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Abstract

Background: Functional annotation of trypanosomatid genomes has been a daunting task due to the low similarity of their
genes with annotated genes of other organisms. Three recent studies have provided gene expression profiles in several
different conditions and life stages for one of the main disease-causing trypanosomatids, Trypanosoma brucei. These data
can be used to study the gene functions and regulatory mechanisms in this organism.

Methodology/Principal Findings: Combining the data from three different microarray studies of T. brucei, we show that
functional linkages among T. brucei genes can be identified based on gene coexpression, leading to a powerful approach for
gene function prediction. These predictions can be further improved by considering the expression profiles of orthologous
genes from other trypanosomatids. Furthermore, gene expression profiles can be used to discover potential regulatory
elements within 39 untranslated regions.

Conclusions/Significance: These results suggest that although trypanosomatids do not regulate genes at transcription
level, trypanosomatid genes with related functions are coregulated post-transcriptionally via modulation of mRNA stability,
implying the presence of complex regulatory networks in these organisms. Our analysis highlights the demand for a
thorough transcript profiling of T. brucei genome in parallel with other trypanosomatid genomes, which can provide a
powerful means to improve their functional annotation.
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Introduction

Trypanosoma brucei, the causative agent of human sleeping

sickness, is one of the major disease-causing trypanosomatids

whose genome sequences have been determined for about five

years [1]. However, the functions of most of the genes of this

parasite still remain unknown, mainly because of the poor

similarity between their sequences and the sequences of charac-

terized genes from other organisms. This highlights the need for

employing homology-independent approaches to improve the

functional annotation of T. brucei genome. Since co-expressed

genes tend to share similar functions, belong to the same pathways,

or participate in the same processes [2], the function of a gene can

often be predicted based on the functions of the genes it is co-

expressed with [3]. This provides a powerful homology indepen-

dent method for functional annotation of a genome.

In T. brucei, most genes are not transcriptionally regulated [4,5].

Instead, genes are transcribed as polycistronic mRNAs [6] that

heavily depend on post-transcriptional processes for maturation

and regulation. Some reports suggest that this lack of transcrip-

tional regulation results in limited responsiveness of T. brucei

transcriptome to altered environment and genetic background [7],

thus, preventing the construction of an informative coexpression

network. Nevertheless, recent studies have reported that mRNAs

of T. brucei genes with related functions share similar sequence

motifs in their untranslated regions (UTRs), suggesting that they

are coregulated at post-transcriptional level via common sequence-

dependent mechanisms for regulation of mRNA stability and/or

translation [8].

Three recent studies have provided genome-wide expression

profiles for procyclic form (PF) and bloodstream form (BF) T. brucei

during differentiation [9–11]. Here, we demonstrate that while the

data from each of these individual studies is not significantly

informative about gene function, their collection can be used to

construct a coexpression network that reflects the functional

linkages among genes. We have used this coexpression network to

predict the broad functions of several currently uncharacterized T.

brucei genes, and have expanded our predictions by considering

coexpression relationships that are conserved between T. brucei and

Leishmania infantum. Finally, we show that by combining the

expression data from the microarray studies of T. brucei, we can

cluster the genes based on expression profiles and use these clusters

to identify potential regulatory elements within mRNA untrans-

lated regions.
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Methods

The methods that we have used in this study are summarized in

this section. The details of the methods are provided in

Supplementary Methods S1.

Data sources
We used T. brucei mRNA expression data from three recent

publications [9–11]. A set of 7488 T. brucei genes was shared by

these three studies, each gene represented by a total of 17

expression values: four from ref. [9], eight from ref. [10] and five

from ref. [11]. The functional annotations of T. brucei genes were

obtained from KEGG pathway database [12] and TriTrypDB

[13]. The sequences of 39 UTRs were extracted based on previous

splice-site predictions [14]; sequences were either used completely

or truncated to contain only the first 1000nt in the 59 end of the 39

UTR. For identification of conserved coexpression, we used a

collection of Leishmania infantum gene expression profiles from three

different studies [15–17]. Orthologous genes between T. brucei and

L. infantum were identified based on their protein sequences,

obtained from KEGG [12].

