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Abstract

Background: Oncomelania hupensis is the unique intermediate host of Schistosoma japonicum, which causes
schistosomiasis endemic in the Far East, and especially in mainland China. O. hupensis largely determines the parasite’s
geographical range. How O. hupensis’s genetic diversity is distributed geographically in mainland China has never been well
examined with DNA sequence data.

Methodology/Principal Findings: In this study we investigate the genetic variation among O. hupensis from different
geographical origins using the combined complete internal transcribed spacer 1 (ITS1) and ITS2 regions of nuclear
ribosomal DNA. 165 O. hupensis isolates were obtained in 29 localities from 7 provinces across mainland China: lake/
marshland and hill regions in Anhui, Hubei, Hunan, Jiangxi and Jiangsu provinces, located along the middle and lower
reaches of Yangtze River, and mountainous regions in Sichuan and Yunnan provinces. Phylogenetic and haplotype network
analyses showed distinct genetic diversity and no shared haplotypes between populations from lake/marshland regions of
the middle and lower reaches of the Yangtze River and populations from mountainous regions of Sichuan and Yunnan
provinces. The genetic distance between these two groups is up to 0.81 based on Fst, and branch time was estimated as 2–
6 Ma. As revealed in the phylogenetic tree, snails from Sichuan and Yunnan provinces were also clustered separately.
Geographical separation appears to be an important factor accounting for the diversification of the two groups of O.
hupensis in mainland China, and probably for the separate clades between snails from Sichuan and Yunnan provinces. In
lake/marshland and hill regions along the middle and lower reaches of the Yangtze River, three clades were identified in the
phylogenetic tree, but without any obvious clustering of snails from different provinces.

Conclusions: O. hupensis in mainland China may have considerable genetic diversity, and a more complex population
structure than expected. It will be of significant importance to consider the genetic diversity of O. hupensis when assessing
co-evolutionary interactions with S. japonicum.

Citation: Zhao QP, Jiang MS, Littlewood DTJ, Nie P (2010) Distinct Genetic Diversity of Oncomelania hupensis, Intermediate Host of Schistosoma japonicum in
Mainland China as Revealed by ITS Sequences. PLoS Negl Trop Dis 4(3): e611. doi:10.1371/journal.pntd.0000611

Editor: Malcolm K. Jones, University of Queensland, Australia

Received August 24, 2009; Accepted December 30, 2009; Published March 2, 2010

Copyright: � 2010 Zhao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Knowledge Innovation Programme of the Chinese Academy of Sciences (KSCX2-YW-N-055, KSCX2-YW-2-0808), and by
the National Natural Science Foundation of China (30770353). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: pinnie@ihb.ac.cn

Introduction

The snail Oncomelania hupensis, the only intermediate host of

Schistosoma japonicum, has been found in China, and also in Japan,

Philippines and Indonesian island of Sulawesi. Over the past a few

decades, the taxonomy of O. hupensis has been a dispute due to the

variation in morphological characters such as shell sculpture,

operculum etc. [1–3]. Phenotypically, O. hupensis can be separated

into ribbed- and smooth- shelled morphotypes. In China, the

typical morphotype of O. hupensis is ribbed-shelled, and its

distribution is restricted to Yangtze River basin. Smooth-shelled

snails are also distributed in mainland China, but are considered

as the same species and subspecies of O. hupensis [1–4]. Oncomelania

snails reported in other Far East countries are smooth-shelled, and

have been considered either as subspecies of O. hupensis or

independent species in this genus [5–8].

