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Abstract

Background: Intestinal parasitic nematodes such as hookworms, Ascaris lumbricoides, and Trichuris trichiura are amongst
most prevalent tropical parasites in the world today. Although these parasites cause a tremendous disease burden, we have
very few anthelmintic drugs with which to treat them. In the past three decades only one new anthelmintic, tribendimidine,
has been developed and taken into human clinical trials. Studies show that tribendimidine is safe and has good clinical
activity against Ascaris and hookworms. However, little is known about its mechanism of action and potential resistance
pathway(s). Such information is important for preventing, detecting, and managing resistance, for safety considerations, and
for knowing how to combine tribendimidine with other anthelmintics.

Methodology/Principal Findings: To investigate how tribendimidine works and how resistance to it might develop, we
turned to the genetically tractable nematode, Caenorhabditis elegans. When exposed to tribendimidine, C. elegans
hermaphrodites undergo a near immediate loss of motility; longer exposure results in extensive body damage,
developmental arrest, reductions in fecundity, and/or death. We performed a forward genetic screen for tribendimidine-
resistant mutants and obtained ten resistant alleles that fall into four complementation groups. Intoxication assays,
complementation tests, genetic mapping experiments, and sequencing of nucleic acids indicate tribendimidine-resistant
mutants are resistant also to levamisole and pyrantel and alter the same genes that mutate to levamisole resistance.
Furthermore, we demonstrate that eleven C. elegans mutants isolated based on their ability to resist levamisole are also
resistant to tribendimidine.

Conclusions/Significance: Our results demonstrate that the mechanism of action of tribendimidine against nematodes is
the same as levamisole and pyrantel, namely, tribendimidine is an L-subtype nAChR agonist. Thus, tribendimidine may not
be a viable anthelmintic where resistance to levamisole or pyrantel already exists but could productively be used where
resistance to benzimidazoles exists or could be combined with this class of anthelmintics.
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Introduction

Thirteen neglected tropical diseases have tremendous impact on
the lives of billions of the poorest peoples in the world with an
estimated total disease burden of 56.6 million disability-adjusted
life years, exceeding that of malaria (46.5 million) and tuberculosis
(34.7 million) [1,2]. These diseases play a major role in keeping
infected peoples mired in poverty and in a low socioeconomic state
[1,2]. The top three of these poverty-promoting tropical diseases
are caused by intestinal nematodes: ascariasis (caused by Ascaris
lumbricoides), trichuriasis (caused by Trichuris trichiura or whipworm),
and hookworm disease (caused by Necator americanus and Acylostoma
duodenale). These parasites (hookworms, Ascaris, and Trichuris or
HAT) are amongst the most common human parasitic infections,
with an estimated 576-740 million people infected with hook-
worms, 807-1221 million infected with Ascaris, and 604—-795
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million infected with Trichurss [3]. Extensive and detrimental
impacts of HAT infections have been reported on human growth,
nutrition, fitness, stature, metabolism, cognition, immunity, school
attendance/performance, earnings, and pregnancy [3,4,5,6]. A
recent and thorough meta-analysis of deworming studies in
children demonstrated that deworming children in areas for
which HAT parasites are prevalent results in statistically significant
improvements in almost all primary outcome measures (weight,
height, mid-upper arm circumference, and triceps skin fold) and in
all secondary outcome measures (e.g., weight-for-age, height-for-
age, ...) [3].

Although HAT infections are one of the most prevalent and
mmportant infectious diseases in the world, few treatment options
exist. The World Health Organization (WHO) has approved two
classes of compounds (anthelmintics) for treatment of intestinal
nematode parasites: the benzimidazoles (i.e., mebendazole and
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Author Summary

Intestinal parasitic nematodes or roundworms infect over 1
billion people in tropical countries. Overall, they are a huge
source of morbidity in infected people, including children
and pregnant women, and are increasingly being recog-
nized as key poverty-promoting parasites. Despite their
importance, few drugs for dealing with them exist.
Furthermore, none has optimal efficacy, all can be resisted
by the parasites, and, for practical reasons, only one is used
for single-dose Mass Drug Administrations (MDAs). There is
a dire need for better roundworm drugs (anthelmintics). In
the past 30 years, only one anthelmintic, tribendimidine,
developed by the Chinese CDC, has entered human clinical
trials. Tribendimidine has good single-dose efficacy against
some roundworm parasites. However, how tribendimidine
works was unknown. Here, using the roundworm Caenor-
habditis elegans to evolve resistance to tribendimidine in
the lab, followed by genetic and molecular testing and
cross-resistance drug studies, we demonstrate that triben-
dimidine is unequivocally in the same drug family as two
known anthelmintics, levamisole and pyrantel. These
results have important implications for how tribendimidine
might be used in MDAs where resistance to current drugs
is known or suspected and for how tribendimidine might
be combined with other drugs to maximize therapy while
minimizing resistance threats.

