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Abstract

Background: In order to proceed through their life cycle, Leishmania parasites switch between sandflies and mammals. The
flagellated promastigote cells transmitted by the insect vector are phagocytized by macrophages within the mammalian
host and convert into the amastigote stage, which possesses a rudimentary flagellum only. During an earlier proteomic
study of the stage differentiation of the parasite we identified a component of the outer dynein arm docking complex, a
structure of the flagellar axoneme. The 70 kDa subunit of the outer dynein arm docking complex consists of three subunits
altogether and is essential for the assembly of the outer dynein arm onto the doublet microtubule of the flagella. According
to the nomenclature of the well-studied Chlamydomonas reinhardtii complex we named the Leishmania protein LdDC2.

Methodology/Principal Findings: This study features a characterization of the protein over the life cycle of the parasite. It is
synthesized exclusively in the promastigote stage and localizes to the flagellum. Gene replacement mutants of lddc2 show
reduced growth rates and diminished flagellar length. Additionally, the normally spindle-shaped promastigote parasites
reveal a more spherical cell shape giving them an amastigote-like appearance. The mutants lose their motility and wiggle in
place. Ultrastructural analyses reveal that the outer dynein arm is missing. Furthermore, expression of the amastigote-
specific A2 gene family was detected in the deletion mutants in the absence of a stage conversion stimulus. In vitro
infectivity is slightly increased in the mutant cell line compared to wild-type Leishmania donovani parasites.

Conclusions/Significance: Our results indicate that the correct assembly of the flagellum has a great influence on the
investigated characteristics of Leishmania parasites. The lack of a single flagellar protein causes an aberrant morphology,
impaired growth and altered infectiousness of the parasite.
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Introduction

Protozoan parasites of the genus Leishmania cause a variety of

diseases in humans collectively termed as leishmaniasis. The

pathologies range from self-healing cutaneous lesions (Leishmania

major) to fatal visceral involvement (Leishmania donovani). Two

million new infections are estimated to occur annually, with an

estimated 12 million people presently infected in over 85 endemic

countries worldwide [1]. The parasite is transmitted to mamma-

lian hosts as the infective flagellated promastigote form from the

gut of its insect vector, female phlebotomine flies. Promastigotes

are phagocytized by macrophages wherein they develop into

tamastigote form which is able to survive and proliferate inside the

fully acidified phagolysosomes of their host cells [2]. The

developmental stage differentiation is mainly induced by changes

in pH and temperature and each stage is highly adapted for extra-

or intracellular survival in the specific environment encountered in

insect and vertebrate host [3]. One aspect of the transformation

from promastigote to amastigote parasites is the regulation of

organelle and overall cell size. The promastigotes are spindle-

shaped cells with a long flagellum protruding from the flagellar

pocket, an invagination of the cytoplasmic membrane at the

anterior end of the cell. By contrast, the amastigotes display a

more spherical form with an overall reduced cellular volume and

only a rudimentary flagellum that does not protrude from the

flagellar pocket. The flagellum is involved in various processes

such as cell motility but also attachment to host surfaces and

intracellular signaling [4,5].

As in most motile eukaryotic flagella, a canonical ‘‘9+2’’

microtubule axoneme drives the flagellar movement of Leishmania

parasites. It consists of nine outer doublet microtubules (A- and B-

tubule) surrounding a pair of centrally located singlet microtu-

bules. Radial spokes extend inward from each outer doublet

towards the central pair. ATP-dependent dynein motor proteins

attached to each doublet translocate along the adjacent doublet to

generate the sliding force that underlies flagellar movement. Cilia

and flagella of eukaryotic cells contain three different classes of

dyneins: cytoplasmic ones as well as the inner and outer dynein
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arms of the axoneme. L. mexicana contains two cytoplasmic dynein-

2 heavy chain genes (LmxDHC2.1+2.2) and a single dynein-1 heavy

chain gene (LmxDHC1). Disruption of LmxDHC2.2 results in an

amastigote-like phenotype and immotility of the parasite. Never-

theless, protein expression is still as in the promastigote stage.

Further studies indicate the absence of the paraflagellar rod

proteins PFR1 and PFR2 and that the LmxDHC2.2 is required for

correct flagellar assembly [6].

Every dynein binds to a structurally unique binding site

mediating a high specificity that is essential for the flagellar

movement. The unicellular green algae Chlamydomonas reinhardtii

serves as a model organism for studying the composition and

function of flagella. Their outer dynein arms are very well

characterized [7,8]. These dyneins produce 80% of the flagellar

force and bind to specific sites of the A-tubule of the outer

microtubule doublet [9]. The globular heads possess a binding site

for the B-tubule, and they are spread along the whole length of the

axoneme with a regular distance of 24 nm. The outer dynein arms

consist of several polypeptide chains: three heavy chains (HCa, b
and c), two intermediary chains (IC78 and IC69) and multiple

light chains (LC1-8) [10]. In 1994, Takada and Kamiya could

identify a protein complex responsible for the association of the

outer dynein arm to the microtubule, the outer dynein arm

docking complex (ODA-DC) [11]. Subsequent studies showed that

this complex consists of three proteins present in equimolar

amounts and in a 1:1 stoichiometry with the outer dynein arm

polypeptide chains [12–14]. The subunits DC1 [13] and DC2 [14]

have coiled-coil domains and are wound around each other in an

a-helical manner. The third subunit DC3, member of an EF hand

superfamily of Ca2+ binding proteins, is also essential for the

composition of the outer dynein arm and the ODA-DC [12].

The flagella of leishmania parasites reveal, apart from the above

described axonemal structure, an additional peculiar characteristic

feature: the paraflagellar rod (PFR). This is a unique network of

cytoskeletal filaments which extends along the whole axonene

within the flagella of kinetoplastids, euglenoids and dinoflagellates

[15]. It was shown in L. mexicana and T. brucei that this structure is

essential for the cellular movement [16,17]. However, nothing is

known about its function so far.

