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Abstract

Background: The two-component NS2B-NS3 proteases of West Nile and dengue viruses are essential for viral replication
and established targets for drug development. In all crystal structures of the proteases to date, the NS2B cofactor is located
far from the substrate binding site (open conformation) in the absence of inhibitor and lining the substrate binding site
(closed conformation) in the presence of an inhibitor.

Methods: In this work, nuclear magnetic resonance (NMR) spectroscopy of isotope and spin-labeled samples of the West
Nile virus protease was used to investigate the occurrence of equilibria between open and closed conformations in solution.

Findings: In solution, the closed form of the West Nile virus protease is the predominant conformation irrespective of the
presence or absence of inhibitors. Nonetheless, dissociation of the C-terminal part of the NS2B cofactor from the NS3
protease (open conformation) occurs in both the presence and the absence of inhibitors. Low-molecular-weight inhibitors
can shift the conformational exchange equilibria so that over 90% of the West Nile virus protease molecules assume the
closed conformation. The West Nile virus protease differs from the dengue virus protease, where the open conformation is
the predominant form in the absence of inhibitors.

Conclusion: Partial dissociation of NS2B from NS3 has implications for the way in which the NS3 protease can be positioned
with respect to the host cell membrane when NS2B is membrane associated via N- and C-terminal segments present in the
polyprotein. In the case of the West Nile virus protease, discovery of low-molecular-weight inhibitors that act by breaking
the association of the NS2B cofactor with the NS3 protease is impeded by the natural affinity of the cofactor to the NS3
protease. The same strategy can be more successful in the case of the dengue virus NS2B-NS3 protease.
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Introduction

West Nile virus (WNV) is a flavivirus related to yellow fever

virus, dengue virus, and Japanese encephalitis virus all of which

cause human diseases. During infection, the flavivirus RNA

genome is translated into a polyprotein comprising of three

structural and seven non-structural proteins [1]. The N-terminal

part of nonstructural protein 3 (NS3) encodes a serine protease

that cleaves the polyprotein into several components. The activity

of the NS3 protease (NS3pro) is greatly enhanced by covalent

tethering of about 40 residues from the membrane-bound NS2B

protein that acts as a co-factor. NS3 is essential for viral replication

making it an attractive drug target [2–4]. The C-terminal part of

NS3 contains a nucleotide triphosphatase, an RNA triphospha-

tase, and a helicase which have only little influence on the protease

activity [5].

Crystal structures of WNV NS2B-NS3pro in the absence of

inhibitor [6] and in the presence of tetra- and tripeptide inhibitors

[7,8] or bovine pancreatic trypsin inhibitor (BPTI) [6] have been

determined. The fold of NS2B is very different in the presence of

inhibitors from that in the absence of inhibitor (Figure 1). In all

structures, the N-terminal segment of NS2B (residues 52–58)

inserts into a b-sheet formed by NS3pro. In the presence of

inhibitor, the C-terminal segment (CTS) of NS2B wraps around

NS3pro, bringing the C-terminal b-hairpin of the NS2B cofactor

in close proximity of the active site. This fold is referred to in the

following as the closed conformation. In the absence of inhibitor,

the NS2B CTS is located at a very different position far from the

active site of the protease. We refer to this fold and any other

conformation, where NS2B is disengaged from the substrate

binding site, as open conformations. As the NS2B CTS is essential

for full catalytic activity of WNV NS2B-NS3pro [2,9] the closed
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conformation appears to be a prerequisite for full proteolytic

activity.

The fold of the corresponding protease from the closely related

dengue virus type 2 (DENV) NS2B-NS3pro construct was also

determined by X-ray crystallography in the absence of an inhibitor

[7]. NS2B without the CTS results in an inactive protease

suggesting that this part of the cofactor forms part of the active site

[7]. The fold observed in DENV is remarkably similar to the open

conformation of WNV NS2B-NS3pro, suggesting that the open

conformation may be the predominant species in solution

(Figure 1). Alternatively, the open conformation may be a

crystallographic artefact. We undertook the present research in

order to address this issue and also because of the failure of high

throughput drug screens to identify stable low-molecular weight

compounds that bind to the WNV NS2B-NS3 protease specifically

and with subnanomolar affinity [10–15]. Better understanding of

the dynamics of the NS2B cofactor of the protease could be the

key towards the design of improved inhibitors and has important

implications for the conformational space accessible to the

protease when bound to the host cell membrane.

