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Abstract: Steps to facilitate inter-jurisdictional collabora-
tion nationally and continentally have been critical for
implementing and conducting coordinated wildlife rabies
management programs that rely heavily on oral rabies
vaccination (ORV). Formation of a national rabies man-
agement team has been pivotal for coordinated ORV
programs in the United States of America. The signing of
the North American Rabies Management Plan extended a
collaborative framework for coordination of surveillance,
control, and research in border areas among Canada,
Mexico, and the US. Advances in enhanced surveillance
have facilitated sampling of greater scope and intensity
near ORV zones for improved rabies management
decision-making in real time. The value of enhanced
surveillance as a complement to public health surveillance
was best illustrated in Ohio during 2007, where 19 rabies
cases were detected that were critical for the formulation
of focused contingency actions for controlling rabies in
this strategically key area. Diverse complexities and
challenges are commonplace when applying ORV to
control rabies in wild meso-carnivores. Nevertheless,
intervention has resulted in notable successes, including
the elimination of an arctic fox (Vulpes lagopus) rabies
virus variant in most of southern Ontario, Canada, with
ancillary benefits of elimination extending into Quebec
and the northeastern US. Progress continues with ORV
toward preventing the spread and working toward
elimination of a unique variant of gray fox (Urocyon
cinereoargenteus) rabies in west central Texas. Elimination
of rabies in coyotes (Canis latrans) through ORV contrib-
uted to the US being declared free of canine rabies in
2007. Raccoon (Procyon lotor) rabies control continues to
present the greatest challenges among meso-carnivore
rabies reservoirs, yet to date intervention has prevented
this variant from gaining a broad geographic foothold
beyond ORV zones designed to prevent its spread from
the eastern US. Progress continues toward the develop-
ment and testing of new bait-vaccine combinations that
increase the chance for improved delivery and perfor-
mance in the diverse meso-carnivore rabies reservoir
complex in the US.

Introduction

Oral rabies vaccination (ORV) represents a socially acceptable

methodology that may be applied on a broad geographic scale to

manage the disease in specific terrestrial wildlife reservoirs, as well

as in free-ranging or feral dog (Canis familiaris) populations, where

parenteral vaccination is impractical. The integration of ORV into

conventional prevention and control strategies signifies a paradigm

shift toward the achievement of effective rabies control in

terrestrial wild Carnivora and feral dog reservoirs. Inherent to

interventions targeting specific reservoirs are the benefits associ-

ated with reduced risk of human and animal exposure to rabies.

Moreover, success in geographically confining or reducing

terrestrial rabies virus diversity should facilitate an enhanced

focus on the public and animal health dilemma associated with

rabies in bats in the US and elsewhere in North America.

To date, ORV has been successfully applied to eliminate rabies

among red foxes (Vulpes vulpes) in several European countries [1,2],

with continued expansion of control programs into eastern Europe

[3]. Ontario, Canada has nearly achieved elimination of the arctic

fox (V. lagopus) variant of rabies virus, once widespread in red foxes

throughout the southern part of the province [4,5]. However, the

virus currently persists in isolated foci in southwestern Ontario as a

result of spill-over into skunks (Mephitis mephitis) [6] and the lack of

an effective oral vaccine-bait formulation for use in skunks [7].

Development and field testing of a human adenovirus-rabies

glycoprotein recombinant (ONRAB [Artemis Technologies Inc.,

Guelph, Ontario, Canada]) with proven effectiveness in skunks

holds promise for total elimination of the arctic fox rabies variant

in southern Ontario [8,9]. ORV has also been used to successfully

control a canine rabies virus variant that had spilled over into

coyotes (C. latrans) in south Texas [10,11]. Its integration into the

control strategy as an adjunct to parenteral vaccination in dogs has

been credited as a major contributing factor leading to canine

rabies free status for the US (declared in 2007 based on World

Health Organization [WHO] standards [12,13]).

Currently, ORV use in the US remains focused on preventing

raccoon (Procyon lotor) rabies from expanding its geographic

foothold beyond the eastern US and Canada, and as a component

of potential strategies for raccoon rabies elimination [14,15].