Here, we report the characterization of LdDC2, a protein of the

outer dynein arm docking complex (ODA-DC) from Leishmania

donovani, a structure important for the integrity of the flagellar

axoneme. The protein was identified during an earlier performed

proteome analysis of L. donovani stage differentiation [18]. It is

expressed exclusively during the promastigote stage of the parasite

and localizes primarily to the flagellum. Deletion mutants display

an altered morphology, impaired growth and show slightly

increased in vitro infectivity.

Materials and Methods

Cultivation of cells
L. donovani 1SR strain, a gift from D. Zilberstein (Department of

Biology, Technicon, Israel Institute of Technology, Haifa, Israel),

was used for all experiments. Promastigotes (day 0) frozen directly

after passage trough BALB/c mice were thawed and cultivated at

25uC in M199 medium supplemented with 25% fetal calf serum

and 20 mg/mL gentamycin. In vitro differentiation to amastigotes

was achieved as described previously [19]. Briefly, promastigotes

(day 0) were heat-shocked at 37uC for 24 h (day 1) and then

cultivated for up to 5 days at 37uC in mildly acidic medium

(pH 5.5, day 2–5). Cell densities were determined using a CASY

1-Cell Counter & Analyser (Schaerfe Systems).

PEC infection assay (intracellular amastigotes)
Peritoneal exudate cells (PECs) from 4–6 weeks old female

C57black/6 mice were used for infection assays. Mice were treated

with 5% thioglycolate in PBS given intraperitoneal four days prior

to experiment. On day 4 mice were sacrificed and PECs were

prepared by rinsing the peritoneum with 10 mL of sterile PBS.

PECs were washed once and seeded at a density of 106 cells per

well in a 12-well plate on coverslips in RPMI-medium supple-

mented with 10% fetal calf serum, 5 mM glutamine and 50 mg/

mL gentamycin. After incubation under 5% CO2 at 37uC for

24 hours, PECs were incubated with L. donovani parasites at a

parasite to PEC ratio of 10:1 for 48 hours. Non-engulfed parasites

were washed away three times with warm RPMI and cells on

coverslips were stained with Giemsa and used for microscopic

studies. To assess infection rates, the quantities of overall PECs

versus infected cells were determined. At least 400 cells in three

independent experiments were assessed. All counts were done with

coded samples to prevent bias.

Animal care and experimentation were performed in accor-

dance with the German Federal Animal Protection Laws, in

particular 11 4, 7 and 10a, in the animal facility of the Bernhard

Nocht Institute.

Genomic DNA isolation
Genomic DNA from L. donovani logarithmic promastigotes was

prepared using the Puregene DNA Purification System (Gentra

Systems) according to the manufacturer’s recommendations.

Cloning and sequencing of lddc2 gene
Two primers were designed based on the sequence of the L.

major gene 5852119 (hypothetical protein CAB55364): sense

primer CAB-S27 (59-GAGACATATGTCAGTGGTGGCTGC-

CAA-39); antisense primer CAB-AS27 (59-GAGAGGATCCC-

Author Summary

Leishmania parasites are responsible for the disease
leishmaniasis. They are spread through sandflies. The
primary hosts are mammals, including humans. They occur
in two different morphological forms. The flagellated
promastigotes live in the gut of the sandfly vector. After
transmission to the mammalian host they get phagocy-
tized by macrophages and convert into the amastigote
form, which is able to survive within the phagolysosome.
The molecular mechanisms underlying this transformation
process from promastigote to amastigote are poorly
understood so far. A striking difference of the life cycle
stages is a long flagellum in the promastigote compared to
only a rudimentary flagellum in the mammalian stage
amastigote. During an earlier study of the stage differen-
tiation of Leishmania donovani we identified a flagellar
protein, a subunit of the outer dynein arm docking
complex (ODA-DC2). This protein is part of a flagellar
structure called the axoneme. Here we have further
characterized the protein regarding its role within the life
cycle of the parasite. Mutant promastigotes lacking DC2
protein show reduced flagellar length and a more
amastigote-like appearance overall. In addition, the
motility is heavily retrenched and transmission electron
microscopy indicated that the flagellar ultrastructure is
affected. Furthermore, the mutants express amastigote-
specific genes and show increased in vitro infectiousness
towards macrophages. Therefore, we conclude that the
correct assembly of the flagellum is vital for maintenance
of the promastigote stage of the parasite.

The ODA-DC of Leishmania donovani Flagella
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TATTTGGCCTTCTGAG -39). CAB-S27 and CAB-AS27 were

used to PCR-amplify L. donovani genomic DNA (95uC for 1 min,

50uC for 1 min, 72uC for 2 min; 30 cycles using the Perkin Elmer

DNA Thermal Cycler 480). The amplified product (1857 bp) was

gel-purified and cloned into the pCR 2.1-TOPO vector. The gene

was sequenced using the Big Dye Terminator PCR cycle

sequencing kit as per the manufacturer’s instructions (Applied

Biosystems).

RNA isolation and Northern blot analysis
RNA from L. donovani promastigotes and in vitro differentiated

amastigote cells was isolated by subjecting the parasites to repeated

cycles of freezing and thawing in TRIzol. For Northern blotting,

agarose gels were loaded with 20 mg of total RNA. After transfer to

a nylon membrane, the blots were sequentially hybridized with

radio-labeled lddc2 and ß-tubulin probes. Hybridizations were

performed in 0.5 M Na2HPO4, 7% SDS, and 1 mM EDTA

(pH 7.2) at 70uC. Blots were washed in 40 mM Na2HPO4 and 1%

SDS (pH 7.2) at 70uC.

Expression and purification of recombinant protein
The PCR-amplified DNA fragment coding for lddc2 full-length

protein was cloned into the prokaryotic expression plasmid pJC45, a

derivative of pJC40 [20], using the restriction enzymes NdeI and

BamHI. Following transformation in E. coli BL21(DE3) [pAPlacIQ]

the protein was expressed following standard procedures. Recom-

binant protein was isolated using Ni-NTA resin according to the

manufacturer’s recommendations (Qiagen, Hilden, Germany).