Based on shell form, biogeographical and allozyme data, Davis

et al. [1] distinguished all of the O. hupensis in mainland China into

three subspecies: O. hupensis subsp. robertsoni, O. hupensis subsp. tangi

and O. hupensis subsp. hupensis. O. hupensis robertsoni which has a

small, smooth shell but with no varix, is found in Sichuan and

Yunnan provinces. O. hupensis tangi, which has a smooth shell but

with thick varix, is found in Fujian province and Guangxi

autonomous region, separated geographically from the Yangtze

River, and extensive control measures have brought this

subspecies to near extinction [9,10]. However, Zhou et al. [11]

separated the O. hupensis guangxiensis out from O. hupensis subsp. tangi

based on allozymes and amplified fragment length polymorphism
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(AFLP) [12,13] , which was verified recently by Li et al. [14] with

internal transcribed spacer (ITS) and 16S fragments. O. hupensis

hupensis is the most widely distributed subspecies of Oncomelania and

lives primarily at low altitude but a few populations live in hilly

areas in the drainage area of the Yangtze River in mainland

China. It has varix, no matter whether the shell is smooth or

ribbed, but most populations have ribbed-shell. O. hupensis hupensis

has the same shell growth allometry as O. hupensis robertsoni but has

a longer shell on average [1,2].

The genetic diversity of O. hupensis in China has also been a

focus over last two decades, and some results have been

controversial. Spolsky et al. [15], by using cyt b gene, found

considerable genetic diversity in O. hupensis in China, and using

AFLP, Zhou et al. [12,13] detected significant positive correlation

between genetic and geographical distances for 25 populations of

O. hupensis collected in China. With allozyme data, Davis et al. [1]

showed that one smooth-shelled population from Zhejiang

province could be considered genetically identical to a population

of O. hupensis robertsoni from Sichuan province. Also, using an

allozyme approach, Zhou et al. [16] and Qian et al. [17] found

that smooth-shelled populations were clustered separately with

ribbed-shelled populations in middle and lower reaches of the

Yangtze River. With mitochondrial cytochrome oxidase subunit 1

(cox1) gene, Wilke et al. [3] showed that smooth-shelled

individuals clustered together with ribbed-shelled ones, all

collected in the middle and lower reaches of the Yangtze River,

suggesting that all smooth- and ribbed- shelled populations of

Oncomelania throughout the middle and lower Yangtze River basin

belong to the subspecies O. hupensis hupensis. With the 16S RNA

and ITS sequences respectively, Li et al. [14] recently found four

and three branches in the phylogenetic trees, with the four

branches representing O. hupensis robertsoni from Sichuan and

Yunnan provinces, O. hupensis guangxiensis from Guangxi Karst

region, O. hupensis hupensis from the middle and lower reaches of

Yangtze River, and those from littoral and hill regions in Fujian

province which was recognized as O. hupensis tangi [1]. However,

the report by Li et al. [14] contained only a small number of

specimens. Comprehensive analyses on the genetic diversity of

these snails and the relationship between O. hupensis hupensis in the

middle and lower Yangtze River basin and the smooth-shelled O.

hupensis robertsoni in areas of upper Yangtze River have not been

carried out with more samples collected on a much larger

geographical scale.

In this study, the intermediate hosts of S. japonicum were

collected from 29 localities in 7 provinces, comprising almost all

uncontrolled endemic areas of schistosomiasis in mainland

China. O. hupensis hupensis and O. hupensis robertsoni were obtained

from localities in the middle and lower reaches of the Yangtze

River, and from Sichuan and Yunnan Provinces in the upper

Yangtze River, respectively. Highly variable internal transcribed

spacer regions (ITS) of nuclear ribosomal DNA were sequenced

for individual O. hupensis snails in order to examine the genetic

diversity of O. hupensis hupensis and O. hupensis robertsoni in

mainland China, and to find out the relationship between their

geographical distribution and the genetic variation of these snails

in China on the basis of phylogenetic analysis. The evolutionary

implication of the intermediate host genetic diversity was then

discussed.

Materials and Methods

Snail specimens
The diagnosis of subspecies of O. hupensis followed that of Davis

et al. [1]. O. hupensis hupensis and O. hupensis robertsoni were collected

from October 2005 to October 2006 from endemic areas in

Anhui, Hubei, Hunan, Jiangxi, Jiangsu, and in Sichuan and

Yunnan provinces in mainland China, respectively (Table 1).