Additional programs are focused on containing and eliminating a

Citation: Slate D, Algeo TP, Nelson KM, Chipman RB, Donovan D, et al. (2009)
Oral Rabies Vaccination in North America: Opportunities, Complexities, and
Challenges. PLoS Negl Trop Dis 3(12): e549. doi:10.1371/journal.pntd.0000549

Editor: Jeffrey M. Bethony, George Washington University, United States of
America

Published December 22, 2009

This is an open-access article distributed under the terms of the Creative
Commons Public Domain declaration which stipulates that, once placed in the
public domain, this work may be freely reproduced, distributed, transmitted,
modified, built upon, or otherwise used by anyone for any lawful purpose.

Funding: No specific funding was received for this article.

Competing Interests: The authors have declared that no competing interests
exist.

* E-mail: timothy.p.algeo@aphis.usda.gov

www.plosntds.org 1 December 2009 | Volume 3 | Issue 12 | e549



variant of gray fox (Urocyon cinereoargenteus) rabies in west Texas,

and preventing the reemergence of canine rabies from Mexico

[11,13].

Each ORV program is faced with multiple complexities [15],

but none is as formidable as those associated with control of rabies

in the raccoon. As an ecological generalist, raccoons often occur

at extremely high population densities along the rural-urban

interface [16] in common with the distribution of this rabies virus

variant. Indeed, a major underlying impetus for the integration of

ORV into conventional prevention and control beginning in the

1990s was the potential for accrued public health benefits of

preventing continued spread of raccoon rabies within the eastern

US [17] where much of the country’s human population resides

[18]. In turn, the increased chance for human-raccoon interac-

tions and the difficulties of conducting control programs in the

suburban mosaic along this interface poses unique and diverse

challenges to rabies control.

This paper draws largely from specific examples of contempo-

rary wildlife rabies control programs in North America to illustrate

key ecological, biological, logistical, and environmental complex-

ities and challenges, and the initiatives taken to achieve success.

Methods

Literature searches included the use of Scopus via access

through the USDA National Agricultural Library, and EBSCO

Host Academic Search Premier via the University of New

Hampshire’s Dimond Library. Assistance in publication acquisi-

tion was provided by the USDA, Wildlife Services National

Wildlife Research Center Library staff. Keyword searches

included the following terms: rabies, wildlife and rabies, ORV, TVR,

rabies host shift, and others.

North American Collaboration Approaches
A broad scientific, regulatory, and management interface exists

among the public health, agriculture, and wildlife management

agencies responsible for specific rabies prevention and control

activities in the US. Each state and federal agency has statutory

authority and a public trust niche to achieve specific agency missions.

As a consequence, planning, implementing, and coordinating

effective rabies prevention and control necessitates inter-jurisdic-

tional collaboration among diverse disciplines and authorities.

A national rabies management team approach has been applied

in the US since 1999 to facilitate coordination of ORV programs

across state and international boundaries in North America

targeting specific rabies virus host reservoirs. The National Rabies

Management Team is currently composed of nine smaller working

groups focused on key topic areas such as surveillance, vaccine

development, rabies control strategies, and research prioritization.

The team meets annually to assess and discuss key issues and

provides guidance for a spectrum of national wildlife rabies

prevention and control goals [15]. The approach taken to assure

science-based wildlife rabies control in the US is embodied in the

‘‘One Health Initiative’’ [19], a renewed global strategy

recognizing that human and animal health, including wildlife,

are inextricably linked. To effectively address infectious zoonotic

diseases like rabies requires expanded interagency communication

and collaboration. This national approach has been used as a

springboard to develop a continental framework for rabies

prevention and control in North America.

The signing of the North American Rabies Management Plan

(NARMP) in October 2008 by representatives from Canada,

Mexico, the US, and the Navajo Nation extends collaboration

across national boundaries and multiple disciplines in four focus

areas: communications, surveillance, control, and research. A

fundamental tenet of the NARMP is that rabies prevention and

control programs can be enhanced through an international

collaborative framework. The formalization of this plan has

spawned several proposed collaborative initiatives for 2009.