Generation of polyclonal antibodies
200 mg of recombinant LdDC2 was injected subcutaneously into

a chicken. The first injection was done in combination with

complete Freund’s adjuvant, the following two booster injections

were done in combination with incomplete Freund’s adjuvant at

two-week-intervals. Antibodies were purified from eggs using

increasing concentrations of polyethyleneglycol 6000 [21].

Western blot analysis
10% SDS-PAGE was performed under reducing conditions.

Samples from promastigotes and in vitro derived amastigotes were

obtained by lysing the cells directly in hot SDS sample buffer

(95uC, 125 mM Tris-HCl pH 6.8, 20% glycerine, 20% SDS,

20 mM DTT, 0.001% bromophenolblue). Western Blot analyses

were carried out using the semidry blotting technique with

electrophoresis buffer (0.25 M Tris, 0.5 M glycine, 1% SDS) as

blotting buffer. Polyclonal chicken antibodies (LdDC2 1:500) or

monoclonal mouse antibodies (Anti-b tubulin clone Tub 2.1

(Sigma) and an alkaline phosphatase conjugated anti-chicken IgM

or anti-mouse IgG (Sigma), as secondary antibody, were used to

detect the protein with the 5-bromo-4-chloro-3-indolyl-phosphate

(BCIP)/nitro blue tetrazolium (NBT) color developmental sub-

strate (Promega).

DNA constructs for homologous recombination
Primers CAB-59UTR(S38)E/S (59-GAGAATTCATTTAAATC-

CAAGCAAAGGCGAATACATAT-39); CAB-59UTR(AS37)B/K

(59-GAGGATCCGGTACCGACCAAGTCCACCAATGTACG-39)

and CAB-39UTR(S31)B (59-GAGGATCCGCGACAGCATGCC-

AGCAACACGG-39) and CAB-39UTR(AS37)H/S (59-GAAAGCT-

TATTTAAATTCTGCGTAGCCTGTGTGTGG-39) were used to

PCR amplify the 59UTR and 39UTR of CAB55364 from genomic L.

major DNA. The plasmid pUC19 was used as a cloning vector.

Dlddc2:neo and Dlddc2:pac were constructed by ligating the 59UTR-

PCR-fragment into the EcoRI and BamHI restriction sites followed by

ligation of the 39UTR-PCR-fragment into the BamHI and HindIII

restriction sites of the pUC19 vector. The selection markers

neomycinphosphotransferase (neo) and puromycinacetyltransferase

(pac) were ligated via integrated restriction sites for KpnI (at the end of

59UTR fragment) and BamHI (at the beginning of 39UTR fragment).

Before transfection, the integration constructs were separated from the

vector backbone by digestion with the enzyme SwaI.

Construction of expression vectors
The Leishmania-specific expression vector pX63pol (kindly

provided by Dr. Martin Wiese, Strathclyde Institute of Pharmacy

and Biomedical Science, Glasgow, Scotland) was used to express

lddc2 in L. donovani Dlddc2n/p promastigotes. The two primers CAB-

S27 and CAB-AS27 were used to PCR-amplify the coding region

of lddc2. The product was digested with NdeI and BamHI, the

59overlapping ends were filled in by using Klenow polymerase to

create blunt ends. The vector was digested with EcoRV and ligated

with the prepared insert. The correct orientation and sequence

was re-confirmed by nucleotide sequencing.

Transfection of L. donovani promastigotes
Plasmid-DNA was purified by using the Nucleobond AX

PC2000 Maxiprep-Kit (Macherey & Nagel). For episomal

expression 100 mg of DNA was used per transfection; 5 mg of

DNA was used for integration via homologous recombination.

Parasites were transfected by means of electroporation. Cells were

harvested during late log phase of growth, washed twice in ice-cold

PBS, once in prechilled electroporation buffer (21 mM HEPES

pH 7.5, 137 mM NaCl, 5 mM KCl, 0.7 mM Na2HPO4, 6 mM

glucose) and suspended at a density of 16108 cells/mL in

electroporation buffer. Chilled DNA was mixed with 0.4 mL of

the cell suspension, which was immediately used for electropora-

tion using a Bio-Rad Gene Pulser. Electrotransfection was carried

out in a 4 mm electroporation cuvette at 3.750 V/cm and 25

microfarads. After electroporation, cells were kept on ice for

10 min before being transferred into 10 mL of antibiotic-free

medium. After 24 h, the transfectants were selected with either

50 mg/mL G418 (neomycin), 25 mg/mL puromycin B or 7.5 mg/

mL of bleomycin.

Immunofluorescence assays (IFA)
L. donovani promastigotes were added to poly-(L-lysine) covered

glass slides and air dried. Cells were fixed with 3.7% formaldehyde

in M199 for 15 min, washed three times in PBS, and

permeabilized in PBS/0.2% Triton-6100, and washed three

three times in PBS. Subsequently, cells were incubated for 30 min

in PBS containing 10% FCS. After blocking, cells were incubated

with anti-LdDC2 (1:500), anti-b-tubulin (1:500) or anti-PFR2 (1:4)

antibodies (provided by Martin Wiese), diluted in PBS/10% FCS,

following three washes in PBS. Slides were incubated with CyTM2-

conjugated anti-chicken IgG antibodies, CyTM2-conjugated anti-

mouse IgG antibodies or CyTM3-conjugated anti-mouse IgG

antibodies (Dianova), diluted 1:1000 in PBS/10%FCS and washed

another three times in PBS. After incubation with Hoechst 33258

(Molecular Probes, 1:2000 in PBS), cells were mounted in

mounting medium (Dako Cytomation) and examined with a Zeiss

Axioskop 2 plus immunofluorescence microscope and using the

OpenLab software package (Improvision).

Electron and light microscopy
Scanning electron microscopy (SEM) was performed on L.

donovani promastigotes that were harvested by centrifugation

The ODA-DC of Leishmania donovani Flagella

www.plosntds.org 3 January 2010 | Volume 4 | Issue 1 | e586



(10 min, 7206g, 4uC), washed twice with PBS and fixed with 2%

glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.2) and

postfixed with 1% OsO4. Cells were dehydrated in increasing

ethanol concentrations (30–100%), subjected to critical point

drying, coated with gold, and viewed with a Philips SEM 500

electron microscope.

