is only present in pathogenic E.

histolytica [47] and its inactivation reduces parasite adhesion to

cultured epithelial cells. Our data indicate that STIRP is a

membrane associated component. Lastly, an unknown protein

from the CXXC motif-containing family was present. It has a

signal peptide and seven furin-like cysteine rich regions that is

found in a variety of proteins and involved in signal transduction

via receptors tyrosine kinase [48].

Cytoskeleton-related components present in the uropod
extruded fraction proteome

Several proteins linked to the actin-rich cytoskeleton were

identified in the UEF proteome (Table 2). Most have already been

observed in the uropod region during capping and include actin

[15], myosin II heavy chain [13,26], the small GTPase Rac G

[27], guanine exchange factors [29], filamin [34] and a-actinin

[19]. Moreover, our proteomic analysis highlighted the signalling

pathway leading to surface receptor capping through the discovery

of filopodin (EHI_167130) - an uncharacterized protein with three

ezrin/radix/moesin (ERM) domain repeats and one I/LWEQ

domain (which binds to actin and is present in talin). Talin has an

important role in the interaction between the cytoskeleton and the

cell surface receptors [49] and also influences ERM protein

function during uropod induction in T lymphocytes [50]. For

instance, this is the first report to identify ERM domain-containing

protein (which is pivotal for capping of adhesion molecules in

lymphocytes) in an evolutionary early branching eukaryote such as

E. histolytica. This finding suggests an ancient origin for the ERM

domain and opens up opportunities for further molecular studies

on cytoskeletal activities during receptor capping in E. histolytica.

The UEF proteome analysis revealed that several actin-binding

proteins are related to the spectrin-like protein family (e.g. a-

actinin and filamin). These proteins have already been identified in

the E. histolytica uropod using cell biology techniques [19,34].

Spectrin family proteins and the associated kinases are known to

redistribute to the uropod following T cell activation during the

onset of inflammation [51]. The dynamics of actin filaments within

the uropod was also illustrated by the presence of factors such as

the p41-Arc component of the Arp2/3 complex that is involved in

‘‘de novo’’ actin filament formation [52]. Calcium is one of the

most versatile and universal second messengers in cells. It is widely

accepted that intracellular Calcium has an effect on the actin

cytoskeleton dynamics. Although the calcium-binding proteins of

unknown function grainin 1 and grainin 2 were highly abundant

in the UEF, a functional link between grainins and the

cytoskeleton has not yet been reported in the literature.

Amoebic proteinases present in the UEF proteome
Proteases were another category of the main factors found in the

UEF (Table 2). The cysteine proteases were all endopeptidases

(seven in total): CP-A1, CP-A2 and CP-A5 from the very well

known A family and CP-C4, C5, -C6 and -C13 from the C family.

The C family was recently discovered in E. histolytica [53]. Several

studies have shown that peptidases (particularly cysteine peptidas-

es) are major pathogenicity factors in E. histolytica [54]. CP-A5 is

the prime candidate, (although we only found one peptide in

experiment I which however covers 5% of the protein), since it

Figure 2. Serum from amoebiasis patients promotes uropod
formation in E. histolytica. The micrographs represent confocal
microsopy sections of fixed parasites following incubation with serum
from patients with amoebic liver abscesses (A) or from healthy donors
(B). The left panels show immunofluorescence images obtained after
incubation with anti-human antibodies. The right panels show the
overlaid phase contrast/fluorescence images of entire parasites. The
detector gain for fluorescence was increased in images shown in panel
B. Scale bars: 10 mm.
doi:10.1371/journal.pntd.0001002.g002
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localizes at the amoebic surface [55] and is involved in human

colon invasion [18] and ALA formation [56]. This protease

contains an Arg-Gly-Asp (RGD) integrin binding motif which has

also been found in the proregion of cathepsin X from higher

eukaryotes [57]. In cell-adhesion proteins like fibronectin, RGD

motifs serve as ligand recognition sites for cell-surface receptors

such as the integrins. Recently, it has been shown that the RGD

motif present in the pro-form of amoebic CP-A5 binds to the

integrins of intestinal Caco2 cells and promotes the activation of

the NFkB signalling pathway [38]. In addition to cysteine

proteinases, we also identified Sp2 one of the members of a

family of three amoebic serine proteases (i.e. S28 family) [58] and

two dipeptidyl-peptidases from the lipase family which hydrolyze

tryglycerides, phospholipids and cholesterol esters [59].