Examples include a comparison of ORV performance between

New Brunswick, Canada, and Maine, US, and closer coordination

between border states and provinces involved in raccoon rabies

control. Other examples include replication of the first ORV

campaigns targeting dogs in Mexico, improved enhanced rabies

surveillance along the Mexico-US border, and captive studies with

the GnRH immunocontraceptive GonaCon in Mexico [20].

Value of Enhanced Surveillance to ORV
Rabies surveillance is traditionally based on human or domestic

animal exposure events brought to the attention of public health

officials [12]. This system is effective in providing surveillance data

to support critical medical decisions to protect public health.

However, exposure-based surveillance tends to be biased by

human population densities, political enumeration units, and other

factors. This approach may not include a sufficient sampling scope

or intensity to accurately delineate the leading edge of specific

rabies virus variant distributions in real time or with the relatively

high degree of confidence required for the timely and effective

allocation of resources to ORV.

Enhanced rabies surveillance to support ORV in the US focuses

on the following types of samples: strange acting (extremely

aggressive or docile) animals where no human or domestic animal

exposure has been reported, road kills, animals found dead in

addition to road kills, animals with injuries or lesions indicative of

highly aggressive behavior, and euthanized animals from focal

trapping at sites where rabid animals were recently confirmed. Not

uncommonly, raccoons captured by nuisance wildlife control

operators are included as enhanced rabies samples [21],

particularly when they can help delineate rabies distribution

where control is being planned in suburban settings.

The enhanced surveillance zone for raccoons typically extends

from the areas where raccoon rabies is enzootic, through the ORV

zone, to approximately 80 km into areas suspected to be free of

raccoon rabies (Figure 1). The spatio-temporal distribution of

animals tested for rabies is subsequently mapped using RabID (a

geographic information system [GIS] database and internet

mapping application) [22] such that near real-time decisions can

be made to increase surveillance in areas, adjust ORV zones, or

implement other rabies management actions such as trap-

vaccinate-release (TVR).

Substantial increases in suspect rabid animal samples under the

enhanced rabies surveillance protocol often create an undue

burden on state laboratories for timely diagnosis. Application of a

direct rapid immunohistochemistry test (dRIT) developed at the

Centers for Disease Control and Prevention (CDC) in the US

[23,24] has permitted trained biologists in several states to mitigate

much of this burden, while achieving the goal of expanding the

geographic scope and intensity of rabies surveillance. In 2007,

Wildlife Services (WS) tested 7,737 animals using the dRIT to

enhance surveillance of raccoon rabies; 167 tested positive. In

some states (e.g., New York), enhanced surveillance samples

continue to be tested in a timely fashion by the state health rabies

laboratory using the direct fluorescent antibody (dFA) test and

virus typing by a US national protocol [25].

The value of enhancing rabies surveillance beyond levels

typically conducted for the protection of public health was

illustrated in northeast Ohio during 2007. This area is character-

ized by heavy commercial business and residential developments
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typical of suburbia (Cleveland metropolitan area). Since 2004,

when rabies was first detected in this area (10 km west of the

existing Appalachian ORV zone at that time), surveillance has

been enhanced resulting in WS submitting 5,554 animals (through

2008) for rabies testing. In each year except 2007, rabies positive

cases were detected through the public health surveillance system

as well. From 2004–2006, there had been declining rabies cases,

suggesting a trend toward rabies-free status in this contingency

action area. In 2007, all rabies positive cases in this area were

detected as a function of enhanced surveillance (Figure 2). This

was a somewhat surprising result given the opportunity for

exposure and presence of rabies in this highly developed suburban

setting, underscoring the value of enhanced surveillance as a

complement to traditional public health surveillance. The

distribution of these positive cases (Figure 3) was critical to

obtaining emergency funding and formulating a focused TVR

campaign to bolster population immunity in an attempt to restore

the area to raccoon rabies-free status.