albendazole) and the nicotinic acetylcholine receptor (nAChR)
agonists (i.e., levamisole and pyrantel) [7]. For practical reasons
(e.g., efficacy against hookworm, single dose application, weight-
independent dosing), only one drug, albendazole, is the drug of
choice for Mass Drug Administration [7,8]. Given the limited
number of drugs available, the enormous numbers of people to be
treated, and the necessity for repeated treatment due to high
reinfection rates and population dynamics of the parasites, the
emergence of resistance to existing anthelmintics (already an
enormous problem for veterinary anthelmintics [9]) poses a serious
threat to large-scale deworming efforts. Thus there have been
urgent and repeated calls for the development of new human
anthelmintics [6,7,10].

In the past 30 years, only one new anthelmintic to treat human
HAT infections has reached the clinic, tribendimidine. Tribendi-
midine, a symmetrical diamidine derivative of amidantel, is a
broad-spectrum anthelmintic drug developed by the Chinese
National Institute of Parasitic Diseases during the 1980s [11]. It
was approved for human use by the China State Food and Drug
Administration in 2004 and is currently undergoing clinical testing
in China [11,12]. Laboratory and clinical investigations demon-
strate that this drug is safe and has a broad spectrum of single-dose
activity against parasitic nematode infections in humans, including
against Ascaris, hookworms and Strongyloides stercoralis with reported
cure rates of 92-96%, 52-90%, and 55% respectively [11,12]. A
phase IV clinical trial of tribendimidine recently has been
conducted in China [13]. In addition to intestinal nematode
infections, tribendimidine has also shown  vive efficacy against
trematodes and tapeworms [12,14]. Tribendimidine is an
important new drug with broad anti-parasite activity.

Although tribendimidine is a promising new anthelmintic,
virtually nothing is known about its mechanism of action, about
whether or not nematodes can develop resistance to it, and, if so,
about the molecular mechanism(s) associated with resistance. Such
information is vital for understanding whether tribendimidine
represents a new type of anthelmintic, for predicting how
resistance might develop, for monitoring resistance in the field,
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and for determining how to rotate/combine it with other
anthelmintics. Although the required mechanistic and resistance
studies are difficult to conduct with parasitic nematodes, they can
readily be carried out using the laboratory nematode, Caenorhabditis
elegans. C. elegans has a rapid life cycle, is susceptible to most known
anthelmintics, and is amenable to mutagenesis, large-scale forward
genetic screens, genetics, and relatively quick gene mapping and
cloning. As such, C. elegans has been used to discover and/or clarify
the mechanisms of action and resistance of almost all known
anthelmintics [15]. Here we demonstrate that C. elegans is
susceptible to tribendimidine and that C. elegans mutants resistant
to tribendimidine can readily be isolated. Detailed studies of
tribendimidine-resistant and other anthelmintic resistant mutants
demonstrate that tribendimidine unambiguously is a member of
the nAChR class of anthelmintics of the same subtype as
levamisole and pyrantel.

Materials and Methods

C. elegans strains

C. elegans strains were cultured using standard techniques
including the use of Escherichia coli strain OP50 as standard food
source [16]. The following strains were used for tribendimidine
resistant mutants (#b) outcrossing, chromosome mapping, and
complementation testing: Bristol N2, dpy-5(e61), dpy-11(e224), and
Hawaiian mapping strain CB4856. The following levamisole-
resistant mutant alleles were used: lev-1 (€221), unc-29 (¢293), unc-
38(e264), unc-74 (¢883), unc-63(x13), lev-8(x15), lev-9(x16), unc-
50(306), unc-22 (e66), unc-22(s12), lev-10(x17), lev-11(x12). In
addition, the aldicarb resistant mutant wunc-10(el02) and the
levamisole-insensitive nicotinic acetylcholine receptor mutant acr-
16(0k789) were also used. The strain PD4793 is a strain of C. elegans
with various green fluorescent protein (GFP) markers integrated
on chromosome V.

