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Abstract

Background: The parasitic protozoan Trypanosoma brucei utilizes glycolysis exclusively for ATP production during infection
of the mammalian host. The first step in this metabolic pathway is mediated by hexokinase (TbHK), an enzyme essential to
the parasite that transfers the c-phospho of ATP to a hexose. Here we describe the identification and confirmation of novel
small molecule inhibitors of bacterially expressed TbHK1, one of two TbHKs expressed by T. brucei, using a high throughput
screening assay.

Methodology/Principal Findings: Exploiting optimized high throughput screening assay procedures, we interrogated
220,233 unique compounds and identified 239 active compounds from which ten small molecules were further
characterized. Computation chemical cluster analyses indicated that six compounds were structurally related while the
remaining four compounds were classified as unrelated or singletons. All ten compounds were ,20-17,000-fold more
potent than lonidamine, a previously identified TbHK1 inhibitor. Seven compounds inhibited T. brucei blood stage form
parasite growth (0.03#EC50,3 mM) with parasite specificity of the compounds being demonstrated using insect stage T.
brucei parasites, Leishmania promastigotes, and mammalian cell lines. Analysis of two structurally related compounds,
ebselen and SID 17387000, revealed that both were mixed inhibitors of TbHK1 with respect to ATP. Additionally, both
compounds inhibited parasite lysate-derived HK activity. None of the compounds displayed structural similarity to known
hexokinase inhibitors or human African trypanosomiasis therapeutics.

Conclusions/Significance: The novel chemotypes identified here could represent leads for future therapeutic development
against the African trypanosome.
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Introduction

African sleeping sickness conjures historical images of disease-

induced fatal slumbering striking down men, women, and

children, consequently decimating villages of colonial Africa.

Unfortunately, people living in many countries of sub-Saharan

Africa today know that African sleeping sickness is not a disease of

history but rather is a much-neglected disease of the present,

particularly in areas that suffer the additional burdens of war,

famine, global and local climate changes, and other infectious

agents. The causative agents of sleeping sickness (or human

African trypanosomiasis, HAT) are subspecies of the African

trypanosome Trypanosoma brucei. Approximately 500,000 people in

sub-Saharan Africa are infected annually with the parasite leading

to 50,000–70,000 deaths per year [1]. Similar to other neglected

tropical diseases, limited therapeutics for HAT are available and of

the drugs currently used, most have serious adverse side effects,

including encephalopathy, toxicity, and death [2]. Thus, there is a

desperate need for new HAT therapeutics with the preference

shifting from general cytotoxic agents towards molecular target-

based therapeutics that should display fewer toxic effects.

Bloodstream form (BSF) T. brucei parasites generate ATP

exclusively through glycolysis and T. brucei hexokinase TbHK,

the first enzyme in glycolysis, has previously been validated as a

target for therapeutic development. In these experiments, BSF

parasites were shown to be sensitive to RNA interference (RNAi)-
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based silencing of TbHKs [3,4], with cell toxicity observed after 3–

5 days of RNAi exposure. Additonally, known inhibitors of HKs

have been demonstrated to inhibit T. brucei hexokinase 1

(TbHK1), one of two nearly identical TbHKs that the parasite

expresses. These compounds are furthermore toxic to the parasite

[4]. While some mammalian HK inhibitors can inhibit TbHK1,

TbHK1 is distinct enough from mammalian HKs to suggest that it

can be specifically targeted. Supporting this notion, TbHK1 shares

only 30–33% sequence identity with the mammalian HKs and

differs further by unusual oligomerization into hexamers [5].

Moreover, the unusual spectrum of known inhibitors of the

trypanosome enzymes, including fatty acids and other small

molecules (like pyrophosphate, [5]), support the idea that this

essential parasite protein is sufficiently distinct from any

mammalian counterpart to make an ideal target for therapeutic

development. Indeed, targeting TbHK using structurally based

inhibitors has yielded trypanocidal compounds, albeit at high

concentrations [6,7].

Here we describe our high throughput target-based approach to

identify specific inhibitors of the essential parasite enzyme,

TbHK1. Overall, ten compounds were confirmed as novel

TbHK1 small molecule inhibitors exhibiting little or no similarity

to known HK inhibitors (or HAT therapeutics). Most of the potent

TbHK1 inhibitors were toxic to culture-grown BSF T. brucei while

not exhibiting toxicity towards mammalian cells, suggesting that

they may be useful lead compounds in the development of new

therapies for African trypanosomiasis.