For transmission electron microscopy (TEM), cells were treated

as described above and dehydrated with graded ethanol solutions

and propylene oxide. Parasites were embedded in an epoxy resin

(Epon). Ultrathin sections (70 nm) were cut (Ultra Cut E;

Reichert/Leica, NuBlock, Germany) and counterstained with

uranyl acetate and lead citrate. Sections were examined with a FEI

TECNAI SPIRIT transmission electron microscope at an

acceleration voltage of 80kV.

Phase contrast microscopy and flagellar length determination

were performed on a Zeiss Axioskop 2 plus microscope. Parasites

were stained with Giemsa and analyzed microscopically. The

flagellar length was measured from the cell body to the tip of the

flagellum using the ImageJ software.

Results

Cloning of the 70 kDa subunit of the outer dynein arm
docking complex (ODA-DC) of L. donovani and analysis of
its amino acid sequence

In the course of a proteome analysis of the in vitro stage

differentiation of L. donovani, the hypothetical protein CAB55364

was found to be expressed in an amastigote-specific manner [18].

Primers deduced from the coding region of the orthologous L.

major gene (accession no. 5852119) were used to amplify the

corresponding DNA by PCR from L. donovani genomic DNA. The

product obtained comprised 1857 bp and showed 96% sequence

identity to its L. major homologous. Southern blot analysis

indicated that the investigated gene is single-copy per haploid

genome (data not shown). It encodes a hypothetical protein of 618

amino acid residues, a calculated Mr of 70,000 and a pI value of

5.1. The protein is a putative homologous of the 70 kDa subunit of

the outer dynein arm docking complex of Chlamydomonas reinhardtii

(CrDC2) [14]. This protein complex consists of three subunits and

is essential for the assembly of the outer dynein arm onto the

doublet microtubule of C. reinhardtii flagella. C. reinhardtii, an

unicellular, biflagellate green algae of the order Volvocales, serves

as a model organism for studying eukaryotic cilia and flagella.

Figure 1 shows a comparison of the amino acid sequences of the

identified L. donovani protein with CrDC2 and four additional DC2

proteins from other organisms. CrDC2 has a high a-helical content

and comprises three regions with a high probability to form coiled-

coil structures [14]. This is a structural motif in which a-helices are

coiled together like the strands of a rope creating a so called

superhelix. CrDC2 is thought to interact with the other two

subunits of the complex via this structure. The PAIRCOIL

program (http://paircoil.lcs.mit.edu/cgi.bin/paircoil) indicates

that the L. donovani homologous also has several regions predicted

to form coiled-coil structures. These are between amino acids 114–

157, 184–228, 386–415 and 586–618 (Fig. 1). In addition, the

protein contains a calcium binding EF hand motif between amino

acid 576–588 and three potential MAP kinase SP phosphorylation

motifs in the C-terminal part of the protein with potential

phosphorylation sites at residues S493, S515 and S532.

Because of the demonstrated function of DC2 in C. reinhardtii, a

flagellar localization of the protein in L. donovani was predicted. It

was shown earlier that the transport of proteins into the flagella of

trypanosomatid organisms is mediated through specific signal

sequences [22–24]. However, we could not find any of the

described motifs within the sequence of the investigated protein.

Supplementary to CrDC2, homologous in other kinetoplastid

species such as Trypanosoma brucei (45% identity) and T. cruzi (42%

identity) were found. Additional homologous could be identified in

Micromonas sp. (23–29% identity), Ciona intestinalis (26% identity),

Paramecium tetraurelia (26% identity), Tetrahymena sp. (20–23%

Figure 1. Alignment of DC2 from L. donovani with DC2 amino
acid sequences from other organisms. LdDC2, L. donovani DC2
(GeneBank accession no. GQ240808) CrDC2, Chlamydomonas reinhardtii
DC2 (GeneBank accession no. AAK72125); CiDC2, Ciona intestinalis DC2
(GeneBank accession no. BAB88833); HsDC2, Homo sapiens DC2
(GeneBank accession no. AK057357), DmDC2, Drosophila melanogaster
DC2 (GeneBank accession no. AAF55345). Conserved sequences are
marked in grey. Between LdDC2 and CrDC2 identical amino acids are
highlighted in red, conserved amino acids in orange. Regions of LdDC2
predicted to form coiled-coil structures are marked with a frame. The EF
hand motif is highlighted with a bar. Potential MAP kinase phosphor-
ylation sites are marked with an arrow head.
doi:10.1371/journal.pntd.0000586.g001
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identity), Giardia lamblia (23% identity), Drosophila sp. (22–24%

identity) and also in humans (20–22% identity). Figure 1 shows an

alignment of the L. donovani protein to the C. reinhardtii, the Ciona

intestinalis, one Drosophila and one human homologous. All of the

proteins are similar in their predicted size and the identities extend

throughout the whole sequences with the L. donovani protein

showing the highest similarity (26%) to CrDC2. No homologous

proteins could be found in organisms lacking motile flagella or cilia

such as yeast or Arabidopsis. In Caenorhabditis elegans only a protein

that shares 20% homology over the first 300 amino acids can be

identified (GeneBank accession no. CAA50183). This molecule,

which is termed IF-2 (MUA-6, cytoplasmic intermediate filament),

is localized in the hypodermis. It is required for hypodermal

integrity and the attachment of muscles to the body wall [25]. So

far, there is no hint that a CrDC2 homologous protein exist in C.

elegans.

Based on these phylogenetic data, we propose that the identified

protein is the 70 kDa subunit of the ODA-DC of L. donovani and

we named it LdDC2 accordingly.

Expression pattern and intracellular localization of LdDC2
In order to investigate the expression pattern of LdDC2

Northern blot analysis with RNA isolated from day 0 to day 5

of the in vitro stage differentiation of L. donovani was performed. The

complete coding region of LdDC2 was used as a probe. This

analysis revealed a ca. 4 kb transcript which showed a decreasing

intensity in the course of differentiation (Fig. 2A).

Protein amounts were examined with the help of a Western blot

analysis of cellular extracts from all days of stage differentiation.