Reagents

Tribendimidine was provided by the National Institute of
Parasitic Diseases and Chinese Center for Disease Control and
Prevention (Shanghai, China). Levamisole and pyrantel were
prepared from powder from Acros (cat. no. 187870100) and
Sigma (P7674), respectively. A stock solution of tribendimidine at
4 mg/mL was prepared in 1% DMSO in sterile distilled water for
all assays. For all plate and well assays, the final concentration of
DMSO was =0.1%, which both others and we have found has no
detectable effect on C. elegans, health, movement or development
((17], Y.H. and R.V.A., unpublished data). Levamisole and
pyrantel were freshly dissolved in sterile distilled water. The
chemical structures of all three drugs, tribendimidine, levamisole,
and pyrantel, are shown in Figure S1. The recipe for NG and
ENG plates can be found in [18]. Special S medium (sS medium)
1s a modification of standard S medium used for C. elegans liquid
culturing [19] in which the pH has been raised to 7.3 and CaCl,
has been omitted (we found that tribendimidine is mostly
mactivated at pH 6.0, the pH of regular S medium; furthermore
CaCly precipitates at pH 7.3, hence the requirement that it be
omitted). We have quantitatively confirmed that C. elegans health,
development, movement, and brood sized are not affected by
using sS medium in place of S medium.

Genetic screening for resistance mutants,
complementation testing, gene mapping, and molecular
characterizations

A large population of synchronized 4™ Jarval stage (L,) worms
was mutagenized in a 30 mM ethyl methanesulfonate (EMS) as
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per standard protocol [19]. The mutagenized P, animals were
grown on OP50-seeded ENG plates at 20° overnight until gravid
adults. I} embryos were isolated from these adults using standard
bleaching protocols [18]. After hatching overnight at 25° in M9
medium [19], the F; L, larvae were plated and grown on OP50-
seeded ENG plates at 20° for 3 days until gravid adults. These
adults were bleached to produce Fy embryos and then hatched
overnight in M9 to produce Fy L larvae. These Fy L; larvae were
plated onto ENG plates and grown until the Ly stage at 20°, at
which point they were washed off the plates, rinsed in sS medium,
and then pipetted into 48-well plates at a density of 20-30 worms/
well along with 60 pg/mL tribendimidine, 20 pL. OP50
(ODggp = 3.0 in sS medium), and sS medium up to 200 pL final
volume. Tribendimidine-exposed worms were then incubated at
15° overnight. Any nematodes that were motile (i.e., resistant to
tribendimidine-induced paralysis) were then transferred out of the
wells and grown on NG plates (minus drug) to produce progeny.
Progeny from these putative candidates were then placed onto NG
plates in which tribendimidine (from the 4 mg/mL stock; see
above) was added to a final concentration of 100 pg/mL just prior
to pouring of the plates. Of 15 putative candidates identified
initially, ten were reconfirmed on these tribendimidine plates. To
ensure independence of mutants isolated, we screened only 7,600
Fy animals out of a total Fy population of 152,000 (which came
from a population of mutagenized 25,300 I';) for an estimated
7,600 mutagenized I, genomes screened.

The tribendimidine resistant mutants were outcrossed as follows:
trb-1(ye492) was outcrossed six times using a combination of wild-
type N2, dpy-5(e61), and dpy-11(e224); trb-2(ye493) was outcrossed
six times using a combination of N2 and dpy-5(e61); trb-5(ye494) was
outcrossed six times using a combination of N2 and dpy-11(e224);
and trb-4(ye494) was outcrossed three times using N2. In addition,
the wunlinked double mutants #b-1(ye492);dpy-11(e224), dpy-
5(e61);trb-2(ye493), and trb-3(e494):dpy-11(e224) were obtained. To
do complementation tests among #b mutants, homozygous or
heterozygous males from outcrossed strains were obtained and these
were mated into #rbidpy double mutant animals or #b-4(ye495)
animals that on their own are uncoordinated (Unc). More than 10
cross-progeny (non-Dpy or non-Unc animals) from each cross were
placed onto 100 pg/mL tribendimidine toxin plates at 25° for
24 hrs and scored for either 100% or 50% resistance, depending
upon whether homozygous or heterozygous males were used. To
test for complementation between #b mutants and levamisole
resistant mutants, we crossed homozygous PD4793 GFP males into
each of the following levamisole resistance mutants: lev-1(e211), lev-
8(x15), lewv-9(x16), lev-10(x17), lev-11(x12), unc-29(e293), unc-
38(e264), unc-50(€306), unc-63(x13), unc-74(e883), unc-22(¢66), and
unc-22(s12). Heterozygous males were then crossed into trb-1(ye492),
trb-2(ye493), trb-3(ye494), or trb-4(ye495) animals. For each of these
crosses, 20 GFP cross-progeny were each plated onto either 1 mM
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levamisole or 100 pg/mL tribendimidine plates (levamisole plates
were prepared using a 100 mM stock of levamisole in sterile distilled
water). The matching of levamisole and #b genes was determined by
resistance of half of the cross-progeny on both tribendimidine and
levamisole plates. Unambiguous results were obtained as described
in the text.