Geographical information concerning these sample localities is

listed in Table 1 and indicated in Fig. 1 using Google Earth with

editing in Photoshop. Snails were collected with forceps from the

field and brought back to laboratory, where they were cleaned

after one month captivity, and then checked microscopically to

ensure that schistosome-uninfected snails were selected for the

experiment. The head-foot muscle of each snail was dissected

individually under a microscope after being washed in 0.3% NaCl

solution, and then preserved in 95% ethanol.

DNA extraction, PCR amplification, and sequencing of ITS
The total genomic DNA of individual snails was extracted using

a standard sodium dodecyl sulfate-proteinase K procedure [18].

Each individual sample was incubated and thawed in 200 ml

extraction buffer (50 mM Tris-HCl, 50 mM EDTA, 100 mM

NaCl, 1% SDS, 100 mg/ml proteinase K), at 56uC for 2 h with

gentle mixing. DNA in solution was extracted using standard

phenol/chloroform purification, followed by 3 M sodium acetate

(pH 5.2) and ethanol precipitation. Pellets of DNA were washed in

70% ethanol, air-dried, and resuspended in 20 ml TE (pH 8.0).

Polymerase chain reaction (PCR) was used to generate a fragment

spanning ITS1-5.8S-ITS2 between the forward primer OHITSF

(59- ATTGAACGGTTTAGTGAGGTCC -39) and the reverse

primer OHITSR (59- CATTCCCAAACAACCCGACTC -39)

based on available GenBank sequences AY207042, AF367667 and

U93228. The PCR protocols were 94uC for 3 min followed by 30

cycles of 94uC for 30s, 58uC for 30s, and 72uC for 90 s and then a

final elongation step at 72uC for 10 min. The amplified products

were purified on a 1.0% agarose gel stained with ethidium

bromide, using the DNA gel extraction kit (Omega Bio-Tek). The

purified PCR product was then cloned into pMD18-T vector

(TAKARA) and sequenced using ABI PRISM BigDye Termina-

tors v3.0 Cycle Sequencing (Applied Biosystems). The DNA

sequences were deposited in the GenBank database under

accession numbers FJ600745 to FJ600909 inclusive.

Author Summary

The intermediate host of Schistosoma japonicum in Asia is
the snail Oncomelania hupensis, which can be separated
phenotypically into ribbed- and smooth-shelled morpho-
types. In China, the typical morphotype is ribbed-shelled,
with its distribution restricted to mainland China. Smooth-
shelled snails with varix are also distributed in China, which
are considered to belong to the same subspecies as the
ribbed-shelled snails. In this study we investigate the
genetic variation among O. hupensis from different
geographical origins using combined complete ITS1 and
ITS2 regions of nuclear ribosomal DNA. Snails including
ribbed-shelled and smooth-shelled (but with varix on the
shell) from the lake/marshland region of the middle and
lower reaches of the Yangtze River, and smooth-shelled
snails from mountainous regions of Sichuan and Yunnan
provinces, were genetically distinct with no shared
haplotypes detected. Furtheremore, the snails from
Sichuan and Yunnan provinces were clustered in separate
clades in the phylogenetic tree, and three clades were
observed for snails from the middle and lower reaches of
the Yangtze River. The population diversity of O. hupensis
in China is thus considered large, and evolutionary
relationships in the host-parasite system of O. hupensis-S.
japonicum may be of interest for further research.

Genetic Diversity of O. hupensis in China
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Sequence alignments and analyses
Sequences were aligned using ClustalX v1.83 [19] at default

settings followed by manual correction in SEAVIEW [20]. DNAsp

version 4.0 [21] was used to define the haplotypes.

Genetic variation within and between two subspecies were

estimated by calculating nucleotide diversity (p) and haplotypic

diversity (h) values in Arlequin3.11 [22] and DNAsp. Selective

neutrality was tested with Tajima’s D [23] and Fu’s F test [24].