In the following, we present an NMR analysis of the

conformational equilibria of the WNV NS2B-NS3 protease in

the absence and presence of inhibitors.

Methods

Materials
1-oxyl-2,2,5,5-tetramethyl-D3-pyrroline-3-methyl) methane thio-

sulfonate (MTSL) was purchased from Toronto Research Chem-

icals (North York, Ontario, Canada). Compound 1 (Figure 2) was

obtained from Maybridge (Tintagel, UK). Compound 2 was

synthesized in-house. The West Nile virus protease construct used

contained NS2B covalently linked to NS3pro via a Gly4-Ser-Gly4

linker [16] as used for crystallization [7]. In addition, Lys96 of NS2B

was mutated to alanine to prevent self-cleavage of the protease [17].

In the following, this construct and the unmutated wild type are

referred to as NS2B-NS3pro and wt NS2B-NS3pro, respectively. A

second construct containing the additional mutation N89C at the

C-terminus of NS2B was prepared to provide a thiol group for the

attachment of a spin-label. This construct is referred to as NS2B-

NS3proC. The N89C mutation was made by site-directed

mutagenesis using PCR. Uniformly 15N/13C- and 15N-labeled

protein samples of NS2B-NS3pro and five combinatorially 15N-

labeled samples of the NS2B-NS3 protease without the K96A

mutation were prepared as described previously [18]. In vivo protein

yields were about 9 mg of purified protein per litre of medium. The

selectively 15N-Ile labeled sample was prepared by cell-free protein

synthesis as described previously [18,19].

Spin Labeling
The nitroxide radical tag [(1-oxyl-2,2,5,5-tetramethyl-D3-pyrro-

line-3-methyl) methane thiosulfonate, MTSL] was used for spin-

labeling. A 0.3 mM solution of NS2B-NS3proC in 0.5 ml reaction

buffer (50 mM Tris, pH 7.6) was treated with 5 equivalents of DTT

Figure 1. Crystal structures of the West Nile and dengue NS2B-NS3 proteases. NS2B is shown in magenta, with the N- and C-termini
labeled. The polypeptide chain of NS3 is shown in rainbow colors ranging from blue (N-terminus) to red (C-terminus). Full-length NS2B comprises 131
residues [1]. All constructs used in crystal structure determinations include the NS2B cofactor segment and exclude the N-terminal 48 and C-terminal
35 residues of NS2B which contain hydrophobic membrane anchors. The constructs used in the present work closely resembled the constructs used
for crystallography. In denoting residues 49–60 as the N-terminal segment (NTS) of NS2B and residues 75–96 as the C-terminal segment (CTS) of
NS2B, we refer to the cofactor segment of NS2B only. (A) WNV NS2B-NS3pro in the presence of the inhibitor BPTI (PDB accession code 2IJO). The
substrate binding site is indicated by the BPTI segment Pro13-Arg17 shown in black. The location of the active-site histidine is labeled with a blue
star. (B) WNV NS2B-NS3pro in the absence of inhibitors (PDB code 2GGV). (C) Dengue virus NS2B-NS3pro in the absence of inhibitors (PDB code
2FOM). The present text refers to the protein fold in (A) as closed conformation, while the folds in (B) and (C) are referred to as open conformations.
doi:10.1371/journal.pntd.0000561.g001

Author Summary

Dengue and West Nile virus infections put an estimated 2.5
billion people at risk. Neither drugs nor vaccines are
currently available against these diseases. The non-
structural protein NS3 is a protease that, together with
the cofactor NS2B, is essential for viral maturation. The
NS2B-NS3 proteases of dengue and West Nile viruses are
highly homologous and present promising drug targets.
Crystal structures of the West Nile virus protease with and
without bound inhibitor revealed large structural differ-
ences in NS2B, while no crystal structure of the dengue
virus protease could be determined with a bound
inhibitor. We investigated the structural change in solution
and found that the C-terminal segment (CTS) of the NS2B
cofactor is prone to dissociation from NS3. In the case of
the West Nile virus protease, the CTS of NS2B is mostly
associated with NS3, especially in the presence of
inhibitors. In the case of the dengue virus protease and
in the absence of inhibitors, the CTS of NS2B is mostly
dissociated from NS3. Finding drug candidates to inhibit
the association of the NS2B cofactor may thus be easier for
the dengue virus protease.