Raccoon Rabies ORV
Raccoon rabies was first described in Florida in the 1940s [26],

and until the mid-1970s remained confined to the far southeastern

US, extending north into South Carolina and west into Alabama

[27]. Purposeful human-assisted translocations of raccoons to

portions of western Virginia and southern West Virginia

documented in the 1970s resulted in the creation of a new

‘‘Mid-Atlantic’’ raccoon rabies epizootic focus [28,29]. Lack of

access to ORV at the initiation of the outbreak or other practical

methods that may have been applied on a landscape scale

prevented intervention around the original focus. Unchecked, this

unique virus variant spread rapidly in the ubiquitous and

abundant raccoon populations of eastern North America. Thus,

it has come to occupy its current expanded range from

southwestern Alabama to the Maine–New Brunswick, Canada

border and west to northeast Ohio, with emergence into southern

Quebec (north of the Vermont border) in 2006 [12].

During the 1990s, coordinated operational raccoon rabies

control programs in the US expanded from small scale projects in

five states (Florida, Massachusetts, Maryland, New Jersey, New

York) to include portions of 16 states by 2005 [30]. A series of

ORV zones have been strategically created to prevent raccoon

rabies from spreading to unaffected areas. Mean post-ORV

antibody activity ($0.05 IU) for participating states as an index to

population immunity for raccoons has averaged around 30% in

these zones (Figure 4), with 2007, the most recent year with

complete information, at 33.2%615.5% (standard deviation).

These observed antibody levels are low in comparison to the long-

term annual average reported for gray foxes (61%) and coyotes

(63%) [11] in states using the same oral rabies vaccine and similar

baiting strategies. Nevertheless, raccoon rabies has not spread

appreciably beyond ORV zones where abundant susceptible

raccoon populations exist [31,32] based on the expected rate of

movement as observed in the eastern US [33], or as modeled for

Ohio by Russell et al. [34], in the absence of ORV intervention.

Obviously, lower indices to population immunity connote a

greater risk of ORV zone compromise and a reduced ability to

sustain effective programs, highlighting the need for improved or

new baits and vaccines and strategy refinements. Frequent

spillover of raccoon rabies virus variant into the striped skunk

[12] represents an additional confounding factor for long-term

success [35], as essentially no antibody response has been observed

in serum samples collected from skunks within ORV zones

targeting raccoons [21]. Both factors have contributed to the need

to apply contingency actions to bolster ORV campaigns to achieve

rabies management goals. For example, use of population

reduction, TVR (effective in skunks) and ORV in point infection

control (PIC) in Ontario [36,37], and a modified PIC in New

Brunswick (M Allan, personal communication) have been credited

with restoring both provinces to raccoon ‘‘rabies-free’’ status. In

2006 and 2007, PIC was conducted in southern Quebec to try to

prevent raccoon rabies that emerged north of the ORV zone in

Vermont from spreading north to Montreal and other human-

occupied areas (P Canac-Marquis, personal communication).

In the US, a contingency action has continued in northeast

Ohio since 2004, when raccoon rabies emerged 10 km west of the

established ORV zone [15]. The strategy included ORV baiting

by hand and by air twice/year (often at bait densities of up to

150 baits/km2), intensive enhanced surveillance, and TVR. In

2008, 4,196 raccoons were parenterally vaccinated in treatment

cells (Figure 3), based on a priori raccoon population density

indices, to achieve a targeted 65% vaccination rate. Additionally,

138 raccoons and 77 skunks were sampled and tested for rabies.

Post-treatment serum analysis is in progress. Those results, in

Figure 1. Raccoon oral rabies vaccination and Wildlife Services’
enhanced surveillance counties in the United States of
America, 2007.
doi:10.1371/journal.pntd.0000549.g001
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tandem with continued enhanced surveillance information, will be

used to determine raccoon rabies status for the area and whether

resources applied to this effort can be reallocated to other ORV

priorities.

Contingency actions are an integral component of rabies

management strategies in meso-carnivores to address local

emergencies that may arise during normal ORV operations.

However, such actions are labor intensive and wrought with

logistical and environmental challenges that mandate careful

coordination with the attendant high cost per unit area treated in

comparison to regularly planned ORV campaigns. Comprehen-

sive economic analysis of the benefits and costs associated with

the 2008 contingency action in Ohio are in progress and will

be compared to earlier reported estimates from Ontario that

suggest the costs are approximately 2.5 times greater than ORV

for a similar area [36]. Costs alone preclude their sustained

application on a landscape scale or at a high frequency, but

contingency actions remain important to address specific high-

risk rabies foci to restore or maintain the integrity of larger ORV

campaigns.