Phylogenetic relationships were conducted on the aligned

sequences of combined ITS1-ITS2 rDNA sequences. We

performed a wide array of phylogenetic analyses using different

methods: neighbor joining (NJ), maximum parsimony (MP),

maximum likelihood (ML) and Bayesian inference (BI). NJ and

MP were implemented in PAUP* 4.0b10 [25] using heuristic

searches and tree bisection-reconnection branch-swapping. Nodal

support for the MP phylogenetic tree was estimated through

bootstrap analysis using 1000 replicates, and with 10 random

sequence additions per each step bootstrap replicates. ML analysis

was conducted in PHYML 2.4.4 [26], also with 1000 replicates

bootstrap. GTR + I + G was determined as the best-fit model of

sequence evolution for each dataset by using the Akaike

informative criterion implemented in Modeltest 3.7 [27]. BI was

carried out with MrBayes 3.1 [28] under the best-fit substitution

model. Analyses were run for 26106 generations with random

starting tree, and four Markov chains (with default heating values)

sampled every 100 generations. Posterior probability values were

estimated by generating a 50% majority rule consensus tree after

the first 2000 trees were discarded as part of a burn-in procedure.

All phylogenetic trees were rooted using Lottia digitalis as outgroup.

Mismatch distribution of the number of differences between all

possible pairs of haplotypes were calculated using DNAsp, and

tested against the expected values of a recent population expansion

with 1000 bootstrap replicates. Within-species genetic structure

was phylogenetically evaluated by constructing unrooted parsimo-

ny networks of haplotypes using TCS version 1.21 [29]. Net

nucleotide divergence (Dxy) between two subspecies was calculated

with the Tamura-Nei gamma correction model using MEGA 4

[30].

Table 1. List of population samples in the study, with collection data and haplotype information for Oncomelania hupensis ITS1–
ITS2 sequences.

Locality* Province Latitude, longitude Altitude (m) Shell N Haplotype

Wuhan (HBwh) Hubei 30u389N; 114u209E 18 Ribbed 5 H42, 43, 54, 63, 64

Jingzhou (HBjz) Hubei 30u209N; 112u029E 31 Ribbed 10 H27, 55–57, 61, 68, 75–77, 80