Methods

Chemicals and reagents
Clear 384-well microtiter plates were purchased from Greiner

(Monroe, NC) and used for all experiments. Glucose-6-phosphate

dehydrogenase, b-nicotinamide adenine dinucleotide (NAD+),

adenosine triphosphate (ATP), lipoic acid (PubChem SID

11532893) and glucose were purchased from Sigma (St. Louis,

MO). Phosphoenol pyruvate (PEP), ebselen (PubChem SID

856002) and glucosamine were obtained through VWR (West

Chester, PA) and dimethyl sulfoxide (DMSO) was purchased from

Fisher (Pittsburgh, PA). The following PubChem SID compounds

were obtained from commercial vendors: 3716597, 24830882,

17386310, and 16952891 (Enamine/Kiev, Ukraine); 24797131

(Chembridge/San Diego, CA); 14728414 and 17387000 (Specs/

Delft, The Netherlands); 17507245 (Asinex/Moscow, Russia); and

24785302 (ChemDiv, San Diego, CA).

Compound libraries
The library of pharmacologically active compounds (LOPAC)

(1,280 compounds) was purchased from Sigma-Aldrich. The

Pittsburgh Molecular Libraries Screening Center (PMLSC)

provided the 220,233 compound library screened for TbHK1

small molecule inhibitors, which was made available as part of the

NIH Molecular Libraries Roadmap Initiative. Cherry-picked

compounds from the PMLSC library were supplied by Biofo-

cusDPI (San Francisco, CA).

Purification of bacterially expressed TbHK1
For purification of bacterially expressed TbHK1 (rTbHK1), a

previously described protocol [8] was modified to increase yield.

Briefly, a starter culture of E. coli M15(pREP) harboring pQE30

(Qiagen, Valencia, CA) with the TbHK1 gene cloned in frame of

a 6-His tagging sequence was grown in ECPM1 [9] and then

inoculated into a 5 L bioreactor (Biostat B, B. Braun Biotech

International, Allentown, PA) and grown at 37uC. At OD600

between 3–5, the culture was induced with IPTG (0.8 mM), grown

without supplement O2 (37uC, 16 hr), and cells collected by

centrifugation (50006g, 20 min, 4uC). The pellet was resuspended

in lysis buffer (50 mM NaPO4, pH 8.1, 5 mM glucose, 150 mM

NaCl, and 0.1% Tween) and lysed by using a cell disruptor

(Constant Cell Disruption Systems, Sanford, NC). The resulting

supernatant was applied (5 ml/min) to a 50 ml ProBind column

(Invitrogen, Eugene, OR) on a FPLC (GE Lifesciences, Piscat-

away, NJ) and protein eluted by gradient (5 to 250 mM imidazole)

in lysis buffer. Fractions were screened using HK activity assays

and Western blotting and those containing rTbHK1 were pooled,

concentrated, and applied to a HiTrap SP HP column (GE

Lifesciences, Piscataway, NJ).

Automated primary TbHK1 HTS and glucose-6-phosphate
dehydrogenase coupled assays

TbHK1 assays were an adaptation of a coupled enzyme HK

assay to a 384-well format [8,10]. Briefly, test and control

compounds (30 mM in 15 mL volume) were added to a 384 well

black, opaque microtiter plate using a Velocity 11 V-prep (Santa

Clara, CA) for a final test compound concentration of 10 mM.

Negative (vehicle) controls contained 1% DMSO, positive controls

contained 133 mM glucosamine and IC50 controls contained

1.3 mM glucosamine (final well concentrations). A mixture

containing glucose (1.5 mM), ATP (1.05 mM), MgCl2 (4.5 mM),

NAD+ (9 mM), glucose-6-phosphate dehydrogenase (G6PDH,

0.018 mUnits/mL) and triethanolamine (TEA, 100 mM, pH 8.0)

in a 15 mL volume was then added to each well of the assay plate

using a Perkin Elmer FlexDrop (Waltham, MA) followed by

addition of rTbHK1 (1.5 ng/ml in 15 mL volume). The 45 mL

reaction mixture was incubated at RT for 2 hr and then quenched

with 5 mL EDTA (500 mM). The resulting signal, which remained

stable for up to 5 hr after addition of stop reagent, was collected on

a Molecular Devices SpectraMax M5 (absorbance at OD340)

(Sunnyvale, CA).