Key among the many challenges implicit in rabies control is the

pervasiveness of the translocation of raccoons and other meso-

carnivores [38], intentional or accidental, which represents a

common extrinsic threat for both local and long-range movement

of rabies and control programs [27]. Although translocation has

been instrumental in specific endangered species recovery efforts

and for other conservation purposes, large numbers of raccoons,

skunks, and other species are purposefully moved about the

landscape as a part of rehabilitation and nuisance wildlife control

efforts [38]. Raccoons and other animals that commonly feed on

household garbage may be unintentionally relocated considerable

distances in transport vehicles associated with interstate movement

of more than 42 million tons of municipal solid waste each year

[39]. The wildlife profession and others now question translocation

as a management tool in light of the need to contain or eliminate

high-profile, economically important wildlife diseases, including

rabies. Future plans will likely require a strategy that integrates at a

minimum outreach education and revised laws, accompanied by

enforcement, to make measurable inroads toward curbing this

widespread problem.

Vaccine-Bait-Biomarkers Needs
Adaptive methods for enhanced effectiveness in rabies control

require attention to a broad range of research needs. These

include ecology of reservoir species, an understanding of target

and non-target species foraging behaviors, community dynamics

of the meso-carnivore complex, bait uptake relative to a suite of

species-specific spatio-temporal variables, and model development

to support ORV decision making. Chief among these is the need

for improved or new baits and vaccines that lead to enhanced field

performance in raccoons and other species to reduce dependency

on contingency actions and allow a shift in focus toward

elimination strategies. This need is driven in part by rabies virus

spillover and establishment among several sympatric meso-

carnivores in North America [6,13,31]. Notably, no single vaccine

has proven efficacious under field conditions for all relevant

species. The community dynamics that lead to virus spillover

events and subsequent host shifts are not well understood nor have

the co-adaptive ecological relationships of the virus-host been

extensively studied [13,40,41]. Nevertheless, spillover events and

disease emergence present a challenge to the achievement of rabies

control objectives in the absence of effective oral vaccines for use

in the spillover host.

Notable examples of this dilemma have been documented in

Alaska and Canada, where arctic fox rabies virus variant has

spilled over into other animals, such as dogs and red foxes [42–44].

Infection of the latter species is especially problematic, because of

the broad geographic distribution of red foxes extending from the

arctic through the temperate zone, leading to subsequent spillover

and maintenance in the striped skunk [6]. Previously discussed

raccoon rabies virus variant spillover into striped skunks in the

eastern US, as well as a host shift of big brown bat (Eptesicus fuscus)

rabies virus to skunks near Flagstaff, Arizona, are other major

examples [45]. Clearly, enhancement of existing oral rabies

vaccine-bait combinations or the development of new products

with proven field effectiveness in the striped skunk as well as the

Figure 2. Raccoon variant rabies cases in Ohio contingency action zone. Since 16 July 2004 when raccoon rabies virus variant was
first detected west of the existing oral rabies vaccination zone, 117 animals have been confirmed positive with raccoon variant within the
contingency action zone. In 2007, no cases were detected via the public health surveillance system, illustrating the need for enhanced rabies
surveillance.
doi:10.1371/journal.pntd.0000549.g002
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Figure 3. Contingency actions in Ohio, 2008. A large-scale trap-vaccinate-release (TVR) operation was conducted near Cleveland, Ohio, in 2008
and resulted in the hand vaccination of 4,196 raccoons and the brainstem testing of 138 raccoons and 77 skunks. The TVR zone consisted of 185 cells
(1 km2 in size) and was delineated from raccoon variant rabies cases confirmed in the Contingency Action ORV zone in 2007 (n = 19). In addition to
TVR, oral rabies vaccine baits were distributed over the area as part of contingency actions in 2008.
doi:10.1371/journal.pntd.0000549.g003
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diverse complex of meso-carnivore rabies reservoir species in

North America is needed.