For this, the full-length LdDC2 protein was synthesized in E. coli as

an N-terminally His-tagged protein. Matrix-assisted laser desorp-

tion ionization time of flight mass spectrometric analysis of the

product after digestion with trypsin confirmed the identity of

rLdDC2 (data not shown). A polyclonal chicken antiserum

generated against rLdDC2 detected a band with an estimated size

of about 73 kDa that was exclusive to the promastigote stage (day

0) of the parasite (Fig. 2B).

The subcellular localization of the protein was determined by

indirect immunofluorescence microscopy. The LdDC2 antibodies

stained the flagella of promastigote parasites (Fig. 3). We could also

detect signals within the cytoplasm of the cells. Since this staining

was also observed in amastigotes (data not shown), it may be due

to a cross- reactivity of the antibodies that is specific for

immunofluorescence.

Replacement of the lddc2 gene in L. donovani
promastigotes

In order to further characterize the function of LdDC2 in L.

donovani a null mutant of the gene was generated. Due to the lack

of sequence information of the L. donovani genome, primers

deduced from the untranslated regions of the L. major dc2-gene

were used to amplify the respective 59 - and 39 -UTRs of L.

donovani. The generated PCR products showed 95% (39 UTR) and

97% (59 UTR) identity to the L. major sequences. These products

were employed to assemble transfection vectors to induce

homologues recombination events in L. donovani. After successful

ligation of the selection markers neomycinphosphotransferase and

puromycinacetyltransferase, the two constructs Dlddc2:neo and

Dlddc2:pac were used to transfect L. donovani promastigotes. Drug

resistant parasites were cloned and the selected cells checked for

the presence of lddc2. Figure 4 shows the PCR results for two

independent Dlddc2n/p null mutant clones. No specific lddc2

fragment (1800 bp) could be generated (Fig. 4). The two additional

DNA fragments of 750 and 2300 bp are unspecific side products

Figure 2. Expression pattern of LdDC2 on RNA and protein level. (A) 10 mg mRNA isolated from in vitro stage differentiated L. donovani day 0
to day 5 was separated in a formaldehyde gel transferred to a nylon membrane and hybridized with a lddc2 and a tubulin probe (loading control). (B)
Western blot analysis from in vitro stage differentiated L. donovani day 0 to day 5. 56106 cells were lyzed directly in hot SDS sample buffer separated
on 10% SDS-PAGE transferred to a nitrocellulose membrane and probed with anti-LdDC2 polyclonal antibodies and anti-ß-tubulin monoclonal
antibodies (loading control). Molecular standards are indicated on the left.
doi:10.1371/journal.pntd.0000586.g002

Figure 3. Intracellular localization of LdDC2. LdDC2 was localized by immunofluorescence microscopy. L. donovani promastigote parasites were
fixed to glass slides and processed for IFA with anti-LdDC2 polyclonal antibodies. DNA was stained with Hoechst. Phase contrast images of the
preparations are also included.
doi:10.1371/journal.pntd.0000586.g003
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produced by cross reactions of the primers with other regions of

the L. donovani DNA. Both clones (Dlddc2n/p-1 and Dlddc2n/p-2)

were used for further experiments. In order to test whether the

successful replacement of both alleles of the lddc2 gene is

accompanied by the loss of the corresponding protein, a Western

Blot analysis was performed. The LdDC2 antiserum did not detect

the protein in the lysates from the two null mutants Dlddc2n/p-1

and Dlddc2n/p-2 (Fig. 5A). Immunofluorescence assays (IFAs)

showed the same results (Fig. 5B). Only parasites transfected with

the control plasmid pX63pol showed the typical staining of the

flagellum (Fig. 5B) whereas the null mutants did not exhibit any

staining of the flagella. They only display an unspecific

cytoplasmic staining probably due to cross reactions of the

antibodies (Fig. 5B).

A reconstitution of the null mutants through episomal

expression of lddc2 (DLdDC2n/p-1 + LdDC2:pX63pol) restored

the expression of the protein within the cells as shown by Western

blot analysis (Fig. 5A) and IFAs (Fig. 5B).

Lddc2 null mutants show reduced growth rates and an
altered phenotype

A striking consequence of the lddc2 gene replacement is an

altered cell shape and flagellar length. To document the aberrant

morphology, IFAs with a b-tubulin specific antibody were

performed. The microscopic images of this analysis are shown in

Figure 6A. The two mutants Dlddc2n/p-1 and Dlddc2n/p-2 exhibit a

rounded cell shape and a drastically reduced flagellum. By

contrast, WT and reconstituted mutants show the normal

promastigote spindle shaped form with long flagella (Fig. 6A).

The average mean flagellar length of WT promastigotes (n = 119)

was 11.662.4 mm whereas the mutant parasite lines displayed a

mean flagellar length of only 3.761.4 mm (Dlddc2n/p-1, n = 137)

and 2.961.0 mm (Dlddc2n/p-2, n = 140). Transgenic expression of

lddc2 (Dlddc2n/p-1+LdDC2:pX63pol, n = 119) restores flagellar

length (9.563.4 mm, Fig. 7A). In addition, we performed IFAs

with an antibody directed against the flagellar protein PFR2

(Fig. 6B). Once more, the reduced flagellar length in the null

mutants can be clearly observed. Scanning electron microscopic

analysis of WT parasites and null mutants confirmed the observed

phenotype (Fig. 6C).

Using transmission electron microscopy on cross-sections of

chemically fixed promastigote cells, the flagellar ultrastructure was

examined. Interestingly, the flagellar ultrastructure of the null

mutants was changed. As shown in Figure 8, the outer dynein arm

is present in all WT cells analysed. However, it is missing in the

two mutants Dlddc2n/p-1 and Dlddc2n/p-2. The absence was

observed in all analyzed flagellar cross section (15 per cell line)

apart from two sections of mutant Dlddc2n/p-1.

A striking difference between WT cells and mutants was

observed concerning the motility. While the wild-type L. donovani

promastigotes show directed movement across the microscopic

field of vision, the mutants, while wiggling in place, are unable to

translocate for any distance (Video S1, S2, S3, supporting

information).