To account for possible inhibition of the reporter enzyme in the

primary coupled reaction, putative inhibitors were screened to

assess their activity against a G6PDH coupled assay. Briefly, test

and controls compounds were added to the wells of a 384 well

assay plates as described above. Negative (vehicle) controls

contained 1% DMSO, positive controls contained 100 mM PEP

Author Summary

African sleeping sickness is a disease found in sub-Saharan
Africa that is caused by the single-celled parasite
Trypanosoma brucei. The drugs used widely now to treat
infections are 50 years old and notable for their toxicity,
emphasizing the need for development of new therapeu-
tics. In the search for potential drug targets, researchers
typically focus on enzymes or proteins that are essential to
the survival of the infectious agent while being distinct
enough from the host to avoid accidental targeting of the
host enzyme. This work describes our research on one
such trypanosome enzyme, hexokinase, which is a protein
that the parasite requires to make energy. Here we
describe the results of our search for inhibitors of the
parasite enzyme. By screening 220,223 compounds for
anti-hexokinase activity, we have identified new inhibitors
of the parasite enzyme. Some of these are toxic to
trypanosomes while having no effect on mammalian cells,
suggesting that they may hold promise for the develop-
ment of new anti-parasitic compounds.
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and IC50 controls contained 8.6 mM PEP (final well concentra-

tions). A mixture containing glucose-6-phosphate (G6P, 0.6 mM)

and NAD+ (1.8 mM) in a volume of 15 mL was then added to each

assay plate well. The reaction was initiated by addition of 15 mL

G6PDH (0.018 mUnits/mL) (for a final volume of 45 ml),

incubated at RT for 1 hr, and then quenched with 5 ml of EDTA

(500 mM). The change in absorbance at OD340 was monitored as

above.

Additional specificity assays were performed using human HK 4

(human glucokinase, hGlk, GenBank accession no. BC001890)

that was expressed from a cloned cDNA (OPEN Biosystems,

Huntsville, AL) in pQE30. After sequencing, the plasmid was

transformed into E. coli M15 (pREP) and cultures were grown to

an OD600 of 0.9 in terrific broth and protein expression induced

(3 hr, 37uC) with 1 mM IPTG followed by purification by nickel-

affinity chromatography.

Inhibition assays of lysate-derived TbHK
Parasite lysates from BSF parasites were prepared by incubation

(5 min on ice) of 1.56107 cells in lysis buffer (0.1 M TEA, pH 7.4,

and 0.1% Triton X-100) supplemented with 1 mM PMSF, 5 mg/

ml leupeptin, and 100 mg/ml TLCK. In triplicate, cell equivalents

(26105) were incubated with increasing concentrations of inhibitor

for 15 minutes at RT prior to initiation of the coupled reaction. In

short, the 200 ml reactions included 50 mM TEA, pH 7.4, 33 mM

MgCl2, 20 mM glucose, 5.25 mM ATP, 0.75 mM NADP, and 0.1

units of G6PDH, with kinetic analyses performed using Kaleida-

Graph 4.1 (Synergy Software, Reading, PA).

T. brucei viability assay
To determine the impact of TbHK1 inhibitors on cell growth,

we seeded 56103 BSF parasites (cell line 90–13, a 427 strain) into

96-well clear-bottomed polystyrene plates in 200 ml HMI-9

supplemented with 10% fetal bovine serum and 10% Serum Plus

(Sigma-Aldrich, St. Louis, MO) and grown in the presence of

compound (2 ml) or equivalently diluted carrier for 3 days in 5%

CO2 at 37uC. CellTiter Blue (Promega, Madison WI) was added

(20 ml) and the plates incubated an additional 3 hr under standard

culture conditions. Fluorescence emission at 585 nm was then

measured after excitation at 546 nm in a GENios microtiter plate

reader (Phenix Research Products, Hayward CA). DMSO solvent

was maintained at or below 1%, with 1% causing a 16% reduction

in cell number at the end of the three day assay.

Procyclic form (PF) parasites (29–13, a 427 strain, 56104/well)

were grown in 96-well clear-bottomed polystyrene plates in 200 ml

SDM-79 for 2 days (5% CO2, 25uC) and then CellTiter Blue (20 ml)

added. Plates were then incubated for 1 hr under standard culture

conditions. Fluorescence of samples was then characterized as above.