Qianjiang (HBqj) Hubei 30u179N; 112u479E 20 Ribbed 7 H26, 28, 69, 72, 78

Gong’an (HBga) Hubei 30u099N; 112u109E 42 Ribbed 7 H46, 53, 59, 62, 64, 81

Honghu (HBhh) Hubei 29u589N; 113u399E 13 Ribbed 5 H1, 48, 60, 65, 74

Xiangyin (HBxy) Hunan 28u419N; 112u439E 27 Ribbed 9 H16, 20, 22, 23, 34, 41, 65

Lixian (HNlx) Hunan 29u329N; 111u579E 38 Ribbed 6 H18, 32, 33, 45, 52, 79

Hanshou (HNhs) Hunan 28u549N; 112u019E 31 Ribbed 6 H16, 23, 44, 65, 70, 73

Yueyang (HNyy) Hunan 29u219N; 113u049E 27 Ribbed 5 H16, 17, 65, 70

Huarong (HNhr) Hunan 29u319N; 112u339E 32 Ribbed 5 H65, 66

Xuanzhou (AHxz) Anhui 30u539N; 118u549E 45 Smooth, varix 8 H38, 40

Nanling (AHnl) Anhui 30u539N; 118u259E 122 Smooth, varix 5 H14, 37, 47, 49

Tongling (AHtl) Anhui 31u069N; 117u509E 89 Ribbed 4 H2, 4, 6

Guichi (AHgc) Anhui 30u459N; 117u379E 108 Ribbed 5 H4, 35, 50, 71

Zongyang (AHzy) Anhui 30u449N; 117u259E 5 Ribbed 4 H8, 9, 10, 11

Gongqin (JXgq) Jiangxi 29u119N; 115u529E 8 Ribbed 4 H8, 39, 50

Xingzi (JXxz) Jiangxi 29u259N; 115u599E 45 Ribbed 5 H8, 12, 13, 50,

Jiujiang (JXjj) Jiangxi 29u379N; 115u529E 31 Smooth, varix 5 H4, 5, 7, 15

Pengze (JXpz1) Jiangxi 29u529N; 116u289E 16 Ribbed 4 H24, 58, 67, 73

Pengze (JXpz2) Jiangxi 29u469N; 116u419E 52 Smooth, varix 6 H18, 19

Poyang (JXpy) Jiangxi 29u189N; 116u349E 28 Ribbed 5 H21, 25, 29, 31, 36

Xinjian (JXxj) Jiangxi 28u599N; 116u099E 219 Ribbed 5 H4, 13, 30, 51

Nanjing (JSnj) Jiangsu 32u099N; 118u479E 23 Ribbed 5 H3, 4, 6

Jingyang (SCjy) Sichuan 31u099N; 104u299E 592 Smooth 6 H82, 83

Zhongjiang(SCzj) Sichuan 31u069N; 104u329E 675 Smooth 6 H83, 84

Meishan (SCms) Sichuan 30u079N; 103u369E 524 Smooth 5 H85, 86, 87

Xichang (SCxc) Sichuan 27u499N; 102u229E 1748 Smooth 6 H88, 89

Weishan (YNws) Yunnan 25u069N; 100u189E 1888 Smooth 5 H86, 91–94

Eryuan (YNey) Yunnan 26u099N; 99u599E 2105 Smooth 7 H90

*Each locality is designated with a two-letter province code followed by two-letter city or county code. For JXpz1 and JXpz2, the number means different locality from
the same county where snail shells have different types.
N, number of snails sampled in this location.
doi:10.1371/journal.pntd.0000611.t001

Genetic Diversity of O. hupensis in China
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Results

Sequence variation and genetic diversity
The complete ITS-5.8S-ITS2 fragments, including portions of the

39 end of the 18S and 59 start of the 28S, were sequenced for

individual snails. The 39 part of the 18S, 59 part of the 28S and 5.8S of

all specimens are completely identical. The ITS1 and ITS2 regions

ranged from 412 to 441 bp and from 402 to 426 bp, respectively. The

alignment of the combined ITS1–ITS2 sequences resulted in a total of

889 characters, including gaps, with 190 variable sites and 71

parsimony informative sites. A total of 93 haplotypes were identified

from 165 individuals. 31 haplotypes were found in multiple individuals

and 62 haplotypes were represented by single individuals (Table 1).

The haplotype and nucleotide diversity for all sequences sampled were

0.97460.004 and 0.02360.002, respectively.

For O. hupensis hupensis, 80 haplotypes were identified from 130

individuals in 23 localities of five provinces along middle and lower

reaches of Yangtze River. The haplotype and nucleotide diversity

were 0.96060.022 and 0.01760.008, respectively. For O. hupensis

robertsoni, 13 haplotypes identified from 35 individuals of 6 localities in

Sichuan and Yunnan provinces. The haplotype and nucleotide

diversity were 0.91660.023 and 0.02860.014, respectively.

When we classified all geographical populations into two

subspecies, the genetic distance between O. hupensis hupensis from five

provinces along the middle and lower reaches of Yangtze River and O.

hupensis robertsoni from mountainous regions of Sichuan and Yunnan

provinces was apparent (Fst = 0.810, P,0.001) and the gene flow was

limited (Nm = 0.117, P,0.001), indicating that the diversity between

the two subspecies is significantly obvious.

In neutrality analyses, strong selection has been observed in O.

hupensis robertsoni either with Tajama’s D or Fu’s F test (P.0.1).

Although limited deviation has been observed for O. hupensis

hupensis (Fs = 212.51, P = 0.011). Except a real departure from

neutrality, the same pattern can be obtained after a recent

population expansion when equilibrium between gene flow and

drift has not yet to be reached [31,32].