Construction and evaluation of a coexpression network
based on T. brucei microarray studies

The coexpression values for ,2.86107 T. brucei gene pairs,

measured as Pearson correlation coefficients across several

experiments, were obtained using different experiment sets: (i) a

set of four experiments from ref. [9], (ii) a set of eight experiments

from ref. [10], (iii) a set of five experiments from ref. [11], (iv) the

set of all the 17 experiments from these three studies, and (v) a

selected subset from the 17 experiments; this subset was chosen so

as to maximize the accuracy and coverage of predicting functional

linkages, as explained in the next section. Gene pairs with

correlation coefficients greater than a specified threshold were

used to construct the coexpression networks. This threshold was

chosen so that at least 75% of linkages in the coexpression network

would represent functional linkages according to KEGG (in other

words, the coexpression network would have a precision of 75%).

Selecting an optimum subset of microarray experiments
for identification of functional linkages

Different microarray studies may present data that do not

equally correlate with functional linkages; inclusion of experiments

that do not reflect the functional relationships among genes may

have a negative effect on the accuracy of function predictions.

Furthermore, some experiments may be redundant; e.g. replicate

the same biological condition or show little differences in terms of

the transcriptome profile. Therefore, it is necessary to trim the

dataset that is used for construction of the coexpression network in

order to remove redundant and uninformative experiments. To

this end, we used a heuristic algorithm for selection of the best

subset. This algorithm tries to iteratively find experiments whose

exclusion can actually improve the accuracy and coverage of the

coexpression network. It should be noted that although these

‘excluded’ experiments may have a negative effect on the ‘overall’

accuracy of function predictions, they may provide specific

information for particular pathways, as we will show in the results.

Gene function prediction based on the coexpression
network

The functions of currently uncharacterized genes can be

predicted based on their association with genes of known functions

in the coexpression network. Briefly, if a particular gene is

coexpressed with several genes that have a shared function, that

gene is also most likely involved in the same function. We

calculated a p-value for each gene-pathway pair, so that a small p-

value would reflect a significant association between the gene and

the pathway. Uncharacterized genes were assigned to biological

pathways if their association had a p-value that corresponded to at

least 80% precision, meaning that at least an estimated 80% of the

predictions are correct.

Identification of conserved coexpression linkages among
genes

Genes with related functions have usually conserved their

coexpression through evolution. Thus, if two genes are coex-

pressed in more than one organism, there is a higher chance that

these genes are functionally related [3]. We identified 5300

orthologs of T. brucei genes in the closely related organism

Leishmania infantum based on reciprocal best BLASTP hits with e-

values ,161026. The coexpression value in L. infantum was

calculated for gene pairs based on a collection of previously

reported data from three different studies [15–17]. Each pair of

conserved genes could then be assigned two values: their Pearson

correlation coefficient based on T. brucei microarray data, and their

Pearson correlation coefficient based on L. infantum microarray

data. Two genes have a conserved coexpression relationship if

both of these values are greater than specified cutoffs (different

cutoffs can be used for each organism). The cutoffs were chosen so

that the conserved coexpression network would have maximum

coverage of T. brucei proteins with a precision of at least 50%.

Identification of potential regulatory motifs in UTRs
We used a previously reported regulatory element discovery

method, FIRE, which has been shown to have a close-to-zero false

discovery rate and provides a wealth of information about each of

the discovered motifs [18]. T. brucei genes were clustered based on

Author Summary

The impact of the trypanosomatid genome sequencing
projects, especially Trypanosoma brucei, Trypanosoma cruzi,
and Leishmania species, has been substantial. However,
significant numbers of hypothetical or conserved hypothet-
ical trypanosomatid-specific genes remain uncharacterized
with possible roles in infectivity and disease. The genes in
trypanosomatids are organized into large multigenic
clusters that are transcribed as polycistronic transcription
units, thus limiting gene regulation mainly to the post-
transcriptional level. In this study, we examined three
independent DNA microarray studies of T. brucei, and found
that mRNA abundances of functionally related T. brucei
genes are co-regulated, most probably via post-transcrip-
tional events. We then used this property of functionally
related genes to predict the functions of hypothetical genes
in T. brucei. The predictions were further improved by
including DNA microarray studies from the closely related
trypanosomatid Leishmania infantum, suggesting that
parallel transcript profiling of trypanosomatids will be of
considerable potential for refining gene function predic-
tions in these organisms. Furthermore, we found that
potential regulatory elements within untranslated regions
of RNA transcripts can be predicted based on combined
expression data from different microarray studies. Overall,
this approach contributes to a better understanding of the
mechanisms underlying gene regulation and function in
trypanosomatids.