Mammalian cell-line and Leishmania promastigote
specificity assays

Cell-based specificity assays were performed as previously

described [11]. Briefly, mammalian cell line and Leishmania

promastigote assays were performed in final volumes of 25 mL

using our previously described 384-well microtiter format [12]. All

mammalian cell lines were cultured and maintained in complete

growth medium preparations according to ATCC specifications

(ATCC, Manassas, VA). Leishmania promastigotes were cultured as

previously described [11]. A549 (1,000 cells/22 mL), IMR-90

(1,000 cells/22 mL), HeLa (1,000 cells/22 mL), MDA-MB-231

(3,000 cells/22 mL), Leishmania promastigotes (5,000 parasites/

22 mL) were seeded into each well of 384-well microtiter plates

and test and control compounds (3 ml) were added to individual

wells. Vehicle and positive controls were 1% and 10% DMSO,

respectively. For mammalian cells, assay plates were incubated for

44–46 h at 37uC in the presence of 5% CO2 and for the Leishmania

promastigotes, assay plates were incubated for 44 h at 28uC with

5% CO2. Five mL of CellTiter Blue reagent was added to each

assay plate well and incubated for 2–4 h at 37uC with 5% CO2.

Data were captured on a Molecular Devices SpectraMax M5

(excitation A560; emission A590).

HTS data analysis and statistical analysis
Primary HTS data analysis and subsequent compound IC50

calculations were performed using ActivityBase (IDBS, Guilford,

UK) and Cytominer (University of Pittsburgh Drug Discovery

Institute, Pittsburgh, PA). Structural similarity of the confirmed

inhibitors was determined using Leadscope software (Columbus,

OH). Additional visualization and statistical analysis were

performed using GraphPad Prism software 5.0 and Spotfire

(Somerville, MA). The PubChem database (http://PubChem.

ncbi.nim.nih.gov) was used to verify if the confirmed TbHK1

small molecule inhibitors exhibited bioactivity in other assays.

In silico ADME/toxicity analysis
Computational modeling tools were used to estimate the

bioavailability, aqueous solubility, blood brain barrier potential,

human intestinal absorption, the cytochrome P450 (i.e. CYP2D6)

enzyme inhibition potential, mutagenicity, and hERG inhibition of

the confirmed TbHK1 inhibitors. The bioavailability, aqueous

solubility, and human intestinal absorption were estimated using the

ADME Boxes v4.0 software (Pharma Algorithms, Toronto, Canada),

while mutagenicity and hERG inhibition were estimated with TOX

Boxes v2.9 software (Pharma Algorithms, Toronto, Canada). The

CYP2D6 inhibition and blood brain barrier potential were predicted

using Accord for Excel 6.2.2 (Accelrys, Inc, San Diego).

Results

Validation of optimized HTS assay conditions using the
LOPAC set

The TbHK1 coupled assay was optimized and validated for

HTS by screening the LOPAC set. Compounds were assayed in

duplicate at a single concentration (10 mM) and reproducibility

between the duplicate screens is represented in Fig. 1 (R2 = 0.96).

Figure 1. Validation of the HTS by LOPAC screening. Plot of
percent inhibition for duplicate screen of the 1280 LOPAC compounds.
LOPAC compounds (blue), minimum control, which should equal
,100% inhibition of signal readout (red), IC50 control compounds
(yellow), and maximum control compounds, which should equal ,0%
inhibition of signal readout (green), are indicated.
doi:10.1371/journal.pntd.0000659.g001
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Average Z-factors were 0.6960.02 for the two LOPAC assays

demonstrating the robustness of the developed assay format [13].

Eighteen compounds inhibited TbHK1 enzymatic activity $40%

at 10 mM including myricetin, a structural analog of quercetin,

which was previously identified as a TbHK1 small molecule

inhibitor (IC50 = ,85 mM) (Lyda and Morris, unpublished). These

data confirmed that our automated HTS assay conditions were

robust and could be used to identify compounds that inhibited

TbHK1 activity.

Interrogation of 220,233 compounds for TbHK1 small
molecule inhibitors

We next screened 220,223 compounds at a single concentration

(10 mM) for small molecule inhibitors of TbHK1 (Fig. 2). The

HTS assay performed robustly (average Z-factors of 0.8060.1)

and identified 239 compounds as primary actives (.50%

inhibition at 10 mM), for an overall hit rate of 0.1%. The 239

active compounds were cherry-picked, and the initial inhibitory

activity confirmed in the primary TbHK1 assay. Additionally, the

compounds were tested against the reporter enzyme, G6PDH, to

confirm that they did not interfere with the assay format.