In summary, the present article reports the main features of the

proteomic profile obtained by LC-MS/MS analysis of E. histolytica

Figure 3. Distribution in functional categories of the proteins present in the E. histolytica uropod extruded fraction. A. Electrophoretic
analysis of proteins from the ConA-uropod complex and from crude extract. A sample of UEF or amoebic extracts (10 mg, U = uropod; A = amoebae)
were resolved by SDS-PAGE. The Gal/GalNAc lectin heavy chain (170 kDa) and the Con A (24 kDa) were revealed by western blot. B. Protein
identification with LC-MS/MS was followed by proteome comparisons using the BLAST computer program, GO annotations and manual annotations.
Two LC-MS/MS experiments were performed. Only proteins identified by at least two peptides in each experiment were taken into account. In all, 104
proteins were present in both experiments and could be analyzed. The entire data set was submitted to Tranche (https://proteomecommons.org/
tranche/) database.
doi:10.1371/journal.pntd.0001002.g003

Table 1. Surface-linked proteins in the uropod extruded fractions.

Experiment I Experiment II

Genbank GI JCVI Accession Description
Mass
(kDa)

Unique
peptides % Covery

Unique
peptides % Covery

67479719 EHI_136160 Calreticulin 45 12 29 11 32

67478183 EHI_015380 Immuno-dominant variable surface antigen M17 125 11 10 8 11

405076 N/A P-glycoprotein 6 143 8 6,9 10 8

183232088 EHI_100320 Multidrug resistance protein 182 8 6,6 9 6,8

183232225 EHI_030830 Plasma membrane calcium-transporting ATPase 114 8 8,5 8 9,2

67475672 EHI_016480 Plasma membrane calcium-transporting ATPase 119 8 4,8 5 4

3392885 N/A Plasma membrane calcium -transporting ATPase 121 7 6,3 3 3,6

67481663 EHI_012270 Gal/GalNAc lectin heavy subunit 144 6 4,8 7 5

67481591 EHI_035690 Gal/GalNAc lectin light subunit 34 5 2 4 20

67476079 EHI_065670 Cation-transporting P-typeATPase 126 5 2,7 3 3,1

67484480 EHI_148790 Gal/GalNAc lectin light subunit 32 4 17 5 13

305078 N/A Gal/GalNAc lectin light subunit 34 4 12 2 6

183230108 EHI_012330 Serine-Threonine-Isoleucine Rich Protein 291 4 1,8 2 1

67475812 EHI_074020 Vacuolar proton ATPase subunit 93 3 5,5 7 12

67463605 EHI_111990 CXXC-rich protein 131 3 2 4 3

67474486 EHI_181220 Adhesin 112 (EhADH112) 78 3 5,7 3 8,2

67479029 EHI_095820 ATP-binding cassette transporter MRP 152 3 2,3 3 2,4

doi:10.1371/journal.pntd.0001002.t001
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uropod fractions. The released surface proteins, cytoskeleton-

related proteins and cysteine proteases identified herein might help

us to understand the mechanism of surface receptor capping and

uropod formation. Given that the Gal/GalNAc lectin complex is

widely described as being involved in capping [13,14,15], we

decided to extend our proteomic analysis by studying the cysteine

proteases’ roles and M17’s localization during uropod formation.

Inhibition of cysteine proteinases does not change
surface receptor capping and uropod formation

Active cysteine proteinases (such as cathepsin X) have been

shown to interact with b2 integrin and to cause cytoskeletal

rearrangements that stimulate T lymphocyte migration and

uropod formation. Membrane-associated E. histolytica cysteine

and serine proteases may have a role in the degradation of the

tight junctions of target cells, since it has been reported that use of

the corresponding inhibitors prevents this process [58,60].