In Ontario, field trials were conducted recently with a human

adenovirus recombinant vaccine (ONRAB) developed with the

intent that its strategic use will facilitate the elimination of the fox

rabies foci maintained by skunks in southern Ontario [9]. Field

trials with ONRAB have also been extended to raccoon rabies

control in Ontario and Quebec. Several other new vaccine

constructs have been developed that may hold promise for use in

wildlife and dogs [46,47]. For example, a canine adenovirus

(CAV2) recombinant rabies vaccine may hold promise based upon

preliminary results obtained in captivity upon a variety of species

[48–52].

Tetracycline has had a long history as a biomarker in wildlife

management, including extensive use in evaluating bait uptake in

ORV campaigns [4,53,54], and its utility is well documented

[55–57]. Disadvantages, particularly for ORV in raccoons, is that

tooth extraction is intrusive, time consuming, and requires

anesthesia, as live trapped raccoons are released at their site of

capture once biological information and samples have been

collected. In addition, first and second premolars have much lower

tetracycline deposition rates than canine teeth, an unacceptable

candidate sample for extraction from live animals. Because of this,

tetracycline marking rates in raccoon premolar teeth from bait

consumption are variable and do not always exceed sero-

conversion rates as expected, compromising its usefulness as an

index to bait uptake. Contemporary issues associated with

antibiotic resistance and the uncertainty of tetracycline use in

the future obliges us to seek out effective, environmentally

compatible alternative biomarkers. Rhodamine B is one candidate

under study as a potential post-bait ingestion marker, which shows

promise in providing a short-term marker in growing whiskers as

well as long-term in teeth. Further study is required to assess its

field-level utility [58] as well as the feasibility of producing baits or

vaccine that incorporate Rhodamine B.

Rabies Control Intervention Revisited
In 2001, apparent spillover of big brown bat rabies virus variant

resulted in 19 documented cases in skunks near Flagstaff,

indicative of transmission among skunks [45]. Subsequent

intervention with TVR has resulted in periods of quiescence

followed by reemergence in 2004 and 2005 [21], and again in

2008 [59]. From 31 October 2008 – 1 May 2009, 17 cases of the

same big brown bat variant were confirmed in gray fox, a species

capable of longer range movement that could facilitate establish-

ment of this variant in foxes and skunks over a broader geographic

area [60,61]. While these events support the hypothesis of a viral

host shift from bats to carnivores, they also raise questions about

the potential relationship between human perturbations that

contributed to a locally abundant skunk population near Flagstaff

and the development of this situation. The more immediate

challenge is to determine if a practical and effective rabies

management strategy can be formulated and funded to contain

this apparently geographically limited focus. Elements of an

effective strategy under consideration include ORV of sufficient

scale to contain disease spread in gray foxes, periodic TVR in

skunks until an effective oral bait-vaccine combination is available,

and more comprehensive enhanced surveillance. The latter is to

better understand the temporal emergence and spatial spread of

bat rabies to susceptible carnivore populations. Failure to act while

this focus appears to be largely restricted to the Flagstaff vicinity

could result in the establishment of new terrestrial rabies variants

over a broader landscape that would present an even greater

challenge if control programs are contemplated in the future.

Other Wildlife Rabies Control Considerations
The cost effectiveness of the shifting paradigm toward

controlling rabies in meso-carnivore reservoirs should and will

receive continual scrutiny. To date, studies of the benefits and

costs have concluded that under specific assumptions and

scenarios, ORV is a viable rabies management alternative

[17,62–65]. Ultimately, sustainability of programs in a highly

competitive environment for government funding will hinge on

achieving measurable successes on finite timelines. The bait-

vaccine unit alone accounted for 88% of the ORV distribution

materials and services’ costs in the US, which included fuel and air

contracting for operations targeting raccoons at bait densities of

75/km2 during fiscal year 2008. Consequently, accelerated

Figure 4. Percent positive rabies antibody response ($0.05 IU).
doi:10.1371/journal.pntd.0000549.g004
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emphasis toward the development and production of low cost,

highly effective baits and oral vaccines that can clear the

regulatory process for broad scale use is a critical need.