Following initial 20 point IC50 value determinations using

cherrypicked compounds, compounds with IC50 values ,50 mM

were obtained from commercial sources. The activity of the 13

resupplied compounds was empirically determined to control for

possible TbHK1 inhibitory effects associated with compound

library degradation. Ten small molecules confirmed with TbHK1

IC50 values ,50 mM while three compounds failed to inhibit

TbHK1. Leadscope analysis of the 10 confirmed TbHK1

inhibitors classified six compounds into a cluster of structurally

related compounds (cluster 1) while the remaining four com-

pounds were classified as singletons (Table 1, Fig. 3). Ebselen (SID

856002) was the most potent compound in cluster 1 with an

IC50 = 0.0560.03 mM. For the majority of the compounds IC50

values either improved or remained similar to cherry-picked

compounds with the exceptions of SID 17386310 and SID

14728414 (Table 1) which were 7.5 and 6.6-fold less potent,

respectively, upon resupply (data not shown). Moreover, all ten

novel TbHK1 inhibitors were 20-17,000-fold more potent than

londiamine, a previously described TbHK1 inhibitor [4] and 2-

1720-fold more potent than quercetin (Lyda and Morris,

unpublished).

Additional experiments to assess the in vitro specificity included

testing the compounds against hGlk. The activity against hGlck

was varied, with the cluster 1 compounds yielding a spectrum of

efficacy, from very low inhibition at 10 mM (for example, SID

17387000, with 6.7% inhibition, Table 1) to near complete

inhibition by ebselen (97.8% inhibition). Singletons also demon-

strated a spectrum of activity against hGlck with SID 22401406

and SID 14728414 having minimal impact on the enzyme while

17386310 was a more potent inhibitor (Table 1). Moreover, data

mining of the PubChem database (http://pubchem.ncbi.nlm.nih.

gov/) determined the frequency with which a compound was

found to be active in other assays. In general, the cluster 1

compounds were active in other assays more frequently than the

singletons, with SID 17387000 the most frequently active

(identified in 7.2% of the 238 assays in which it was tested).

Figure 2. Scheme depicting HTS interrogation of a 220,233
small molecule library for TbHK1 inhibitors.
doi:10.1371/journal.pntd.0000659.g002

Table 1. HTS Cluster 1 and Singleton hits.

Leadscope
Grouping

PubChem
SID

PubChem
Bioassay Activity1

IC50 (mM)
Resupply

% Inhibition of
hGlck (10 mM) BSF EC50 (mM)

% PF Growth
Inhibition (10 mM)

L. major
EC50 (mM)

Cluster 1 856002
(Ebselen)

344/44/22 0.0560.03 97.860.1 2.960.28 5160.16 4.160.4

17387000 236/38/17 2.060.5 6.769.4 0.03060.067 4860.15 1.960.2

24785302 170/21/11 4.261.0 6.964.2 0.04260.0028 4760.15 1.960.2

3716597 318/29/18 9.360.3 7.867.1 .10 2760.080 .12.5

24830882 171/12/7 16.960.1 88.864.9 0.8360.20 8.660.030 .12.5

16952891 214/24/11 2.660.2 44.969.9 0.3060.079 4760.15 .12.5

Singletons 22401406 184/5/2 2.360.3 0.0 .10 0.0 .12.5

24797131 175/6/2 11.463.2 6.368.8 .10 0.0 .12.5

17386310 211/10/4 33.6610.2 70.363.6 0.03860.0038 5060.15 2.660.1

14728414 216/2/1 41.763.0 1.967.0 .10 0.0 .12.5

1As of 09/03/09. Number of bioassays in which the compound was tested/number in which the compound was active/number in which the compound has been
confirmed as an inhibitor.

doi:10.1371/journal.pntd.0000659.t001
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Singletons, on the other hand, were less frequently active. For

example, SID 14728414 was confirmed as an active in one of 216

assays (,1%) (Table 1).