Mismatch distribution
Through mismatch distribution analysis, the observed (empir-

ical) distribution of haplotype pairwise differences followed a

multimodal, ragged pattern, deviating significantly from the

expected curve reflecting population expansion (P = 0.002)

(Fig. 2). This pattern suggests that O. hupensis has already

differentiated genetically in mainland China, which in turn

verified the diversity between O. hupensis hupensis and O. hupensis

robertsoni. In contrast, O. hupensis hupensis displayed a smooth

unimodal mismatch distribution, which is consistent with the

expected values of an expanding population, supporting the latter

possibility in the neutral analyses for O. hupensis hupensis, that is, O.

hupensis hupensis has a recent population expansion while

equilibrium between gene flow and drift has not yet to be reached.

Phylogenetic relationship
Tree topologies generated by different building methods using

NJ, ML, MP and BI were similar. Two distinct clades (clades A

and B) were supported by high posterior probability or bootstrap

values at key nodes (Fig. 3, ML tree). Clade A includes all

haplotypes from five provinces including Anhui, Hubei, Hunan,

Jiangxi and Jiangsu along the middle and lower reaches of the

Figure 1. Sample localities indicated in provinces of China. Samples of ribbed-shelled snails are indicated as N, smooth-shelled with varix as
fl, and smooth-shelled as q.
doi:10.1371/journal.pntd.0000611.g001

Figure 2. Mismatch distribution of the number of difference
between all possible pairs of haplotypes. Comparison between
the empirical distribution (q—q) and the expected distribution (—)
under expansion model.
doi:10.1371/journal.pntd.0000611.g002

Genetic Diversity of O. hupensis in China
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Figure 3. Phylogram of Oncomelania hupensis based on ITS1–ITS2 sequences. Values beside the branch represent proportions of 1000
bootstrap pesudoreplicates and posterior probabilities in which the node was recovered for ML/NJ/MP/BI, respectively. The letters after each branch
represent different sampled individuals coded by locality letter followed by sample isolate number, and samples in one branch shared one haplotype.
doi:10.1371/journal.pntd.0000611.g003

Genetic Diversity of O. hupensis in China
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Yangtze River, and within this clade, a deep divergence was

observed and it is quite obvious that three subclades, shown as A1,

A2 and A3 can be recognized; but there is no distinct geographical

relationship or phenotype characters, and posterior probabilities

were low amongst the subclades. Clade B contains only haplotypes

from mountainous regions in Sichuan and Yunnan provinces, and

two subclades (subclade B1+B2 and subclade B3) were formed and

supported by high posterior probabilities, which represent

haplotypes from Sichuan and Yunnan provinces, respectively,

except one shared haplotype from SCms and YNws populations in

Sichuan and Yunnan provinces, respectively.

Haplotype network and branch time
The haplotype network constructed by statistical parsimony had

similarity at least to some extent to the phylogenetic tree, especially

in that the haplotype networks between samples from lake/

marshland and hill regions in five provinces along the middle and

lower reaches of Yangtze River and those from mountainous

regions of Sichuan and Yunnan provinces were so diversified

(Fig. 4). But, haplotypes from the middle and lower reaches of

Yangtze River were mixed into a reticulate topology of evolution,

forming into cluster A, which was reflected as clade A in the

phylogenetic tree (Fig. 3). It was, however, impossible to further

group these haplotypes. For haplotypes from Sichuan and Yunnan

provinces, three separate clusters were detected (Fig. 4), which are

completely consistently with the subclades B1, B2 and B3 in the

phylogenetic tree (Fig. 3).

Based on the substitution rates for invertebrate ITS sequences

ranging from 0.4% to 1.2%/Myr [33–35], it is estimated that the

divergence between O. hupensis hupensis and O. hupensis robertsoni is

about from 260.29 to 660.15Ma (Dxy = 0.04860.0070).

Discussion

This study demonstrated distinct genetic differentiation of O.

hupensis from 29 geographical populations collected from 7

provinces in mainland China, accounting for most ecological

habitat types for O. hupensis in endemic areas of China.