Therefore, we sought to investigate whether or not cysteine

proteases present in the UEF have hydrolytic activity and so

determined the protease activity of this fraction in a gelatin gel

assay (Figure 4A). The data evidenced a good correlation between

the patterns generated by peptidases present in the UEF on one

hand and the digestion pattern previously published carrying CP-

A1, CP-A2 and CP-A5 activities on the other [61]. The data also

corroborated the previous report in which 48, 34 and 17 kDa

bands are associated with proteolytic activity and corresponded to

CP-A1, CP-A2, and CP-A5, respectively [61]. We thus can infer

that active cysteine proteinases were present in the UEF. We

confirmed by immunofluorecence the presence of CP-A1, -A2 and

-A5 on the uropod of trophozoites incubated with Con A

(figure 4C). Interestingly, in addition of the uropod, the antibody

detecting both CP-A1 and -A2 stained also at the leading edge of

E. histolytica, whereas the CP-A5 stained more accurately the

membrane surface. In order to investigate the impact of cysteine

proteinases in E. histolytica uropod formation, we determined the

influence of cysteine protease inhibitors on the uropod formation

efficiency. Live parasites were incubated in the presence of either

cell-permeant E64 (which acts on both extra and intracellular CPs)

or cell-impermeant E64 (which acts on extracellular CPs only) at

100 mM. The number of uropod-positive cells was not significantly

lower in the presence of these inhibitors in three experiments

performed. To investigate whether CP-A5 has a specific role in

uropod formation, the behaviour of E. histolytica silenced for CP-

A5 gene expression [20] (i.e. RB8 strain) was examined.

Incubation of RB8 parasites and its parental strain G3 with Con

A showed that the parasites had equivalent uropod formation rates

(two experiments performed). This finding indicated that although

cysteine proteinases are abundant and active in the uropod

Table 2. Cytoskeleton-related and proteinases in UEF.

Experiment I Experiment II

Genbank GI JCVI Acession Description
Mass
(kDa)

Unique
peptides % Covery

Unique
peptides % Covery

CYTOSKELETON

67483616 EHI_110180 Myosin II heavy chain 247 26 14 40 22

67462785 EHI_159150 Actin 42 10 28 14 38

67468658 EHI_167310 Grainin 2 24 7 22 15 38

67468717 EHI_167300 Grainin 1 24 5 25 8 33

183230870 EHI_155530 Chromosome partition protein 121 3 1,9 2 1,6

103484580 N/A Clathrin heavy chain 184 2 4,8 8 5

6636336 N/A Actinin-like protein 63 2 4,8 5 9,7

67478790 EHI_167130 Filopodin 180 2 1,5 5 3,3

67484080 EHI_045000 Actin-related 2/3 complex subunit 1A 40 2 6,6 4 15

67484714 EHI_148890 Calmodulin 17 2 14 4 29

183234431 EHI_120360 Grainin 25 2 12 3 16

67484090 EHI_104630 Filamin 2 95 2 3,5 2 3,2

67477667 EHI_110810 Unconventional myosin IB 119 2 2 2 2,7

PROTEINASES

183231030 EHI_127030 Peptidase-CP-C6 58 7 12 5 14

67469327 EHI_033710 Cysteine proteinase, CP-A2 35 4 15 6 18

67479681 EHI_136440 Dipeptidyl-peptidase (lipase family) 77 4 4,9 5 15

183231521 EHI_093970 Peptidase-CP-C13 69 4 6,6 3 7,9

67463512 EHI_182720 Dipeptidyl-peptidase ((lipase family) 76 3 6,5 7 11

183231582 EHI_010340 Peptidase-CP-C5 64 3 5,4 3 5,6

67465637 EHI_037190 Serine carboxypeptidase Sp2 54 2 2,7 5 5,2

544088 EHI_074180 Cysteine proteinase, CP-A1 35 2 5,6 4 14

67480901 EHI_152220 Peptidase-CP-C4 58 2 4,6 3 7,4

67469932 EHI_168240 Cysteine proteinase, CP-A5 35 1 5,3 3 7,9

doi:10.1371/journal.pntd.0001002.t002
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fraction, they do not influence the dynamics of receptor capping or

uropod formation. Cysteine proteinases are important for

pathogenicity in E. histolytica; given their abundance in the

extruded amoebic uropod fractions, we expected them to have

much the same functions in surface receptor capping and uropod

formation as they do in leukocytes. However, inhibition of cysteine

protease activity did not significantly modify the efficiency of cap

formation and thus emphasized a contrast with the known role of

cysteine peptidases in leukocyte uropod formation.