Concomitantly, improvements to the currently licensed bait-

vaccine appear warranted if effectiveness can be enhanced while

cost/units are conserved. In turn, costs may be conserved by

refining baiting strategies based on validated models that point to

areas where reduced baiting density can be applied without

sacrificing effectiveness [66]. Past economic analyses should be

revisited to incorporate important new findings such as better

estimates for benefits and costs of contingency actions and use of

more powerful GIS analytical tools.

Concerns linger among some wildlife managers over potentially

negative consequences from rabies control to species of conserva-

tion concern [67]. The unique rabies virus variant adapted to

raccoons is a relatively new mortality factor, particularly in the

northeastern US and portions of southern Canada, having

reached southern New York in 1990, with an incursion into

southern Ontario in 1999, New Brunswick in 2000, and Quebec in

2006. The ecological dynamics of rabies in relation to other

raccoon disease mortality factors, such as canine distemper, have

not been extensively studied to determine if the effects on

populations are compensatory or additive. Clearly, additional

study on this topic is warranted from an ecological and

management perspective. Regardless, if raccoon predation is

having an impact on bird nesting species or other species of

concern [68,69], dependence on a solution that implies reliance on

the establishment of an unpredictable fatal virus, with tangibly

serious public and domestic animal health implications, represents

a dubious alternative to active management.

Summary

Establishment of a rabies management team composed of a

coalition of diverse expertise from the public health-agriculture-

wildlife management interface has been critical to facilitate

coordination among rabies control programs targeting meso-

carnivores in the US. The NARMP has established a continental

framework that extends collaboration and coordination, capacity

for rabies communications, surveillance, control, and research

among Canada, Mexico, and the US. Enhanced surveillance as a

complement to public health surveillance has improved decision-

making capability regarding allocation of rabies control resources,

including contingency actions to address emergencies, as illustrated

in Ohio. Raccoon rabies has not spread appreciably since ORV

intervention has expanded in the eastern US, yet rabies virus

neutralizing antibody levels in raccoon populations as an index to

immune buffers in existing ORV zones point to the need for

improved or new baits, oral vaccines, and strategy refinements.

Achieving advances that lead to improved field performance should

allow for a more aggressive movement of ORV zones into raccoon

enzootic areas. Measureable successes beyond containment would

be expected to enhance program sustainability toward the goal of

broader scale elimination of raccoon rabies and ultimately other

meso-carnivore rabies virus variants. Economic analyses will remain

integral to ORV planning and as a means to characterize successes

in costs and benefits. Conservation concerns related to control

programs cannot be ignored and require additional study to better

understand the role of rabies and other diseases on the population

dynamics of meso-carnivores, such as the raccoon.
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Key Learning Points

1. ORV represents a socially acceptable methodology that
has helped eliminate canine rabies from the US, and
restricted the distribution of raccoon, arctic fox, and gray
fox variants of rabies in North America.

2. An international rabies management team composed of
experts from the public health-agriculture-wildlife man-
agement interface has been vital to the establishment of
viable rabies control programs in North America.

3. ORV in the US remains focused on the raccoon variant of
rabies, while work continues to contain and eliminate the
gray fox rabies variant in west Texas, and prevent canine
rabies from re-emerging into the US from Mexico.

4. Advances in enhanced rabies surveillance that relies
largely on a direct rapid immunohistochemistry test have
led to improved real-time management decisions for
meso-carnivore rabies reservoir species in the US.

5. ORV-related dog research in the southwestern US has
potentially broad application in developing countries,
where most of the 55,000 human rabies cases per year
occur as the result of dog bites.
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N MacInnes CD, Smith SM, Tinline RR, Ayers NR, Bachmann
P, et al. (2001) Elimination of rabies from red foxes in
eastern Ontario. J Wildlife Dis 37: 119-132.
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P, et al. (2005) Oral vaccination of dogs with recombi-
nant rabies virus vaccines. Virus Res 111: 101-105.
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(2005) Evaluation of oral rabies vaccination programs for
control of rabies epizootics in coyotes and gray foxes. J
Am Vet Med Assoc 227: 785-792.

N Velasco-Villa A, Reeder SA, Orciari LA, Yager PA, Franka R,
et al. (2008) Enzootic rabies elimination from dogs and
reemergence in wild terrestrial carnivores, United States.
Emerg Infect Dis 14: 1849-1854.
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