Another distinctive feature of Lddc2 null mutants was a strongly

reduced cellular growth (Fig. 7B). Doubling times for the null

mutants were ,80 h, roughly eight times longer than those of WT

or of the reconstituted null mutant (8–12 h doubling time). A

population of single-allele gene replacement mutants (Dlddc2+/n)

showed an intermediary phenotype with a doubling time of

approximately 20 h.

As both null mutant clones display more resemblance to

amastigote than promastigote parasites regarding their morpho-

logical shape and growth rates, we looked for the expression of

known amastigote marker proteins. Wild type and Dlddc2n/p-1

parasites were subjected to stage conversion conditions for three

days. Lysates from these in vitro differentiated cells were tested for

the presence of the A2-protein family. Expression of the A2-gene

family is a hallmark of the L. donovani amastigote stage [26] and is

commonly used as marker for amastigote differentiation. Figure 9

shows a Western blot analysis using anti-A2 monoclonal

antibodies. Due to the very different growth rates cell densities

for the null mutants were lower. Nevertheless, expression of the A2

gene family can be detected even from day 0 in the null mutants,

while wild type parasites do not show detectable A2 protein before

day 2. Thus, null mutants express trace levels of A2 protein in the

promastigote which increase rapidly by day 1 and do not change

until day 3 (Fig. 9A).

Lddc2 null mutants show slightly increased in vitro
infectivity

PEC infection assays were used to analyze the involvement of

LdDC2 in infectivity of L. donovani. WT, Dlddc2n/p-1 and the

reconstituted mutant parasites were incubated with mouse

peritoneal exudate cells (PEC) for 24 hours and examined for

intracellular amastigote load. Figure 10 shows the results of three

independent experiments. The percentage of infected PECs for the

WT parasites is 4160.07% on average. The examined null

mutant line caused an average percentage of 68.1360.16%. The

reconstituted mutant showed an average percentage of 5060.12%

infected PECs. The null mutant therefore revealed an increased

infection. It is slightly higher than the one of WT parasites. The

infectiousness of reconstituted mutant parasites was reduced again.

At 24 h, the majority of WT parasites had not been phagocytized

yet and were still seen as extracellular promastigotes attached to

the host cells. Those cells were not counted. Reconstituted mutants

showed a similar phenotype. By contrast, DLdDC2 mutants were

detected mostly as intracellular amastigotes.

Discussion

In the course of a proteome analysis of the in vitro stage

differentiation of L. donovani a subunit of the outer dynein arm

docking complex (ODA-DC) was identified as amastigote-specific

[18]. A Western blot analysis with an antibody raised against the

respective recombinant protein however showed the protein

Figure 4. PCR results for Dlddc2n/p null mutants. 16105 L.
donovani promastigotes were incubated for 3 minutes at 95uC in a
volume of 20mL. 1mL of the lyzed cells were used for PCR amplification
with the specific oligonucleotides CAB-S27 and CAB-AS27 and the
obtained DNA fragments were analyzed on a 1% agarosegel. Lane 1, L.
donovani WT; lane 2, clone DLdDC2n/p-1; lane 3, clone DLdDC2n/p-2; lane
4, H2O control. Molecular standards are indicated on the left.
doi:10.1371/journal.pntd.0000586.g004
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exclusively in the promastigote stage of the parasite. Due to the

suspected function of the protein, an amastigote-specific expres-

sion can not be anticipated because the parasite only exhibits a

rudimentary flagellum during this life cycle stage. Our previous

data showed that the theoretically expected and the experimen-

tally determined molecular weights of the identified protein differ

greatly. The calculated molecular mass of LdDC2 is 70,000. The

protein detected in the 2D-gels of the proteome analysis displayed

a molecular weight of ,35 kDa only [18]. It is possible that the

protein detected was a degradation product of LdDC2 accumu-

lated during degeneration of the flagellum in the course of

differentiation. However, one would expect to detect this

degradation product in the performed Western blot analysis of

the stage differentiation (Fig. 2B). This is not the case. We

suspected that the recognized epitopes are not functional within

the degradation product formed during amastigote differentiation.

Figure 5. Western blot and immunofluorescence analyzes of DLdDC2n/p null mutants. (A) 56106 cells from different L. donovani cell lines
(Lane 1, L. donovani WT; lane 2, LdDC2:pX63pol; lane 3, DLdDC2n/p-1; lane 4, DLdDC2n/p-2; lane 5, DLdDC2n/p-1 + LdDC2:pX63pol) were lyzed directly
in hot SDS sample buffer separated on 10% SDS-PAGE transferred to a nitrocellulose membrane and probed with anti-LdDC2 polyclonal antibodies
and anti-tubulin monoclonal antibodies (loading control). Molecular standards are indicated on the left. (B) L. donovani promastigote parasites of the
different cell populations (pXpol63; DLdDC2n/p-1; DLdDC2n/p-2; DLdDC2n/p-1 + LdDC2:pX63pol) were fixed to glass slides and processed for IFA with
anti-LdDC2 polyclonal antibodies. DNA was stained with Hoechst. Phase contrast images of the preparations are also included.
doi:10.1371/journal.pntd.0000586.g005
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The proteome analyses of the in vitro stage differentiation of L.

mexicana identified the paraflagellar rod protein 2c as amastigote-

specific [27]. Here, too, only a fragment of the protein was

detected. Apparently, protein degradation products formed during

the differentiation into amastigotes can be detected for at least five

days.

Northern blot analysis of the lddc2 expression showed a

decreasing intensity of the transcript during stage conversion with

signals no longer detectable at days 4 and 5. The Western Blots, by

contrast, showed intact LdDC2 protein only in the promastigotes.

This indicates that either LdDC2 mRNA is no longer translated or

that degradation is upregulated once stage conversion commences.

Immunofluorescence studies displayed a flagellar localization of

the protein, confirming the predicted function of LdDC2.

Additional staining could be detected in the cytoplasm of the

parasites. It is not clear whether this is due to a pool of non-

assembled material or if it is an unspecific side reaction of the

antiserum.