NMR Analysis of the West Nile Virus Protease
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and washed with DTT-free reaction buffer using a Millipore

ultrafilter with a molecular weight cutoff of 5 kD. Reaction buffer

was added to a volume of 4 ml. 30 equivalents of MTSL were

dissolved in 60 ml acetone and the MTSL solution was added

stepwise, mixing the solution well after each addition. The mixture

was stirred at room temperature for about 12 hours and

subsequently centrifuged to remove undissolved MTSL, followed

by concentration to 0.3 ml and washing with 20 mM Tris, pH 7.2.

NMR Spectroscopy
All NMR spectra were recorded at 25uC on Bruker 600 and

800 MHz NMR spectrometers equipped with cryoprobes. 15N-

HSQC spectra of the combinatorially 15N-labeled samples were

recorded in a 20 mM HEPES buffer (pH 7.0) containing 1 mM

TCEP. 15N-HSQC spectra of a 0.26 mM solution of uniformly 15N-

labeled NS2B-NS3proC derivatized with MTSL were recorded in

20 mM Tris, pH 7.2, using the 800 MHz NMR spectrometer with

t1max = 25 ms and t2max = 73 ms. Inhibitor 2 was added to a final

concentration of 0.6 mM by adding 3 ml of a 100 mM stock solution

in DMSO-d6. A 20 mM stock solution of inhibitor 1 in 50% H2O/

50% DMSO-d6 was used for preparing samples containing inhibitor 1.
15N-relaxation rates R2 were measured at a 1H NMR frequency

of 600 MHz using the CPMG sequence of Farrow et al. [20] with

relaxation delays of 8.8, 17.6, 26.4, 35.2, 44.0, 52.8, 61.6, 70.4,

79.2 and 88.0 ms and a tcp delay between subsequent 180u(15N)

pulses of 900 ms. The protein concentration was 0.9 mM in

20 mM HEPES, pH 7.2, 2 mM DTT at 298 K. Experiments with

inhibitor were performed with 3 mM inhibitor 2. The data were

analyzed using the program Sparky [21]. The chemical shifts were

deposited in the BioMagResBank (accession code 16359).

Results

Resonance Assignment of NS2B-NS3pro without
Inhibitor

In contrast to NMR spectra in the presence of inhibitors which

allowed virtually complete resonance assignments of the 15N-

HSQC spectra by conventional 3D NMR techniques [18], many

of the cross-peaks in the 15N-HSQC spectrum of NS2B-NS3pro

are broadened beyond detection in the absence of an inhibitor,

making the assignment of the NMR resonances challenging

(Figure S1) [14,15,18]. In order to assign the observable cross-

peaks, we used the previously established resonance assignments of

the 15N-HSQC spectrum of the protease in the presence of

inhibitor 1 (Figure 2) and an inhibitor closely related to inhibitor 2
(compound 1 reported by Su et al. [18]) as a starting point. The Kd

values of the inhibitors are in the 10–100 mM range [13,14]. The

inhibitors were in fast exchange between bound and free state, so

that titration of the protein with inhibitor yielded a series of 15N-

HSQC spectra with continuously shifting cross-peaks, allowing

tracking of the resonance assignments for the resolved cross-peaks.

In addition, combinatorial 15N-labeling established the amino acid

type associated with each cross-peak.

Analysis of 15N-Ile NS2B-NS3pro
As many of the cross-peaks in the 15N-HSQC spectrum of

uniformly 15N-labeled NS2B-NS3pro are overlapped, a selectively
15N-Ile labeled sample was prepared for improved spectral

resolution. The 15N-HSQC spectra of the 15N-Ile labeled sample

changed greatly in appearance upon addition of the inhibitor 1
(Figure 3A). In particular, all isoleucine residues appeared as single

peaks in the presence of 1, whereas many peaks were missing,

significantly shifted or split into several peaks in the absence of

inhibitor. Extreme broadening of some but not all lines is a

hallmark of chemical exchange of a protein subdomain between

different conformations.

Figure 3B shows the locations of the isoleucine residues in the

closed conformation, identifying the residues that were strongly or

only slightly affected by the presence of inhibitor. The isoleucine

residues located in the NS2B CTS or in parts of NS3 in the vicinity

of the NS2B CTS are the isoleucine residues most prone to

conformational heterogeneity. Too many residues are affected to

explain these effects by conformational flexibility of a few active-site

residues. The most plausible explanation is that the NS2B CTS

assumes multiple conformations in the absence of an inhibitor. We

previously reported nuclear Overhauser effects (NOEs) that indicate

that the closed conformation of Figure 3A is the prevailing

conformation in the presence of inhibitor 1 [18]. In the absence

of inhibitor, the closed conformation may still be present but a

conformational equilibrium exists that cannot be with the open

conformation of Figure 3C as the only additional species, as this

would significantly alter the chemical environment of Ile60NS2B.