For gene mapping, each &b mutant was mapped to specific
chromosomes and subregions using CB4856 and single-nucleotide
polymorphisms [20]. #b-1 was mapped near the middle arm of
chromosome I, #b-2 was mapped to the middle region of
chromosome X, #6-3 was mapped to the left arm of chromosome
III, and trb-4 was mapped to the middle region of chromosome IV.

For detecting molecular changes of #b alleles in specific
levamisole resistance genes, we used the polymerase chain reaction
(PCR) to amplify DNA or cDNA isolated from various b mutant
animals with the coding region of specific levamisole resistance
genes (Table 1). Pfu Ultra HS HF DNA Polymerase from
Stratagene (USA) was used for these amplifications. All the
sequence results were confirmed with three independent PCR
reactions and double-stranded sequencing. Since the unc-22 gene is
very large, we did not sequence in this case. Instead, we did the
complementation tests between two different unc-22 alleles (¢66 and
s12) and all three trb-4 alleles (ye495, ye496 and ye497).

Intoxication assays

To examine gut morphology, individual L; hermaphrodites
were individually picked using an eyelash into wells as described
above for resistance screening except tribendimidine was used at
100 pg/mL. The animals were incubated for 24 hours at 25°,
pipetted onto an agarose pad with 3 mM sodium azide as an
anesthetic, visualized with 600 x Nomarski optics on an Olympus
IX70 microscope with a 60x PlanApo lens (1.4 NA), and
photographed with a cool SNAP HQ? camera (PhotoMetrics,
Inc, USA).

For measuring dose-dependent developmental inhibition, we
pipetted into the wells of a 48-well plate approximately 20 L,
nematodes, 20 pL. OP50 (ODggp = 3.0), 20 puL drug, and a total
volume of 200 UL (sS medium is used as the dilutant for all
reagents). Each well contained a specific dose of drug and that
dose was repeated for a total of three times per experiment. The
microtiter plate was then wrapped in damp paper towels, placed
inside a covered plastic box, and incubated at 20° for 60 h. The
number of nematodes that did/did not reach gravid adulthood
(harboring one or more eggs in their uterus) were tallied for each
well. The experiment was independently repeated three times.

A mortality assay was used to determine dose-dependent
mortality of nematodes exposed to drugs for 6 days at 25°. From
these data the LCsq, the concentration at which 50% of the
nematodes are dead, was calculated. Death was defined as worms

Table 1. Templates, primers, and target genes for identification of molecular changes associated with trb-1, trb-2, and trb-3 alleles.

PCR Template Primers

Amplified Gene

trb-1(ye492) genomic DNA

trb-2 (ye494) cDNA

trb-3 (ye494) cDNA

Upstream primer: 5'-GTTAATGGGACCAAATGACCACGGTTTTG-3'
Downstream primer: 5'-CTAAGCAAGAGCCGGCGTGTTATCG-3'
Upstream primer: 5'-CTTATGTGGATACCACAACGG-3’ lev-8
Downstream primer: 5'-TCAGGTGTTAAGAACGTTGATG-3’
Upstream primer: 5'-GTCATGAGTTCACAGCCGCGAGG-3’
Downstream primer: 5'- TTAAAGACCGCCGTGTTGGG-3’

unc-63

unc-50

doi:10.1371/journal.pntd.0000499.t001
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that failed to respond to touch, were very pale, and had lost most
internal structures. The LCs, assay with ~20 L, animals per well
in sS medium was set up as previously described [18], with the
exception that different strains were allowed to grow for different
amounts of time at 20° from the L to Ly stage prior to testing on
drugs in order to reflect slight differences in their growth rates
relative to N2 wild type: trb-4(ye495), lev-1(e211), lev-11(x12), and
unc-22(e66) mutant nematodes were allowed to develop for 48 hr
and trb-1(ye492), trb-2(ye493), trb-3(ye494), lev-8(x15), lev-9(x16), lev-
10(x17), unc-29(e293), unc-38(e264), unc-50(e306), unc-63(x13), and
unc-74(e883) were allowed to develop for 45 hours (N2 wild-type
animals were used at 44 hours as previously described).