TbHK1 small molecule inhibitors are toxic to BSF
parasites

TbHK1 has previously been shown to be an essential gene for

BSF T. brucei [4], suggesting that inhibitors of the enzyme may be

promising lead compounds for therapeutic development. To

initially explore this possibility, we grew cultured BSF parasites

in the presence of 10 mM compound and cell density monitored

after 72 hr (Table 1). The ten resupplied compounds were tested

in this assay, with EC50s determined for those that inhibited cell

growth .50% at 10 mM (Table 1). Compounds in cluster 1

included two of the most potent anti-trypanosomal compounds,

SID 17387000 and SID 24785302. Singletons were also toxic,

with SID 17386310 being one of the most potent compounds

tested to date. Four molecules, including a member of cluster 1

(SID 3716597) and three singletons (SID 22401406, SID

24797131, SID 14728414) inhibited TbHK1 but were not toxic

to BSF at 10 mM. With the exception of ebselen, the resupplied

anti-parasitic compounds exhibited EC50 values that were 10–

1000 fold lower than the TbHK1 IC50 values. This discrepancy

could result from other actions or concentration of the inhibitors in

the glycosome, which is a small peroxisome-like organelle where

TbHK1 is located. Additionally, we have found that RNAi of

TbHK1, which reduces expression but does not necessarily ablate

it, is toxic to BSF parasites, suggesting that modest inhibition of

cellular TbHK1 activity could be lethal to the parasite [4].

To explore the likelihood of off-target whole parasite effects, we

assessed the toxicity of the TbHK1 inhibitors against PF parasites.

Unlike BSF parasites, PF parasites can utilize both amino acids

and glucose for ATP production. This dynamic metabolism

suggests that the PF parasites may be less sensitive to TbHK1

inhibitors. Indeed, at 10 mM most of the resupplied compounds

had only a modest impact on PF parasite growth, inhibiting

growth between 0–51% when compared to control cell lines.

Compounds toxic to T. brucei were also assayed against a related

kinetoplastid parasite, Leishmania. The Leishmania promastigotes

were typically less sensitive to the resupplied compounds (with

EC50s .12.5 mM), with the exception of the cluster 1 compounds

ebselen, SID 17387000, SID 24785302 and the singleton, SID

17386310. These compounds had EC50 values against Leishmania

between 1–5 mM in exponentially growing parasites (Table 1).

Moreover, our identified TbHK1 inhibitors have minimal impact

on human cell lines with EC50 values .12.5 mM, suggesting at

least 400-fold greater toxicity toward parasites for the most potent

T. brucei cytotoxic compounds (Table 1).

In silico predictions for the identified TbHK1 inhibitors
To investigate the chemical similarity of our newly identified

TbHK1 small molecule inhibitors to current treatments for

African sleeping sickness as well as previously described TbHK1

inhibitors, we performed a similarity search using the Tanimoto

coefficient. The data indicated that the TbHK1 inhibitors

displayed low levels of similarity with all compounds examined

with the highest similarity being between lonidamine and SID

16952891 (47%) (Table 2). Thus, these results demonstrate that

the newly identified TbHK1 inhibitors are unique, either

displaying no or very low similarity to known TbHK1 inhibitors

and current therapies for African sleeping sickness.

Additional in silico ADME-tox predictions indicated that all ten

TbHK1 compounds had an extremely low probability for being

either a hERG channel inhibitor or mutagenic (data not shown).

Moreover, all compounds, except SID 3716597 were predicted to

Figure 3. Structures of the cluster 1 and singleton HTS hits.
doi:10.1371/journal.pntd.0000659.g003

Table 2. Comparison of structural similarities of HTS hits to licensed compounds used against HAT and to known TbHK1
inhibitors.

Compound Proposed Mode of Antiparasitic Action1 TbHK1 Inhibitor (SID) Similarity Coefficient2(%)

Pentamidine Accumulation in the mitochondria, DNA binding 17386310 31

Suramin Inhibition of glycolysis 24830882 38

24797131 38

Melarsoprol Inhibition of glycolysis Interaction with thiols 24830882 43

Eflornithine Polyamine biosynthesis (via inhibition of ODC) 14728414 27

Lonidamine TbHK1 inhibitor3 16952891 47

Quercetin TbHK1 inhibitor4 24797131 38

1Reviewed in [13].
2Similarity coefficient was determined using the Tanimoto coefficient. Compounds with values greater than 80% are considered highly structurally similar.
3[4].
4Lyda and Morris, unpublished.
doi:10.1371/journal.pntd.0000659.t002