The cross-peak of Ile60NS2B is, however, essentially unperturbed.

Analysis of Uniformly 15N-Labeled NS2B-NS3pro
Comparison of the 15N-HSQC spectra of uniformly 15N-labeled

NS2B-NS3pro confirmed the analysis above. Due to spectral

overlap, the absence of cross-peaks in the sample without inhibitor

could be reliably assessed only for resolved cross-peaks. Nonethe-

less, we could confirm that the absence of inhibitor led to many

missing cross-peaks in the NS2B CTS segment following Glu73

and for segments 73–76, 110–116, 124–130 and 150–153 of NS3

(Figure 3D).

The overall picture is that of extensive dynamics in and around

the substrate binding site including, in particular, the C-terminal

b-hairpin of NS2B. In contrast, cross-peaks were observable in

both states with largely conserved intensities for residues near the

N-terminal segment (NTS) of NS2B, as expected for a stable

association of the NS2B NTS to NS3. Binding of 1 caused

significant chemical shift changes (.0.05 ppm) for a large part of

the protein, highlighting the extent of conformational adjustments

Figure 2. Chemical structures of inhibitors used. Throughout the
text, the inhibitors in the top and bottom panels are referred to as
compounds 1 and 2, respectively.
doi:10.1371/journal.pntd.0000561.g002
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to the local binding event. Remarkably, the experiment could not

identify excessive line broadening for any peaks observable in the

segment between residues 53 and 72 of NS2B, whereas the data of

Figure 3A–C had identified Ile68 of NS2B as a significantly

affected residue. The combined results suggest that, in contrast to

the crystal structure data, only the CTS of NS2B following Ser72

is prone to dissociation from NS3pro and that the line broadening

of Ile68NS2B is due to a different effect.

Figure 3. Conformational exchange of NS2B highlighted by inhibitor-induced spectral changes. (A) Superimposition of 15N-HSQC
spectra of a 50 mM solution of selectively 15N-Ile labeled wt NS2B-NS3pro in the presence (blue spectrum) and absence (red spectrum) of 0.3 mM
inhibitor 1. The spectra were recorded at 25uC in a buffer containing 20 mM HEPES, pH 7.0, and 2 mM DTT, using a Bruker 800 MHz NMR
spectrometer. The sequence-specific resonance assignments are indicated for the spectrum recorded in the presence of 1. The star identifies a peak
that could not be attributed to any of the isoleucines in the protease. Its relatively narrow line shape suggests its origin from a low-molecular weight
impurity. (B) Locations of the isoleucine residues in the crystal structure of the WNV NS2B-NS3 protease (PDB code 2IJO). The nitrogen atoms are
drawn as balls, using blue and red colour to identify the residues with, respectively, little and large spectral changes in the 15N-HSQC spectra caused
by 1. NS2B is shown in magenta and its N- and C-termini are identified. The isoleucine residues of NS2B are labeled in italics. The arrow identifies the
site of Cys89 in NS2B-NS3proC. (C) Same as (B), except for the open conformation (PDB code 2GGV). Only the isoleucine residues of NS2B are labeled
for improved visual presentation. (D) Same as (B), except that results obtained with uniformly 15N-labeled WNV NS2B-NS3pro are displayed by
highlighting selected backbone nitrogens. Red: 15N-HSQC cross-peaks were assigned in the presence of inhibitor but seem to be missing in the
absence of inhibitor. Yellow: 15N-HSQC cross-peaks shifting more than 0.05 ppm in the 1H dimension between the spectra recorded with and without
inhibitor 1. Blue: 15N-HSQC cross-peaks shifting less than 0.02 ppm in the 1H dimension between spectra with and without inhibitor.
doi:10.1371/journal.pntd.0000561.g003
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The cross-peaks of His51 and S135 of the catalytic triad of

NS3 were observable both with and without inhibitor. Therefore,

mobility of the side-chain of the active-site histidine, His51, that

was reported in a recent crystallographic analysis [8] or other

conformational changes in the active site cannot be the cause of

the excessive line broadening observed in the absence of

inhibitors.