The ODA-DC subunit identified in this study is the 70 kDa

subunit DC2. The protein sequence showed altogether four

regions with a high probability to form coiled-coil structures. The

function of these structures is usually related to the formation of

homo- and heterodimers [28]. For the homologous protein from

C. reinhardtii it was shown that these regions are responsible for the

interaction of CrDC2 with another subunit of the ODA-DC, DC1

[14]. DC1 contains similar structural motifs and is associated with

DC2 [13].

The C-terminal part of CrDC2 contains a short glutamic acid

rich repeat followed by a region with a high content of charged

amino acids. It was postulated that the interaction with the

tubulins of the outer dynein arms as well as with the intermediate

chain take place via this region. LdDC2 contains a similar region,

albeit shorter than in the C. reinhardtii homologous. In contrast to

CrDC2 an additional EF hand motif close to the C-terminus could

be identified for the L. donovani protein. This motif is also present in

other trypanosomatid DC2 proteins as for example in L.

braziliensis, T. brucei and T. cruzi. However, the function of this

motif is unclear. The third subunit of the complex DC3, also

contains such sequence motifs. It was proposed that the protein is

involved in the Ca2+ dependent regulation of the activity of the

outer dynein arm [12].

While searching the L. major protein database homologous for all

subunits of the ODA-DC could be found supporting the concept

that the outer dynein arms in Leishmania are also anchored to the

A-tubule via an ODA-DC. The composition of flagella and cilia

show a remarkable conservation throughout the evolution [29].

A large number of proteins are needed for the correct assembly

of a flagellum. A proteomic analysis of purified C. reinhardtii flagella

identified 360 proteins with high confidence and another 292 with

moderate confidence [7]. Broadhead and colleagues investigated

the flagellar proteome of T. brucei and found it to be constituted of

at least 331 proteins [30]. All these flagellar components must to

be imported from the cytoplasm as flagella do not contain their

own ribosomes. It was shown that specific signal sequences

mediate the transport of proteins into the flagella of kinetoplastid

organism [22–24]. However, dynein arms are assembled within

the cytoplasm prior to transport [31], restricting the need for signal

sequences to a few proteins within those large complexes. No

known flagellar import signal sequence could be identified within

the LdDC2 sequence, indicating that it is transported together with

other components of the ODA-DC.

The lddc2 null mutants showed a variety of morphological

changes as well as a reduced growth rate. Parasites lacking LdDC2

were considerably smaller, with a rounded cell shape. The flagella

Figure 6. Phenotypical analysis of DLdDC2n/p null mutants. (A)
L. donovani promastigote parasites of the different cell populations
(DLdDC2n/p-1; DLdDC2n/p-2; L. donovani WT; DLdDC2n/p-1 +
LdDC2:pX63pol) were fixed to glass slides and processed for IFA with
anti-ß-tubulin monoclonal antibodies. DNA was stained with Hoechst.
Phase contrast images of the preparations are also included. (B) The
different L. donovani cell populations (DLdDC2n/p-1; WT) were fixed to
glass slides and processed for IFA with anti-PFR2 monoclonal
antibodies. DNA was stained with Hoechst. Phase contrast images of
the preparations are also included. (C) The different L. donovani cell
populations (WT; DLdDC2n/p-1; DLdDC2n/p-2) were analyzed with
scanning electron microscopy. The lower panel represents magnifica-
tions of the different cells.
doi:10.1371/journal.pntd.0000586.g006
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were shortened, and parasites were not as motile as wildtype

promastigote L. donovani. The mutants are unable to translocate for

any distance. Instead they wiggle around in one place. The oda1

mutant of C. reinhardtii showed a similar flagellar phenotype

[14,32,33]. These cells lack the outer dynein arm and the ODA-

DC. They were isolated initially because of their slow swimming

phenotype with a reduced frequency and force of their flagellar

beating after a chemical mutagenesis [32]. Later on it was shown

that this phenotype was due to a mutation within the crdc2 gene

leading to the generation of a stop-codon right after the translation

initiation site [14]. The lack of LdDC2 in Leishmania causes a much

stronger phenotype. The null mutation not only affects the motility

of the cells, but their entire morphology including flagellar length

and ultrastructure. Indirect immunofluorescence microscopy, light

microscopy, and scanning electron microscopy all confirm that the

lddc2 null mutant displays reduced flagellar length. To analyze this

phenotype more closely transmission electron microscopy of

flagellar cross-sections was performed. The flagellar ultrastructure

shows that like in the oda1 mutant of C. reinhardtii the flagella lack

the outer dynein arm. Apart from this the mutants possess a

normal axoneme and the typical PFR structure. Immunofluores-

cence studies also confirmed the presence of the paraflagellar rod

protein PFR2 in the null mutants.

Several studies have shown that the reduction of flagellar

correlated with a change in overall cell morphology in other

trypanosomatid organisms. The disruption of the cytoplasmic

dynein-2 heavy chain gene DHC2.2 in L. mexicana resulted in

immotile parasites with a rounded cell body. Ultrastructural

analysis revealed short flagella that lacked the paraflagellar rod

and contained a disorganized axoneme [6]. In Chlamydomonas and

C. elegans, cytoplasmic dynein-2 is one of the motor proteins that

power the intraflagellar transport (IFT) [34], a bidirectional active

Figure 7. Flagellar length and growth rates of DLdDC2n/p null mutants. (A) Histograms of flagellar length from DLdDC2n/p null mutants and
WT L. donovani parasites (black bars, L. donovani WT; grey bars, DLdDC2n/p-1; white bars, DLdDC2n/p-2; striped bars, DLdDC2n/p-1 + LdDC2:pX63pol).
(B) Growth rates of DLdDC2n/p null mutants. The different L. donovani cell populations (WT (square with dashed line); DLdDC2+/n (triangle); DLdDC2n/

p-1 (circle); DLdDC2n/p-2 (square with solid line); DLdDC2n/p-1 + LdDC2:pX63pol (diamond)) were cultured for 4 days and cells were counted every
24 hours with a Casy Cell Counter (Schärfe System).
doi:10.1371/journal.pntd.0000586.g007
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Figure 8. Ultrastructure of DLdDC2n/p null mutants flagella. Electron microscopic studies of cross-sections from flagella of chemically fixed L.
donovani WT (A), DLdDC2n/p-1 (B) and DLdDC2n/p-2 (C) promastigotes at the same magnification. Magnifications of L. donovani WT (D) and DLdDC2n/p-1 (E).
Outer dynein arms (arrows) are missing in the mutant. a, axoneme; p, paraflagellar rod.
doi:10.1371/journal.pntd.0000586.g008