Serum from amoebiasis patients induces M17
enrichment at the uropod

Except for the detailed results on the Gal/GalNAc lectin’s

capping at the amoebic surface and localization of CRT in the

uropod, there are no literatures describing other capped surface

molecules in E. histolytica. One of the major goals of the present

work was to identify surface molecules that might have an

important role in the development of amoebiasis and/or the onset

of immune responses against E. histolytica. These objectives

prompted us to analyse further M17 in the process of surface

receptor capping. We first investigated the domain architecture of

M17. This protein was predicted to contain an N-terminal

transmembrane domain and a galactose-binding-like domain

(Figure 5A). Galactose-binding-like domains (InterPro:

IPR008979) are structurally conserved as a beta-sandwich and

are responsible for binding to specific ligands, such as cell-surface-

attached carbohydrate substrates and phospholipids on the outer

face of the mammalian cell membrane. In fact, meta-prediction of

the structure of M17’s galactose-binding-like domain suggested

that its three-dimensional folding is similar to that seen in a

number of prokaryotic carbohydrate binding proteins. Indeed, the

best hit of this meta-prediction was an extracellular carbohydrate-

active virulence factor from Clostridium perfringens, GH84C [62].

Sequence alignment of M17 homologues in Entamoeba species and

GH84C suggests the conservation of three critical carbohydrate-

binding residues (Figure 5). Hence, M17 is likely to be located on

the cell surface and has a potential role in the carbohydrate-

mediated binding of the amoeba to its host cells [63].

In previous work, antibody-antigen caps were induced by

incubation of E. histolytica with an anti-M17 monoclonal antibody

[35]. However, given the absence of control experiments using

unrelated monoclonal antibodies in the initial report, cap

formation may have been caused by the mere presence of

immunoglobulins (regardless of their specificity) in the antibody

fraction. The abundance of M17 in the UEF proteome and its

potential role in amoebic physiology prompted us to perform a

cellular analysis of M17 during the receptor capping process. We

generated a specific anti-M17 antibody for use in western blots

and for immunolocalization studies in entire cells. Confocal

microscopy analysis clearly demonstrated that M17 localized to

the amoebic plasma membrane (Figure 6). To determine the

relevance of M17 translocation to the uropod, we looked at

whether this protein appeared at the uropod following cell

activation with Con A and following incubation of E. histolytica

with serum from patients with amoebiasis. Staining with the

specific anti-M17 antibody and high-resolution confocal micros-

copy revealed that in both instances, M17 translocated to the rear

cell region (Figure 6). Furthermore, at least half of the uropods

formed after exposure to sera from patients contained the M17

(two sera were tested). These results clearly showed that M17 is not

only on the parasite surface but is also recruited to the uropod

following incubation with serum from amoebiasis-positive patients

(and not naive sera). The complexity of the uropod protein

fraction being discarded to the external medium raises the

question for further exploration of the interplay between

circulating M17 and other immunodominant antigens in amoe-

biasis-triggered immune responses.

Discussion

The uropod is a dynamic structure generated at the rear of

polarized mobile cells. It trails the cells and contains various

surface proteins. Depending on the nature of the capped surface

proteins, a broad panel of biological functions can be associated

with this structure. Uropods might be functionally involved in (i)

connecting intercellular stalks which facilitate cell-cell interactions

in processes such as antigen transport, cytotoxicity, leukocyte

extravasation and apoptosis, (ii) providing mechanical forces

necessary for motility and cell deformability by facilitating cell

passage through constricted spaces and (iii) serving as a site of

active bidirectional traffic, in which endocytosis and exocytosis are

regulated in a coordinated manner [3]. Furthermore, it has been

suggested that E. histolytica uses uropods to escape from the host’s

immune responses; it has been shown that during actomyosin II-

based contraction, uropods are released into the external medium

and lead to an accumulation of ligand-receptor complexes. In

some cases, the ligands (such as antibodies and complement) have

anti-amoebic activities. The discarded fraction might also have a

role in triggering further steps in the immune response during

parasite invasion. Our study showed that sera from amoebiasis

patients (but not naı̈ve sera) induced a remarkably clustering of

molecules in the uropod of E. histolytica, suggesting that surface

molecule clustering may have a significant impact on the immune

response. This finding is critical for future developments in

diagnosis and/or vaccination against E. histolytica, since the

molecules discarded through uropod release circulate in the blood

and are very likely to enter into contact with endothelial cells and

with immune cells in charge of molecule clearance, antigen

presentation and the induction of inflammation.