Phylogenetic analyses revealed two distinct well-supported clades:

One included all samples from lake/marshland and hill regions in

five provinces along middle and lower reaches of the Yangtze

River, the other one included samples from mountainous regions

of Sichuan and Yunnan provinces. The average genetic

divergence between the two clades is up to 0.81 based on Fst,

which is considered to be ‘very great’ by following the views of

Wright [36]. Furthermore, the haplotype network revealed no

connection between O. hupensis hupensis populations from lake/

marshland and hill regions and O. hupensis robertsoni populations

from mountainous regions, which also confirmed the genetic

diversity of O. hupensis in mainland China geographically. The

significant genetic differentiation was also reflected in the

multimodal distribution in the mismatch analysis.

The genetic diversity of Oncomelania in China was previously

examined by using COI [3,37], Cytb [15], 16S rDNA [37]

sequences and other methods such as AFLP [12,13], and it has

been shown that O. hupensis hupensis and O. hupensis robertsoni are

genetically different. As revealed in the phylogenetic tree and

haplotype network in the present study, O. hupensis robertsoni from

Yunnan province differed genetically from those in Sichuan

province, despite a shared haplotype from YNws and SCms which

may need some further research. Li et al. [14], also using ITS

sequences, found that O. hupensis robertsoni from Sichuan and

Yunnan provinces were clustered into separate clades, although

they were included in a larger clade, as observed in the present

study. ITS, flanking sequences emanated from non-coding rDNA

region, has a relatively fast evolutionary rate, and can be employed

for investigating genetic differentiation and phylogeny of closely

related species [38,39]. In consideration of the ITS potential for

heterozygote analysis [40], the large amount of samples used in the

present study may stabilise the estimation of genetic variation and

give more statistical confidence in the results [12,41].

In other studies (data not shown here), we found that the

complete mitochondrial DNA sequences had 10.3% genetic

distance between O. hupensis hupensis and O. hupensis robertsoni,

which may also reveal high genetic diversity between these

subspecies. This information, to some extent, confirms the

existence of wide genetic diversity for O. hupensis in mainland

China. Although direct molecular evidence has not been

previously available for the genetic diversity of O. hupensis, several

authors [1–4,11,14] have considered that O. hupensis in mainland

China can be separated into several subspecies, for example, O.

hupensis hupensis from middle and lower reaches of Yangtze River,

and O. hupensis robertsoni from mountainous regions of Sichuan and

Yunnan provinces. It can then be concluded that these two

subspecies differ not just in phenotypes and ecological habitats, but

also genetically. Cross et al. [42] and He et al. [43] even showed

that O. hupensis from different regions differed in their susceptibility

to the same strain of Schistosoma japonicum, which may also have

been reflected in genetic diversity of the snail intermediate hosts.

Ecological habitat and geographical distance were found to

have some impact on genetic diversity of O. hupensis in mainland

China [e.g. 14]. It has been suggested that O. hupensis evolved

during its dispersal down the Yangtze River system, which would

lead to genetic distance increasing with geographical distance [3].

Zhou et al. [12,13] also found significant spatial genetic structure

among 25 snail populations from 10 provinces in mainland China

using AFLP, which was also verified by Li et al. [14] using ITS and

16S markers with a total of 30 individuals investigated in 13

localities. The habitats of O. hupensis in the middle and lower

reaches of the Yangtze River include lake/marshland regions and

hill regions, both of which have extensive physical connections

with the Yangtze River through channels or in low floodplains

beside the Yangtze River. With frequent floodings of the Yangtze

River, snails in these habitats can be dispersed and subsequently

deposited widely in various localities. The accumulation of mixed

sources of snails can then generate genetically diversified

populations of snails, leading to the existence of various haplotypes

as observed in the present study. As found by Wilke et al. [3],

ribbed-shelled snails and smooth-shelled snails but with varix on

shell in the middle and lower reaches of Yangtze River were also

clustered together in the phylogenetic tree. Whether this is the

effect of potential heterozyges for ITS or not needs to be further

investigated. The three subclades within the clade containing all

samples, including those smooth-shelled snails with varix obtained

in the middle and lower reaches of the Yangtze River may also

indicate the genetic diversity of O. hupensis hupensis; it is therefore

necessary to further investigate the genetic diversity of these snails

by using more powerful tools and by covering more areas in the

region.