Dissociation of the NS2B CTS from NS3 thus is the main cause

for the observed broadening and absence of cross-peaks in the

protease without inhibitor. Nonetheless, the NS2B CTS does not

exclusively populate a highly mobile random coil conformation

(which would result in very narrow peaks) but interacts at least to

some extent with NS3.

15N-Relaxation Measurements
The flexibility of the polypeptide chain on the subnanosecond

time scale was probed by measurement of the R2(15N) relaxation

rates of uniformly 15N-labeled NS2B-NS3pro. The average

relaxation rate was slightly higher in the absence of inhibitor,

which may reflect a greater tendency for aggregation (Figure 4).

Only the residues C-terminal of Glu173NS3 displayed relaxation

rates characteristic of a highly mobile random-coil peptide. In

contrast, as far as the relaxation rates of NS2B could be assessed,

they were similar to those of NS3, both in the absence and

presence of inhibitor, suggesting continuous association between

the N-terminal segment of NS2B until Ser72NS2B and NS3. In the

presence of 1, the NS2B CTS displayed some of the largest R2

values, suggesting that the inhibitor did not completely suppress

the chemical exchange. Finally, at least ten of the linker residues

tethering the C-terminus of NS2B to the N-terminus of NS3 (not

shown in Figure 4 due to missing sequence specific assignments)

displayed R2 relaxation rates characteristic of highly mobile

segments (below 10 s21), regardless of the presence or absence of

inhibitor. This indicates that the peptide linker between NS2B and

NS3 presents little hindrance for the dissociation of the NS2B CTS

from NS3.

Paramagnetic Relaxation Enhancements
In order to gain more insight into possible conformational

equilibria of the NS2B CTS, we used NS2B-NS3proC with an

MTSL spin-label at Cys89 (location shown in Figures 3B and C

and 5D–F). As wild-type WNV NS3pro contains a buried cysteine

residue at position 78, we also tested the reactivity of Cys78 in a

control experiment by treating wild-type NS2B-NS3pro with

MTSL under the same reaction conditions. Analysis by 15N-

HSQC spectra showed that the cross-peak of Cys78 did not shift

or change in intensity, confirming its inaccessibility to MTSL

(Figure S1). As expected for a residue without specific long-range

contacts, the N89C mutation did not affect the structural integrity

of the protease as evidenced by the close similarity of the 15N-

HSQC spectra of NS2B-NS3pro and NS2B-NS3proC except for

sequential neighbours of residue 89 (data not shown).

Figure 5A shows the results of the spin-labeling experiment.

Different 15N-HSQC cross-peaks were attenuated differently by

the paramagnetic spin-label in a way that is much more readily

explained by the closed conformation of Figure 1A (Figure 5B)

than the open conformation of Figure 1B (Figure 5C). In

particular, the signal attenuations near Cys89NS2B and Ser160NS3

were similarly pronounced, indicating that the closed conforma-

tion is the predominant species both in the presence and absence

of the inhibitor 2. There were, however, also significant differences

between the paramagnetic attenuations observed in the presence

and absence of the inhibitor 2 (Figure 5D and E) which must arise

either from minor conformational species or from intermolecular

effects.

In order to assess possible intermolecular effects, we evaluated

the signal attenuations at two different concentrations (Figure S2).

A pronounced concentration dependence was observed for the

exposed loop region with residues 29–32 and nearby residues (e.g.