T. brucei Hexokinase 1 Inhibitors

www.plosntds.org 5 April 2010 | Volume 4 | Issue 4 | e659



be moderately to highly bioavailable and nine of 10 compounds

displayed medium to very high blood brain barrier (BBB)

potential, with the majority of the cluster one compounds

predicted to have high to very high BBB potential (Table 3). Six

of 10 TbHK1 inhibitors were predicted to have no inhibitory

activity on CYP2D6 enzyme with the exceptions being cluster one

compounds SID 3716597 and SID 24785301 and singletons SID

14728414 and SID 24797131 (Table 3). The majority of the

compounds had a predicted low aqueous solubility (Table 3),

suggesting that if these compounds were to be used in future

analogue development, they would need to be refined to improve

their aqueous solubility. Thus, based on empirically derived data

and in silico analyses, we focused on cluster 1 compounds for

subsequent analyses.

Further characterization of two structurally related
cluster 1 TbHK1 small molecule inhibitors

Ebselen, 2-phenyl-1,2-benzisoselenazol-3(2H)-one, was the

most potent TbHK1 inhibitor (IC50 = 0.0560.03 mM) identified

in our studies while the structurally related inhibitor SID

17387000 (2-phenyl-1,2-benzisothiazol-3(2H)-one) was the next

potent compound identified with an IC50 = 2.060.5 mM

(Table 1). Analysis of the nature of TbHK1 inhibition revealed

that both ebselen and SID 17387000 were mixed inhibitors with

respect to ATP, with Ki values of 6.13 mM and 6.89 mM,

respectively (Fig. 4). However, both ebselen and SID 17387000

exhibited comparable IC50 values against T. brucei lysate-derived

TbHK1 enzymatic activity with IC50 values of 0.4360.02 mM

and 1.260.12 mM respectively (Fig. 5). Thus, while compound

SID 17387000 was nearly as potent against lysate activity as the

bacterially expressed protein, ebselen was significantly less potent

against parasite lysate-derived TbHK1 activity (than the

bacterially expressed protein). These results suggest that ebselen

may be metabolized by cellular components or that lysate-derived

TbHK1 may be associated with various cofactors that result in

less potent IC50 values. Ebselen was also a potent inhibitor of

hGlck (97.8% inhibition at 10 mM), while SID 17387000 had

relatively little activity (6.7% inhibition) against the kinase

(Table 1). Moreover, ebselen was ,100-fold less active against

BSF parasites (Table 1). Taken together, these data suggest that

the subtle structural differences between the two compounds

result in remarkable changes in their pharmacological behavior.

Both ebselen and SID 17387000 are potent trypanocides, with

EC50s of 2.960.28 mM and 0.03060.067 mM, respectively. To

determine if indeed the toxicity to BSF parasites is related to

inhibition of cellular TbHK1, we measured the impact of the

compounds on cellular G6P levels after culturing the parasites in

the presence of ebselen and SID 17387000 [14] (Fig. 5C). To

reduce the likelihood that toxicity was impacting G6P levels non-

specifically, we limited the incubation period to 1 and 4 hours,

while employing high doses (10 times the EC50) of the compounds.

Incubation with ebselen for either 1 or 4 hours led to a 56% or

70% reduction in G6P, while SID 17387000 was less effective,

reducing G6P levels 29% and 18% after 1 and 4 hours,

respectively (Fig. 5C). While these observations suggest a direct

impact on TbHK activity, other off-target impacts could be

ultimately responsible for toxicity.

Table 3. In silico ADME/toxicity analysis.

Leadscope
Grouping PubChem SID Aqueous Solubility Bioavailability CYP2D6 inhibition Blood brain barrier

Cluster 1 856002 (Ebselen) Low High Non-inhibitor High

17387000 Low High Non-inhibitor High

24785302 Low Moderate Inhibitor Very High

3716597 Low Low Inhibitor Medium

24830882 Good High Non-inhibitor High

16952891 Low Moderate Non-inhibitor Medium

Singletons 22401406 Extremely Low Moderate Non-inhibitor Undefined

24797131 Good High Inhibitor Medium

17386310 Good Moderate Non-inhibitor Medium

14728414 Low Moderate Inhibitor High

doi:10.1371/journal.pntd.0000659.t003

Figure 4. Ebselen and SID 17387000 are mixed inhibitors of
TbHK1 with respect to ATP. Lineweaver-Burk plots of inhibition with
ebselen (A.) or SID 17387000 (B.). Assays were performed as described
for cell lystates (see Materials and Methods) with ATP concentrations
varied.
doi:10.1371/journal.pntd.0000659.g004
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Discussion

There are currently four drugs approved for treatment of HAT.