Combined Analysis of Microarray Data for T. brucei
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the data of the three microarray studies [19], and the gene clusters

along with either complete or truncated 39 UTR sequences were

submitted to FIRE with default parameters. We only discuss the

results of running FIRE on truncated sequences in this paper; the

complete set of results can be found at http://webpages.mcgill.ca/

staff/Group2/rsalav/web/Suppl/20100109/index.htm.

Results and Discussion

A coexpression network of T. brucei genes
We calculated the pairwise correlation coefficients of mRNA

expression profiles for ,2.86107 gene pairs in each of the three T.

brucei microarray datasets as well as in a combined dataset. As

Figure 1A shows, if each dataset is considered separately, only a

minor enrichment of functionally associated genes can be observed

at high correlation coefficients. Nonetheless, when the three

datasets are merged, the enrichment ratio of functional linkage

between coexpressed genes increases drastically, reaching as high

as ,20 for gene pairs with correlation coefficients .0.90. This can

be further improved by objectively selecting the set of experiments

that are used for calculating correlation coefficients: removing all

the experiments from ref. [9], three out of eight experiments from

ref. [10] and one of the five experiments from ref. [11] could

increase the enrichment of functionally associated genes up to

three-fold for gene pairs with correlation coefficients .0.95

(Figure 1A). This also significantly improved the accuracy of

predicting functionally associated gene pairs (Figure 1B). However,

as we will show later, while the trimmed dataset is generally more

successful in identification of functionally associated genes, the

non-trimmed dataset can better identify genes of particular

functions, such as oxidative phosphorylation.

Using the combined microarray datasets, we constructed two

coexpression networks of T. brucei each with an estimated precision

of 75% (Figures 1C and 1D and Supplementary Dataset S1). We

call the network that is obtained from all microarray experiments

CoExp1
Tbr and the network that is obtained from the selected

subset of experiments CoExp2
Tbr. These networks encompass

1280 and 10247 connections among 799 and 4148 T. brucei genes,

respectively. Most of these genes have no known function (49% in

CoExp1
Tbr and 59% in CoExp2

Tbr are annotated as hypothetical

proteins).

The CoExp1
Tbr network consists of two main clusters, one with

a large number of bloodstream form (BF)-specific genes and one

with mostly procyclic form (PF)-specific genes. Some protein

complexes and functional modules can be readily distinguished in

the sub-network that has most of the PF-specific proteins, as shown

in Figure 1C. This modularity of the network should allow us to

predict the functions of currently uncharacterized genes. For

example, Tb927.10.4880 (formerly identified as Tb10.70.2320),

which is currently annotated as ‘‘hypothetical conserved’’, is

located within a complex that corresponds to cytochrome c

oxidase. This is congruent with the recent reports showing that this

protein co-purifies with cytochrome c oxidase complex [20].

Based on visual inspection, the sub-network with BF-specific

proteins has notably less modularity compared to the PF-enriched

sub-network. Although several functions are enriched among BF-

specific genes (Supplementary Figure S1), they are not represented

adequately in this coexpression network due to its low coverage.

However, as expected from the higher coverage of CoExp2
Tbr, this

network contains more BF-specific genes. It can be anticipated

that upon the availability of more microarray data, both the

coverage and the precision of the coexpression network will be

even further improved and, consequently, a more modular and

thorough coexpression network will emerge. Nonetheless, the

current networks can be used to predict the functions of many

currently hypothetical T. brucei genes, as explained in the next

section.

Pathways can be predicted based on coexpression
networks of T. brucei

As Figure 1C shows, genes of different functions are clustered

together in the coexpression network of T. brucei. We used this

functional relatedness of coexpressed genes to predict functions of

uncharacterized genes within the obtained networks. As shown in

Figure 2, each of the CoExp1
Tbr and CoExp2

Tbr networks are

more successful in finding new genes for different pathways:

CoExp1
Tbr can successfully assign new genes to ribosome,

oxidative phosphorylation and purine metabolism, while Co-

Exp2
Tbr can identify genes that are involved in ribosome,

glycolysis, inositol phosphate metabolism and phosphatydilinositol

signaling system (the genes involved in the latter two pathways

considerably overlap, according to KEGG pathway annotations).

We found that many of the genes whose functions are predicted

based on our analysis, although having no annotation in KEGG

pathway database, are already annotated in TriTrypDB [13].