Gly103), indicating that these regions were significantly affected by

intermolecular effects, partly or wholly explaining the apparent

discrepancies between the plots of Figure 5D and E for those

residues. An increased tendency for intermolecular aggregation in

Figure 4. Protein flexibility probed by transverse 15N relaxation rates R2. The data were measured using a 0.9 mM solution of 15N/13C-
labeled NS2B-NS3pro in the presence (black triangles) and absence (red squares) of 3 mM 2. Data points are plotted versus residue number and
connected by lines for improved visual appearance. For NS3, data are shown only for residues for which R2 data could be measured in both states. All
points are shown for NS2B in the presence of the inhibitor 2 as a guide for the mobility of the NS2B CTS. Error bars show the error reported by the
fitting routine in Sparky [21].
doi:10.1371/journal.pntd.0000561.g004
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Figure 5. Attenuation of cross-peak intensities by the MTSL spin-label and comparison with proximity to the amide protons in
crystal structures of WNV NS2B-NS3pro. (A) Relative peak intensities observed in 15N-HSQC spectra of WNV NS2B-NS3proC with MTSL versus
those of WNV NS2B-NS3proC without spin-label. In order to adjust for uncertainties in protein concentration, the intensity ratios were normalized by
setting the largest Ipara/Idia ratio to 1. The black and red data points were measured in the presence and absence of inhibitor 2, respectively. (B)
Distance between the N89Ca (as a proxy for the position of the spin-label) and the amide nitrogens in the closed conformation (PDB code 2IJO). (C)
Same as (B), except for the open conformation (PDB code 2GGV). (D) Plot of the data in (A), as obtained without inhibitor, on the closed conformation
of the WNV NS2B-NS3 protease (PDB code 2IJO). NS2B is shown in magenta. The position of Cys89 in WNV NS2B-NS3proC carrying the spin-label is
identified by an arrow. Amide protons are highlighted with spheres of different colour depending on the Ipara/Idia ratio in (A): 0–0.2 (red), 0.2–0.4
(pink), 0.4–0.6 (yellow), 0.6–0.8 (cyan), 0.8–1.0 (blue). (E) Same as (D), but for the data in the presence of inhibitor 2. (F) Stereoview of the closed
conformation in the representation of (D) and (E). Red spheres identify amide protons of residues for which small concentration dependence in the
absence of inhibitor indicates intramolecular PRE effects. Pink spheres identify the location of amide protons for which PRE were significantly
concentration dependent, indicating an intermolecular PRE mechanism. NS2B residues are marked in italics.
doi:10.1371/journal.pntd.0000561.g005
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the absence of inhibitor as suggested by the R2(15N) data (Figure 4)

also explains why the PRE effects of these residues are greater in

the absence of inhibitor (Figure 5A).

The PRE effects of at least four residues (Thr50NS2B,

Arg56NS2B, Gly63NS3 and Trp89NS3) are pronounced in the

absence of inhibitor, depend only little on concentration and

cannot be explained by the closed conformation (Figure 5F). We

interpret those as intramolecular effects caused by minor

conformational species resulting from transient dissociation of

the CTS of NS2B from NS3pro. These open conformations must

be more heterogeneous than the open conformation of Figure 1B.

The relaxation enhancements of all four residues were significantly

less pronounced in the presence of inhibitor (Figure 5A), indicating

stabilization of the closed conformation by the inhibitor.

Therefore, the PRE data support the notion of an equilibrium

between a major conformation corresponding to the closed

conformation of Figure 1A and an ensemble of transient open

conformations that are generally different from the conformation

of Figure 1B. Inhibitors shift the equilibrium towards the closed

conformation but the equilibrium persists to some extent also in

the presence of inhibitors.

Discussion

The very different folds observed for NS2B in the WNV and

DENV NS2B-NS3 protease crystal structures in the presence and

absence of inhibitors raise the question of their relative abundance

in solution and under in vivo conditions, with important

implications for the function of these proteases. The present work

attributes the extreme broadening of many NMR signals in the

absence of inhibitors to the equilibrium between different

conformations of NS2B rather than to conformational equilibria

restricted to the active-site pocket. As the amide cross-peaks of

some of the active-site residues remain unobservable in the

presence of inhibitors [17], complete suppression of the confor-

mational exchange in the active-site pocket appears to be more

difficult to achieve.

Release of the binding interaction between the CTS of NS2B

and NS3pro has implications for the proteolytic activity near the

host cell membrane and for drug molecules designed to inhibit

proteolytic activity by interfering with the correct association of the

NS2B cofactor to NS3.

Implications for Proteolytic Activity near the Host Cell
Membrane

The wild-type WNV polyprotein is associated with the host cell

membrane. Also after proteolytic processing of the polyprotein, the

NS2B-NS3 protease remains membrane associated via two

transmembrane helices N-terminal of the NS2B cofactor part

displayed in Figure 1A and B. In addition, the C-terminus of the

NS2B cofactor is connected to NS3 by a highly hydrophobic

segment of 35 residues [1] (replaced by a Gly4-Ser-Gly4 linker in

our construct) that is also thought to insert into the host cell

membrane [22,23]. This ties the NS2B cofactor to the membrane

at either end. Auto-proteolytic cleavage occuring near Lys96NS2B

and Lys15NS3 excises the segment between NS2B and NS3 in vitro

[7,17] but does not affect the N-terminal membrane attachment.