Here, we have reported that stimulation of E. histolytica with the

lectin Con A as an experimental model enabled the analysis of the

initial capping, then uropod formation and the dynamics of

capping in living cells. The engagement of ligand-receptor

interactions at the amoebic surface prompted a very rapid change

in cell morphology, followed by uropod formation and the

Figure 4. Cysteine proteinases are present as pro-enzymes and
active enzymes in the uropod extruded fractions. A. Substrate
gel electrophoresis of uropod extruded fractions (1 mg of proteins),
which were separated by electrophoresis in SDS-PAGE co-polymerized
with gelatine. To visualize the cysteine proteinase activity, gels were
stained with Coomassie blue. The figure shows the inverted image. B.
Cellular localisation of CP-A5, -A1 and -A2 in E. histolytica. Trophozoites
were incubated with Con A (green). Upon incubation, the cells were
fixed and stained for CP-A5 (up panel) or CP-A1 and -A2 (low panel)
with specific antibodies (red). Scale bar: 10 mm.
doi:10.1371/journal.pntd.0001002.g004
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extrusion of membrane fractions. We identified E. histolytica’s

uropod-associated proteins by performing a proteomic analysis of

the released fractions. We determined the presence of disease-

relevant surface molecules which are important candidates for the

interaction of E. histolytica with human cells, including the Gal/

GalNAc lectin, CRT, STIRP and ADH112 proteins. Further-

more, we described the clustering of the immunodominant

variable antigen M17 - an abundant component of caps formed

using either Con A or serum from infected patients. The latter

findings indicate that this protein is important for eliciting an

immune response. However, genome sequencing has shown that

M17-encoding genes also exist in various non-pathogenic

Entamoeba species (Figure 5). Additional studies will be needed to

determine the special features of this antigen in pathogenic species.

We also identified molecules known to regulate actin-based

cytoskeleton activities; this revealed a clear difference between

uropods in amoebae and those in immune cells. For example,

leukocyte uropods contain a microtubule (MT) organizing center.

However, the fact that MT disruption in leukocytes does not impair

uropod formation suggests that MTs (which are nuclear in E.

histolytica) are not essential for this process. In contrast, cell

polarization and uropod formation in E. histolytica are mainly

regulated by polymerized actin networks maintained by spectrin-

family actin-binding proteins. The latter include a-actinin and the

filamins, which were previously found to accumulate at the uropod

and interact with the COOH-terminal domain of the Gal/GalNAc

lectin [14]. Our proteomic analysis newly identified an ERM-domain

containing protein. In cells, ERM proteins act as membrane–

cytoskeleton linkers by interacting with the amino-terminal domains

of membrane proteins and the carboxyl-terminal domain of F-actin

[64]. The proteins are pivotal in the signal transduction pathway

triggered by receptor capping. For instance, it has been shown [50]

that the preferential localization of ezrin (an ERM containing protein)

in the uropod of leukocytes requires Thr567 phosphorylation and

induces enhancement of uropod integrity, chemotaxis and polar cap

formation. Interestingly, some transmembrane adhesion molecules

(including CD43, CD44, intercellular adhesion molecules, and

PSGL-1) are concentrated at the uropod in immune cells [3] because

they have a motif within the intracellular domain which can bind to

ERM-containing proteins.

A striking difference between uropods from human cells and

those in E. histolytica concerns the role of cysteine proteases. In

migrating lymphocytes, cathepsin X localizes at the uropod and

causes cytoskeletal rearrangements by modulating the activity of

b2-integrin containing receptor LFA-1. The pro-form of cathepsin

X carries a RGD motif (also present in CP-A5 from E. histolytica)

which interacts with the integrin. The protease then cleaves the

four last amino acids of the b2-chain, resulting in its binding to

talin - a crucial step in uropod elongation and cell polarization

[23]. In contrast, CP-A5 (as well as other CPs) does not have any

activity in uropod formation - at least judging by the data obtained

with protease inhibitors and the CP-A5-silenced strain. Alterna-

tively, other proteases may have a role in uropod formation,

despite the fact that knockdown of the rhomboid serine protease

(which specifically localizes at the base of the cap, rather than in

the cap itself) had no significant impact on cap formation [65].