These annotations are considerably congruent with our predic-

tions, highlighting the reliability of our approach in predicting

gene functions. Examples include several cytochrome c oxidase

subunits that are correctly assigned to oxidative phosphorylation

and many 40S and 60S ribosomal proteins that are correctly

assigned to ribosome. While this provides a proof of concept for

the method, it also underpins the limitations of KEGG pathway

database as the gold standard for construction of the functional

linkage network and subsequent function prediction. For example,

the gene Tb927.10.4880, which we mentioned in the previous

section, cannot be assigned to any function using KEGG pathway

information, since none of its neighbors in the coexpression

networks are annotated in KEGG. However, if we manually add

the known cytochrome c oxidase subunits of T. brucei to the

oxidative phosphorylation pathway in the gold standard set, our

approach can successfully predict that Tb927.10.4880 is involved

in oxidative phosphorylation (p,0.001).

Nonetheless, based on the coexpression networks, we can

readily predict the likely pathways and biological processes for

many of the currently hypothetical proteins. Some of these

predictions are also corroborated with available literature. For

example, Tb927.10.9830 (formerly identified as Tb10.6k15.0480),

which, based on CoExp1
Tbr, is predicted to be involved in

oxidative phosphorylation, has been previously reported to be

associated with ATP synthase complex [21]. Tb927.4.4020 and

Tb927.10.7090 (formerly known as Tb10.6k15.3640) which are

coexpressed with purine metabolism genes have several copies of

putative regulatory elements that have been previously reported as

purine metabolism-specific 39 UTR motifs [8]. Also,

Tb927.6.2330, which, based on CoExp2
Tbr, is predicted to be

associated with ribosome, has an RGG domain which has been

shown to interact with several ribosomal proteins [22]. The

complete list of our predictions based on CoExp1
Tbr and

CoExp2
Tbr along with literature information that either support

or oppose these predictions can be found in Supplementary Tables

S1 and S2. The distribution of these genes in the coexpression

networks are shown in Supplementary Figure S2.

We have also used the coexpression networks CoExp1
Tbr and

CoExp2
Tbr to predict the likely biological processes, molecular

functions, and cellular compartments of T. brucei genes based on

GO annotations of TriTrypDB (Supplementary Tables S3, S4, S5,

S6, S7, and S8). The analysis of GO annotations complements the

KEGG dataset by expanding the predictions of metabolic

Combined Analysis of Microarray Data for T. brucei
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Figure 1. Integration of microarray data for identification of functional linkages among genes. (A) The correlation coefficients between genes
were calculated for each T. brucei dataset separately, for the combination of the three datasets, and for a selected subset of the experiments. The probability
density function (PDF) of correlation coefficients among functionally associated and non-associated genes is shown by blue and red, respectively. It can be
seen that the data from the work by Kabani et al. [9] are poorly correlated with functional linkages. This is while the other two datasets from Queiroz et al.
and Jensen et al. [10,11] can discriminate functionally linked gene pairs based on the higher correlations of their expression profiles. Consequently, the
procedure that we used for selection of the best subset of the experiments automatically excluded the data from Kabani et al. [9], while retaining most of
the experiments from the other two datasets (the right panel). The enrichment of functional linkages at a given correlation coefficient, shown by the thick
black line, was calculated by dividing the values of the two PDFs. (B) Precision (positive predictive value, PPV) vs. ORFeome coverage for prediction of
functional linkages based on coexpression is shown in this graph. ORFeome coverage is defined as the fraction of ORFs (open reading frames) with
associated expression profiles that are coexpressed with at least one other ORF. By decreasing the threshold for identification of coexpressed pairs, more
ORFs are included in the network, but the fraction of coexpression relationships that reflect functional linkages (i.e. precision) decreases. At a precision of
0.75, CoExp1

Tbr and CoExp2
Tbr include 10.7% and 55.4% of T. brucei ORFeome, respectively. The correlation coefficient cutoff for CoExp1

Tbr is 0.94 and for
CoExp2

Tbr is 0.957. (C) In CoExp1
Tbr, functionally related genes cluster together. A global view of CoExp2

Tbr is also provided in panel (D). Stage-specific
expressions are shown by node colors, with yellow for PF-specific and blue for BF-specific proteins. These two networks are provided in Supplementary
Dataset S1 and can also be downloaded at http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20100109/index.htm.
doi:10.1371/journal.pntd.0000810.g001

Combined Analysis of Microarray Data for T. brucei

www.plosntds.org 4 August 2010 | Volume 4 | Issue 8 | e810



pathways and also by providing predictions for other categories.