As the cleavage site near Lys96NS2B lacks the characteristic

recognition sequence of two sequentially neighboring basic

residues and is also not conserved in the highly homologous

dengue virus NS2B-NS3 protease, cleavage at this site may be

inefficient, in which case NS2B would remain tethered to the host

cell membrane at either end. Independent of whether the NS2B

cofactor is tied to the membrane at one or both ends, there is no

reason why the association of NS3pro with the NS2B CTS should

be any tighter than that observed in the model system studied

here, once the covalent linkage between NS2B and NS3 has been

broken.

The association between NS2B and NS3pro appears to be

independent of the helicase domain of NS3. In the crystal structure

of a DENV NS2B-NS3 construct comprising both the protease

and helicase domains of NS3, the interface is centered about

residue 68 of the NS3, displacing the N-terminal b-strand of NS3

observed in the structure 2IJO (dark blue in Figure 1A), and the

helicase domain makes no contacts with NS2B or the substrate

binding site [24]. The same arguments apply to the WNV

homologue [22,23]. It is not clear, however, whether the crystal

structure of the DENV NS3 protease-helicase construct is a good

model for membrane-associated NS2B-NS3 as it suggests that the

helicase domain clashes with the membrane when both ends of

NS2B are tied to a planar lipid bilayer.

If the NS3 helicase domain is only loosely associated with the

NS3 protease domain, the NS3 protease domain could dissociate

from the NS2B CTS to access substrate cleavage sites further away

from the membrane surface, although the separation from the

NS2B CTS would simultaneously impede its proteolytic activity.

The NS2B CTS could, however, follow the NS3 protease domain

if its C-terminal membrane attachment is broken by cleavage at

the non-canonical site near Lys96NS2B, generating a catalytically

active NS3 protease that is anchored to the membrane only at the

NS2B N-terminus.

Populations of Different Conformations
The present work shows that, in solution, the closed

conformation (or a closely related conformation) is predominantly

populated even in the absence of inhibitors. The strongest

evidence for this conclusion comes from the similarity of the
15N-relaxation with and without inhibitor and from the close

similarity between the paramagnetic relaxation enhancements of

residues 147–170 with and without inhibitor (Figure 5A). In

addition, the PREs indicate that the open conformations detected

by the spin-labeling experiment are mostly unrelated to those

found in the crystal structures of the WNV and dengue NS2B-NS3

proteases. As PREs strongly depend on the distance from the spin

label, they enable the detection of minor conformational species

which may be populated by as little as 1%.

The exchange broadening observed for many NMR resonances

is also in agreement with the closed conformation as the major

species. Chemical exchange of a major conformational species

with one or several minor species populated by as little as 5% can

lead to the disappearance of cross-peaks if the exchange rate is

comparable to the difference in chemical shifts of the conforma-

tional states. The appearance of all cross-peaks in the presence of

inhibitors can thus be explained, if the inhibitor shifts the

conformational equilibrium towards a single conformation (pop-

ulated by at least 90%). The alternative explanation of a greatly

accelerated exchange rate leading to recovery of the cross-peaks is

unlikely, as it is difficult to imagine a mechanism by which a low-

molecular weight inhibitor would accelerate a major conforma-

tional exchange process in the protein.

Considering that inhibitors 1 and 2 do not form van der Waals

contacts with NS2B [14,18], the shift in equilibrium may result

from attractive electrostatic interactions with the b-hairpin of the

NS2B CTS that carries a sequence of three Asp residues

(Asp80NS2B-Asp82NS2B). Available structures show that inhibitors

1 and 2 [18], BPTI [6] and peptide inhibitors [7,8] all project

positively charged groups towards the b-hairpin of the NS2B CTS.

The importance of electrostatic interactions for enzymatic activity
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of the WNV NS2B-NS3 protease is supported by the observation

that increasing concentrations of NaCl decrease enzymatic activity

[16].

Effect of the Linker between NS2B and NS3
All available observations indicate that the structural association

of the NS2B CTS with NS3pro is not an artifact of the covalent

linker connecting the C-terminus of NS2B with the N-terminus of

NS3. (i) R2 relaxation rates show that at least ten of the linker

residues are highly mobile regardless of the presence or absence of

inhibitor. (ii) NMR spectra of wt NS2B-NS3 without this covalent

link showed no evidence of increased flexibility of the NS2B CTS

regardless of the presence of inhibitor (data not shown). (iii) The

association of the NS2B CTS with NS3pro is structurally

conserved between all three crystal structures of the WNV

NS2B-NS3 protease in complexes with different inhibitors,

independent of the presence or absence of the linker and for

different linker lengths [6–8]. All three structures shown in Figure 1

were crystallized with uncleaved linker peptides present, illustrat-

ing the freedom of the NS2B CTS to assume the different

conformations consistently despite the linker. (iv) Shortening of the

linker sequence between NS2B and NS3 by one Gly residue has

been shown not to affect the proteolytic activity of the WNV

protease [5]. (v) The construct of the DENV NS2B-NS3

homologue used previously for crystallization [7] contained the

same number of residues and the Gly4-Ser-Gly4 segment as the

linker peptide in the WNV NS2B-NS3pro construct without

preventing enhanced flexibility of the NS2B CTS (see below).