However, suramin and pentamidine, developed in 1921 and 1941,

respectively, are not effective against the late stage of disease that

occurs when the parasite crosses the blood-brain barrier.

Melarsoprol, which was introduced in 1949, leads to fatal

complications in 5–10% of patients receiving the drug [15]. The

most recently developed drug, eflornithine, is only efficacious

against T. b. gambiense, but is curative for both the early blood-

borne infection and the late stage of disease with central nervous

system involvement; delivery of eflornithine is difficult, as the

compound must be administered intravenously four times a day

for 14 days (delivering ,360 g/patient).

A number of screens of chemical libraries have been

undertaken to identify therapeutic leads against the African

trypanosome. These include a phenotypic screen that interrogat-

ed a library of FDA-approved drugs for anti-trypanosomal

activity [16], as well as screens developed to identify inhibitors

of essential parasite enzymes. A screen for UDP-Glc 49-epimerase

inhibitors using a small natural products library [17] and a screen

of a commercial 134,500 compound library for trypanothione

reductase inhibitors [18] are two examples of target-based screens

used to identify lead compounds for therapeutic development. In

the last few years, TbHK inhibitors have been explored as

potential anti-parasitic compounds. Previous efforts to identify

TbHK inhibitors include the development of compounds based

on models of the TbHK structure (predicted from homology

studies of the yeast structure), and exploring the activity of HK

inhibitors from other systems [4]. Here we have used a HTS of

220,223 compounds to identify new inhibitors of the parasite

enzyme.

In our screens, we have identified several novel inhibitors of

TbHK1. One compound, ebselen, was the most potent inhibitor

from both the LOPAC validation screen and the HTS. Ebselen is

a lipid-soluble seleno-organic compound that has been employed

in clinical trials to assess its value in prevention of ischemic

damage in brain hemorrhage and stroke [19,20]. Ebselen inhibits

lipid peroxidation through a glutathione peroxidase-like action

[21], but may act through other mechanisms as well. Notably, a

single oral dose (100 mg/kg) of ebselen yields serum values of 4–

5 mM [22] and brain levels of the drug reach 21% of plasma

levels [23], suggesting that the compound (or its derivatives) may

be useful for both early and late stage sleeping sickness therapy

development.

Ebselen likely has polypharmacological effects on BSF parasites,

as the compound is known to inhibit a number of enzymes in

addition to TbHK1, including the trypanosome UDP-Glc 49-

epimerase [17]. Ebselen, unlike other cluster 1 compounds, has an

IC50 that is significantly lower than the EC50, suggesting its

metabolism may be distinct from the sulfur-bearing compounds.

Alternatively, a cellular ‘‘sink’’ could be interacting with ebselen,

thereby lowering its effective concentration.

The remaining cluster 1 compounds have EC50s notably lower

than their TbHK1 IC50s, suggesting possible actions on other

cellular targets. Alternatively, differences between the two values

could result from the concentration of the compound within the

parasite (perhaps in the glycosome) or metabolism of the inhibitor

to a more potent form. These hypotheses would seem worthy of

further investigation.

An ideal therapeutic drug for African sleeping sickness would

target the parasite (while perhaps enhancing host immune

responses) and work at concentrations low enough to limit the

severity of side effects. In the search for potential drug targets, we

have focused on the trypanosome TbHK1, a protein that the

parasite requires to make ATP and have identified compounds

that may serve as leads in for the development of therapeutics in

the continuing fight against the African trypanosome.
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Figure 5. Ebselen and SID 17387000 inhibit TbHK activity from
parasite cell lysate and cause a reduction in cellular G6P levels
in BSF parasites. Increasing amounts of (A.) ebselen or (B.) SID
17387000 were incubated with 26105 BSF cell equivalents for 15 min at
RT and HK assays were performed as described in the Materials and
Methods. (C.) Growth in the presence of Ebselen or SID 17387000
causes a reduction in cellular G6P levels. BSF parasites (16107) were
cultured for 1 or 4 hours in the presence of 30 mM or 1 mM (10-fold the
EC50) ebselen or SID 17387000 followed by lysate preparation and
comparison of G6P levels to an equivalent number of untreated
parasites [14].
doi:10.1371/journal.pntd.0000659.g005
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