For example, we were able to predict novel genes that are

potentially involved in antigenic variation, protein folding, and

microtubule-based movement. Also, this analysis showed that

many proteins within the same cellular compartments are

coexpressed, which is not surprising as cellular compartmentali-

zation loosely reflects functional compartmentalization of proteins.

This allowed us to predict the likely localization of many proteins;

most notably we were able to find potential membrane proteins,

intracellular proteins, and proteins associated with dynein complex

(Supplementary Tables S5 and S8).

Conserved coexpression: A closer look
Conservation of coexpression is a much stronger indicative of

functional linkages among genes, compared to coexpression in a

single organism [3,23]. Thus, we searched for coexpression

associations that were conserved between T. brucei and its close

relative, L. infantum. As Figure 3A shows, in the subset of genes

whose orthology between T. brucei and L. infantum can be

unambiguously established, gene pairs that are coexpressed in

both T. brucei and L. infantum are considerably enriched with

functional linkages. This property can be used for a more accurate

prediction of functional linkages, as shown in Figure 3B: while

neither the microarray data of T. brucei nor those of L. infantum

alone can reach a precision higher than 40% for identification of

functional linkages among the conserved subset of genes, their

combination can yield a wide range of precision and sensitivity

values (note that the lower precision of T. brucei-only data

compared to CoExp1
Tbr reflects the absence of most of ribosomal

proteins from the subset of genes with unambiguous orthologs; see

Supplementary Figure S3). We chose our criteria for identification

of conserved coexpression relationships so that at least 50% of

these relationships reflect functional linkages among genes. This

resulted in a conserved coexpression network with 1110

associations among 632 T. brucei genes whose orthologs in L.

infantum could be unambiguously identified (Supplementary

Dataset S1). Based on this network, many new genes could be

mapped to KEGG pathways (Figure 3C, Supplementary Figure

S2). This conserved coexpression network was particularly

successful in assigning currently uncharacterized genes to oxidative

phosphorylation (Supplementary Table S9). For example, from 17

hypothetical conserved genes that based on this network were

predicted to be involved in oxidative phosphorylation, seven genes

have been previously identified as potential associated partners or

subunits of ATP synthase complex [21]; five others have been

reported as mitochondrial proteins, one of which is specifically

identified as a mitochondrial membrane protein [24,25]; and three

proteins have a potential regulatory element in their transcript that

is also found in the transcripts of many cytochrome c oxidase

subunits [26]. This conserved coexpression network could also be

used for predicting the likely GO associations of a few T. brucei

genes (Supplementary Table S10).

Figure 2. Function prediction based on T. brucei coexpression networks. Precision-recall curve for each function is plotted separately. Recall
or sensitivity for a particular pathway is defined as the fraction of genes of that pathway within the coexpression network whose function is correctly
predicted. Precision indicates the fraction of the predictions that are correct. The CoExp1

Tbr network can successfully predict ribosome, oxidative
phosphorylation, and purine metabolism genes (A), while CoExp2

Tbr is best at predicting ribosome, inositol phosphate metabolism,
phosphatidylinositol signalling system, and glycolysis genes (B). The p-value thresholds were chosen to be at most 0.05 and result in a precision
of at least 0.8. See Supplementary Tables S1 and S2 for complete set of predictions.
doi:10.1371/journal.pntd.0000810.g002

Combined Analysis of Microarray Data for T. brucei
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These results suggest that functionally related genes are

coregulated at mRNA level, most probably through post-

transcriptional processes, in different trypanosomatids including

both Trypanosoma and Leishmania genera. Furthermore, this analysis

highlights the parallel expression profiling of trypanosomatids as a

promising approach that can significantly enhance the functional

annotation of all trypanosomatid genomes, including T. brucei.