Comparison with DENV NS2B-NS3 and Implications for
Drug Design

Comparison of the present results with previous NMR data of a
15N/13C-Ile labeled sample of the dengue virus type 2 NS2B-NS3

protease [25] reveals an unexpected important difference. In the

case of the DENV protease, in the absence of inhibitor, the 15N-

HSQC cross-peaks of all five isoleucine residues spanning NS2B

from Ile67 to Ile86 appeared at random coil chemical shifts and

displayed much narrower line widths than any isoleucine residue

in the structured core of NS3pro [25]. The absence of any line

broadening in this segment indicates that it is more than 90% of

the time dissociated from NS3pro. Nonetheless, the NS2B CTS

seems to affect the NMR line widths in the rest of the protein, as

much more uniform NMR peak intensities have been reported

following cleavage of recombinant NS2B-NS3 protease at

Asp81NS2B by endoprotease Asp-N [26].

The association of NS2B to NS3 has important implications for

structure-based drug design. First, if the NS2B CTS remains

largely dissociated also in the presence of inhibitors, this may

explain the persistent difficulties to crystallize the dengue virus

enzyme with a bound inhibitor. Second, the relatively close

association of the NS2B CTS with NS3 in the case of the WNV

NS2B-NS3 protease may make it harder to find inhibitors that

suppress the protease activity by preventing the association of the

NS2B CTS with NS3pro. In contrast, the closed conformation is

an appropriate target for rational drug design and has already

been used successfully to identify hits by virtual screening [14,15].

Supporting Information

Figure S1 15N-HSQC spectra of 0.3 mM solutions of 15N-

labeled WNV NS2B-NS3pro(N89C,K96A) with and without

MTSL and in the absence and presence of 3 mM 2. Superim-

position of 15N-HSQC spectra of WNV NS2B-NS3proC without

(blue spectrum) and with MTSL bound to Cys89 (magenta

spectrum) in the (A) absence and (B) presence of the inhibitor 2.

The samples contained 0.3 mM protein in 90% H2O/10% D2O

containing 20 mM Tris buffer (pH 7.2) and 2 mM DTT. The

spectra were recorded at 25uC on an 800 MHz NMR spectrom-

eter. The complexes with 2 were prepared by adding 3 ml of a

100 mM stock solution of 2 in d6-DMSO to the protein solution.

Resolved cross-peaks are labelled, if they showed significant

differences in peak intensities between the samples with and

without MTSL. Cross-peaks from NS2B are labelled in italics. A

box highlights the cross-peak of Cys78 which is not attenuated by

the spin label, demonstrating that this buried cysteine residue did

not react with MTSL.

Found at: doi:10.1371/journal.pntd.0000561.s001 (0.86 MB PDF)

Figure S2 Concentration dependence of the ratio of 15N-HSQC

peak heights observed for WNV NS2B-NS3proC with MTSL

versus those of unmodified WNV NS2B-NS3proC. Concentration

dependence of the ratio of 15N-HSQC peak heights observed for

WNV NS2B-NS3proC with MTSL versus those of unmodified

WNV NS2B-NS3proC. In order to adjust for differences in protein

concentration, scan numbers and receiver gains, the intensity

ratios were normalized by setting the largest Ipara/Idia ratio to 1.

(A) In the absence of inhibitor. Black squares: 0.26 mM protein.

Red circles: 0.13 mM protein. The diamagnetic reference is the

0.26 mM protein in both cases. (B) In the presence of inhibitor 2.

Black squares: 0.26 mM protein with 0.6 mM 2. Red circles:

0.13 mM protein with 0.26 mM 2. In both cases, the diamagnetic

reference is 0.26 mM protein in the presence of 0.6 mM 2.

Found at: doi:10.1371/journal.pntd.0000561.s002 (0.53 MB PDF)
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