The fact that cysteine proteinases from the C family were highly

represented in the UEF make these factors relevant for further

Figure 5. Conservation of carbohydrate-binding residues in the galactose-binding-like domain of M17 homologues of Entamoeba.
A. The domain architecture of M17 (EHI_015380). The transmembrane domain and the galactose binding-like domain (IPR008979) were identified
using Philius [66] and InterProScan software packages, respectively. B. The amino acid sequence alignment of the carbohydrate-binding domain of
M17 homologues in Entamoeba and GH84C of C. perfringens (PBD ID: 2V5D_A). Residues with .75% identity are highlighted. M17 homologues of E.
dispar (prefix EDI) and E. invadens (prefix EIN) were identified using BLASTP analysis of their proteomes, with M17 as the query. The arrows indicate
the carbohydrate binding residues in GH84C [62]. C. Predicted structural model of the galactose-binding like domain of M17. The model was
predicted from the 3D jury meta-server [67], with C. perfringens GH84C as the best-hit template (i.e. the template with the highest 3D-jury
score = 81.56; score of 50 is the default cut-off, which results in a prediction accuracy of above 90%). The side-chains of the three conserved
carbohydrate binding residues are coloured and labelled as in panel B.
doi:10.1371/journal.pntd.0001002.g005

Uropods in Entamoeba

www.plosntds.org 9 April 2011 | Volume 5 | Issue 4 | e1002



analysis. Although cysteine proteases has been found into internal

vesicles and/or on the amoebic surface, little is known about the

potential association of trafficking vesicles and uropod membranes

and/or subcortical cytoskeleton, but we cannot exclude this

possibility. For instance, the pseudopod at the front of the cells is

devoid of vesicles. At the moment, we can not confirm these CPs

are interacting with the cytoskeleton in E. histolytica but it is totally

possible, since in leukocytes cathepsin X interacts with the tail of b-

Figure 6. The cellular localization of the immunodominant antigen M17 in E. histolytica. Trophozoites were incubated with serum from
healthy patients (left panels), with serum from patients with amoebic liver abscesses (middle panes) or with green fluorescent Con A (right panels).
Upon incubation, the cells were fixed and stained for M17 with a specific antibody (red) and co-stained with a serum recognizing anti-human IgG (left
and middle panels). Scale bar: 10 mm.
doi:10.1371/journal.pntd.0001002.g006
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integrin in the cytosol upon activation by cathepsin B in the

lysosomes [22]. Hopeful we can get more insight in this point

when single cell analysis will be performed trying to determine the

dynamics of vesicle traffic in E. histolytica.

In conclusion, E. histolytica’s trailing edge accumulates important

molecules (such as adhesion receptors, immune response activa-

tors, cytoskeleton components and proteinases) following the

activation of surface receptor capping. In human infection,

extrusion of these molecules into the interstitial cell space or the

blood can trigger immune responses against E. histolytica. These

proteins are potentially powerful markers for (i) studying the

mechanism underlying uropod formation; (ii) addressing the

question of how their activity (or their presence) elicits an immune

response and induces cell death when in contact with human cells.

Supporting Information

Table S1 Proteins identified at the uropod of Entamoeba histolytica.

Found at: doi:10.1371/journal.pntd.0001002.s001 (0.05 MB XLS)

Video S1 Uropod formation in Entamoeba histolytica. Trophozo-

ites were seeded on glass bottom culture dishes (MatTeck) and

incubated at 37uC in the presence of 5 mg/ml of fluorescent Con A

(Alexa fluor 488, Molecular Probes). Live parasites undergoing

capping were imaged using a confocal microscope (406objective)

with a Nipkow disk device (Perkin Elmer). Images (10 per second)

in a focal plane show fluorescence changes at the amoebic

membrane reflecting the surface receptor capping and uropod

formation phenomena.

Found at: doi:10.1371/journal.pntd.0001002.s002 (9.08 MB AVI)
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