Figure 9. Expression of amastigote-specific proteins in DLdDC2n/p null mutants. Western blot analysis from in vitro stage differentiated L.
donovani WT and DLdDC2n/p mutants from day 0 to day 3. Cells were lyzed directly in hot SDS sample buffer separated on 10% SDS-PAGE transferred
to a nitrocellulose membrane and probed with anti-A2 monoclonal antibodies (A) and anti-tubulin monoclonal antibodies (loading control) (B).
Molecular standards are indicated on the left.
doi:10.1371/journal.pntd.0000586.g009
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transport of components required for the flagellar assembly.

LmxDHC2.2 seems to be required for maintenance of promastigote

cell shape and correct assembly of the flagellum. A similar

phenotype could be observed in RNAi generated knock-down

mutants of IFT proteins in trypanosomes [35]. Down-regulation of

IFT leads to assembly of a shorter flagellum. Cells with a shorter

flagellum are smaller, with a direct correlation between flagellum

length and cell size. The deletion of the ADF/cofilin gene in

Leishmania likewise results in non-motile cells with reduced flagellar

length and severely impaired beat frequency. The PFR is not

assembled, vesicle-like structures appear throughout the flagellum

and actin distribution is altered markedly [36]. It was speculated

that ADF/cofilin driven actin dynamic activity is required for

intracellular trafficking of flagellar proteins from the cytoplasm to

the flagellar base. Deletion mutants of the MAP kinase homologue

MPK3 in L. mexicana also leads to reduced flagellar length, stumpy

cell bodies and vesicle and membrane fragments in the flagellar

pocket [37]. The authors speculate that LmxMPK3 might be

involved in the regulation of IFT. The absence of a correct PFR

structure in all described mutants suggests that the IFT is severely

impaired and this might be responsible for the observed

phenotypes as PFR assembly seems to be mediated by IFT

[22,38]. LdDC2 null mutants do not lack the PFR. Therefore, the

observed reduction of the flagellum and the abnormal cell

morphology seems to be a consequence of another mechanism.

In 2003, Wiese et. al. postulated that a MAP kinase kinase of L.

mexicana (LmxMKK) is involved in the regulation of flagellar length

in promastigote cells. The gene is promastigote-specific and a null

mutant showed shortened flagella. The mutants were able to

induce lesions during an infection of BALB/c mice, albeit with

delay [39]. In addition, as already described, null mutants of the

MAP kinase 3 of L. mexicana (LmxMPK3) also possess shortened

flagella. Contrary to the MKK knock-out MPK3 is not required to

establish an infection in mice [37]. It is not known so far how

flagellar length is regulated. Since over 80 phosphorylated proteins

were identified in the flagella of Chlamydomonas [40,41] the

involvement of protein kinases and classical signal transduction

pathways is quite likely. The amino acid sequence of LdDC2

contains three potential MAP kinase phosphorylation sites in the

C-terminal region, and the homologous protein in L. mexicana

(having the same phosphorylation sites) is indeed phosphorylated.

However, in vitro kinase assays using in vivo activated LmxMPK3

and LdDC2 showed that the ODA-DC subunit most likely is not a

substrate for MPK3 (Erdmann, personal communication). Addi-

tional phosphorylation studies will be necessary to clarify the

regulatory mechanisms underlying flagellar length control.

Another consequence of LdDC2 knock-out was the deregulated

expression of the amastigote-specific protein family A2. Expression

can already be detected in the promastigote cells with an increase

early during differentiation. If and by which mechanism(s) the loss

of a structural protein of the flagellum influences the expression of

other proteins remains to be clarified. The degeneration of the

flagellum however is a central event during differentiation into the

amastigote stage, and it is conceivable that the accumulation of

other flagellar proteins in parasites that cannot assemble full-length

flagella may cause unfolded protein stress and thus mimic the heat

stress that is the key signal for stage conversion [42].

The infectivity of LdDC2 null mutants was slightly increased

compared to wild type L. donovani. We could show that at 24 h

after infection, most wild type parasites were attached to the

outside of the host cells and only a limited percentage of the host

cells showed intracellular parasites. For the LdDC2 null mutants

we saw higher rates of infection and fewer extracellular parasites

could be found. The interaction between Leishmania and their host

cells is very complex. The two major surface molecules involved in

macrophage binding are GP63, a surface metallo protease and

various phosphoglycans including LPG (Lipophosphoglycan)

[43,44]. LPG molecules form a dense glycocalyx on the surface

of the promastigotes, including the flagellum. Both molecules,

GP63 and LPGs, are virulence factors essential for the survival

of L. major in the insect vector as well as in the vertebrate host

[45–47]. Zhang and Matlashewski showed that the A2 proteins

constitute bona fide virulence factors. Antisense-mediated reduc-

tion of A2 protein synthesis in L. donovani caused a greatly

reduced infectiousness in vitro and in vivo [26,48]. Furthermore,

expression of A2 proteins in L. major which lacks these genes

changed the pathology of L. major [48]. Therefore, the increased

expression of the A2 protein family in the LdDC2 null mutants

may account for the increased infection rates.

An equivalent gene replacement in L. major should allow the use

of a mouse infection model to test whether the changes observed in

vitro with L. donovani are reflected in the animal host.

In summary, we can conclude that the correct assembly of the

flagellum has a great influence on the investigated characteristics

of Leishmania parasites. The lack of only one flagellar protein leads

to a completely different morphology and slows down prolifera-

tion. In addition, the parasite’s ability to invade host cells is slightly

enhanced. It will be interesting to see whether the lack of other

structural proteins of the flagella may have a similar impact.
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