In Sichuan and Yunnan provinces in the upper reaches of the

Yangtze River, O. hupensis robertsoni are distributed in mountainous

areas, and are not subjected to flood influence as much as in the

middle and lower reaches of the river [44]. It is interesting to see

that a relatively lower number of haplotypes were found in this

region as compared with O. hupensis hupensis. Overall, these

mountainous populations were genetically different from the

populations in the middle and lower reaches of the river, as

shown by phylogenetic trees, haplotype networks and genetic
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Figure 4. Unrooted parsimony network of ITS–ITS2 sequence haplotypes for Oncomelania hupensis. Ovals indicate sampled haplotypes,
which have designated numbers beside them. Numbers inside ovals indicate sample numbers from different geographical populations which shared
the same haplotype. Small circles indicate unsampled or extinct haplotypes. Each connection represents one mutational step. A and B (B1, B2 and B3)
refer to the corresponding clades in Fig. 3, respectively. The branch under the dark line in clade A is expanded below, as indicated by the arrow.
doi:10.1371/journal.pntd.0000611.g004
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distance analyses. It thus appears likely that there has been certain

degree of isolation for these mountainous populations. Wilke et al.

[37] also found the diversity trend of O. hupensis robertsoni by COI

and 16S rRNA sequences. It may also be possible that continuous

control efforts, such as routine molluscicides in China, which have

been used to control snails for about fifty years, might have

imposed some effect on population genetics of these snails [45].

The diversity found in populations from Sichuan and Yunnan

provinces may also need to be further clarified by obtaining more

samples and by using more powerful molecular markers such as

microsatellites.

About the origin and evolution history of Oncomelania, Davis [46]

proposed a Gondwanan origin for the Pomatiopsidae, with rafting

to mainland Asia via the Indian Craton after break-up of

Gondwanan and colonization of South-East Asia and China. It

is hypothesized [16,47] that Oncomelania snails, arrived in

southwestern China from Indian before the second (major)

Tibetan orogeny (2.5 Ma), then evolved and spread down their

respective river systems, to mainland of China, Indonesia and

Philippines. Although mutation rate calibrations using fossil data is

impossible here, many studies have demonstrated the confidence

that molecular data can provide reasonable estimates of

divergence time. Our data suggested that the two subspecies

began to diverse as early about 2–6 Ma based on the invertebrate

ITS substitution rate range. We did not find any strong molecular

and fossil evidences about Oncomelania evolution, but the reported

Oncomelania fossil found in Guangxi (1 Ma) by Odhner in 1930 and

geological movement make this diversification time reasonable. It

provides a new insight into the Oncomelania evolution history

although the substitution rate needs to be verified with new fossil

and molecular data in future study.

Davis et al. [48] speculated that, as Oncomelania snail populations

form have diverged genetically, so must their associated schisto-

somes or else become regionally extinct. East Asian schistosomes

and snails in the Pomatiopsidae have been considered as the only

example of schistosome-intermediate host snail coevolutionary

model [49], and a recent study also revealed that S. japonicum in

mainland China can be highly genetically diverse, especially

between populations from the lake/marshland lowland localities

and populations from highland mountainous localities [50]. The

continuous dispersal of the snails, probably as well as their

schistosome parasites, in the middle and lower reaches of the

Yangtze River may have considerable epidemiological, medical

and evolutionary implications for the schistosome-snail system and

schistosomiasis, as also suggested by Ross et al. [9]. It would be

interesting, and necessary, to understand the population genetic

diversity of the parasites and their intermediate hosts in greater

detail throughout their distributions.

In summary, by cloning ITS1–ITS2 sequences, it has been

shown that O. hupensis is highly genetically diverse. This clear and

distinct genetic diversity in snail intermediate hosts may have

strong implications in genetic diversity of schistosomes in China,

and further studies on comparative phylogeography of the host-

parasite system and also on their population genetics are necessary

to understand the complexity of host-parasite population struc-

tures and evolutionary, if not co-evolutionary, relationships.
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