Cis-regulatory element discovery based on clusters of
coexpressed genes

Having a collection of microarray datasets, we can study the

underlying mechanisms of gene regulation in T. brucei. To this end,

we first clustered the T. brucei genes based on their expression

profiles into 19 distinct coexpression groups. The expression

patterns within each of these clusters were consistent, and different

clusters had unique signatures distinguishing them from each other

(Figure 4A). Eight out of the 19 clusters significantly overlapped

with at least one Gene Ontology (GO) category, including

biological processes, molecular functions, and cellular compart-

ments (p,0.05 with Bonferroni correction for multiple compar-

isons; all GO terms at all levels were analyzed). We next used

FIRE [18] to find potential regulatory motifs in 39 UTRs across

these clusters. FIRE was able to find 14 statistically significant

RNA motifs, each over-represented in different gene clusters

(Figure 4A). Interestingly, some of these motifs showed a position

bias in the clusters in which they were over-represented. For

example, the motif [AC]U[AU]UUAAC, which is over-represent-

ed among genes that are involved in the interaction of parasite

with host, occurs mostly between the 40th and 100th nucleotide

after the stop codon of these genes, while showing no position

Figure 3. Prediction of functional linkages based on conservation of coexpression. (A) Gene pairs that are functionally related are
coexpressed in both T. brucei and L. infantum. Therefore, an enrichment of functional linkages can be observed where correlation coefficients are high
for both T. brucei and L. infantum (the x-axis represents the correlation coefficients of gene pairs in L. infantum, while the y-axis represents that
correlation coefficients in T. brucei). Enrichment was calculated as Pr(ctbr = x6D,clif = y6D|I)/Pr(ctbr = x6D,clif = y6D|I9), where I and I9 represent sets of
functionally associated and non-associated gene pairs according to KEGG, respectively. Also, ctbr and clif respectively represent correlation coefficients
in T. brucei and L. infantum. D was chosen to be 0.05. (B) By considering the conservation of coexpression between T. brucei and L. infantum (red), we
can more accurately predict functional linkages, compared to predictions that are based solely on T. brucei data (yellow) or L. infantum (light blue).
About 50% of gene pairs whose expression profiles have correlation coefficients greater than 0.89 in T. brucei and 0.56 in L. infantum are estimated to
be functionally related (black circle). These gene pairs cover ,11.9% of all T. brucei genes with unambiguous L. infantum orthologs. The resultant
conserved coexpression network is provided in Supplementary Dataset S1 and can also be downloaded at http://webpages.mcgill.ca/staff/Group2/
rsalav/web/Suppl/20100109/index.htm. (C) Ribosome, proteasome and oxidative phosphrylation genes can be identified based on the conserved
coexpression network. See Supplementary Table S9 for complete set of predictions.
doi:10.1371/journal.pntd.0000810.g003

Combined Analysis of Microarray Data for T. brucei
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Figure 4. Finding potential regulatory elements based on a combined microarray dataset. (A) T. brucei genes were grouped into 19
clusters based on their expression profiles (top panel; red: high expression, blue: low expression). FIRE [18] was used to find potential regulatory
motifs in the 39 UTRs (lower panel; yellow and blue represent over-representation and under-representation of a motif within a cluster, respectively).
(B) The motif [AC]U[AU]UUAAC occurs preferably between nucleotides 40 and 100 downstream of the stop codon in clusters 16 and 19, while its
position is random in other clusters, such as cluster 1. Interestingly, both clusters 16 and 19 are enriched with genes involved in interspecies
interaction (mostly surface antigens). (C) Some motif pairs co-occur in the 39 UTRs. In this symmetric heat map, each row and each column
corresponds to a predicted motif. Light color indicates that the presence of a motif in a 39 UTR implies the presence of another motif within the same
UTR. Significant spatial co-localization between pairs of motifs is shown by ‘‘+’’. The full set of results along with additional analyses can be found at
http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20100109/index.htm.
doi:10.1371/journal.pntd.0000810.g004

Combined Analysis of Microarray Data for T. brucei
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preference in UTRs of genes of other clusters (Figure 4B).

Furthermore, many of the found motifs seem to co-occur within

the same UTR (Figure 4C). This suggests that they may represent

the most conserved parts of a larger, probably structural, RNA

motif. This is especially the case for predicted motifs that not only

co-occur with each other, but also co-localize at the same part of

the 39 UTR.

Concluding remarks
The analysis presented in this paper highlights whole-genome

transcript profiling as a powerful tool for identification of

functional and regulatory modules in T. brucei. A comprehensive

and high-resolution analysis, however, needs tens to hundreds of

different microarray experiments in order to capture the nuances

between gene expression patterns of different modules. These

experiments should encompass a variety of environmental and

genetic conditions, including different stress-inducing culture

media and various knockdown/knockout cells. Nonetheless, recent

studies suggest that once a large collection of microarray data is

available, regulatory and functional modules may be identified

even in the absence of such environmental and genetic variations

[27]. It should also be noticed that parallel transcript profiling of

related organisms may provide more information than excessively

thorough transcript profiling of a single organism.
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