To calculate 64 h brood sizes, individual L, worms were picked
up with an eyelash and placed in sS medium in a 48-well plate
containing 40 UL OP50 (ODggo=3.0) and a specific dose of
tribendimidine. The total volume in each well was 200 uL. Each
drug concentration was repeated in five wells per experiment. The
plates were incubated for 64 h at 25°. The progeny were then
transferred out of the well with a pipette onto an empty NG agar
plate for counting. For complete brood sizes of various strains in
the absence of drug, individual L, wild-type or #4 hermaphrodites
were picked onto individual OP50-seeded NG plates. Every two
days, each adult hermaphrodite was shifted to a new NG plate
until it stopped producing offspring. The progeny from the old
plates were counted the next day.

Statistical analyses

LC50 values and associated 95% confidence intervals were
calculated using the PROBIT algorithm (from XLSTAT add-on
to EXCEL). Dose-response curves were plotted using Prism 5
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(GraphPad Software Inc., La Jolla, CA). For brood size data,
statistical analyses were carried out using Prism 5, as were pair-
wise comparisons between groups via one-way analysis of variance

(ANOVA) and Tukey’s HSD test.

Results

Wild-type C. elegans is susceptible to tribendimidine

Since there were no previous reports of the effects of
tribendimidine on C. elegans, we incorporated the drug into
standard nematode growth plates at 100 pg/mL and exposed the
nematode to the drug at 25° for 24 hour. Under these conditions,
the nematodes become paralyzed, although they are all still alive
based on their coloration and the fact that they continue to lay
eggs. The vast majority of these animals are coiled up and
contracted (Figure 1A); a few are contracted but not coiled up.
When placed in liquid media at the same concentration, wild-type
C. elegans rapidly become straightened; only the extreme ends of
the animal are able to move. After 24 h exposure to drug, most of
the animals become coiled and immobile as on plates, although
they are still alive since they lay eggs and will respond to direct
touch or vigorous shaking of the microtiter plate. When these
animals are mounted for observation at higher magnification, their
internal morphology has degenerated, and damage to multiple
tissues is evident, including shrinkage of the intestine away from
the body wall (Figure 1B, C). The neuromuscular system is
probably also damaged based on the motility defects described
above.

To quantify the effects of tribendimidine on C. elegans, we
performed a number of quantitative assays. First, we examined the

Figure 1. Intoxication of C. elegans by tribendimidine. A. L, worms exposed to no drug (upper) or 100 pg/mL tribendimidine (lower) for 24 h at
25° and photographed at 30 x magnification. Tribendimidine causes most C. elegans animals to coil. Scale bar applies to both panels. B and C. 600 x
magnification of animals under various conditions. B. Wild-type control animal without drug showing healthy intestine (between black arrowheads).
White arrowheads (here and in other panels) point to cuticular regions within which the pharyngeal isthmus is contained. C. Animals on 100 ug/mL
tribendimidine. Top row: wild-type animals on tribendimidine. Significant damage to the intestine (between black arrowheads) is evident, as well as
degradation of the body around the pharyngeal isthmus of the left-most animal. Bottom row: tribendimidine resistant animals on tribendimidine.
Note, all have healthy intestines and no degradation of body cavity is evident. Scale bar in B applies to all images in B and C. wt=wild type. Alleles

used are trb-1(ye492), trb-2(ye493), trb-3(ye494), and trb-4(ye495).
doi:10.1371/journal.pntd.0000499.9001
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Figure 2. Dose response of wild-type C. elegans to tribendimidine. A. Response of wild-type (N2) C. elegans to tribendimidine as measured by
the effect of various doses of the drug on the ability of larvae to develop to adulthood. B. Response of C. elegans to tribendimidine measured by the
effect of various doses of the drug on viability. LCs, value is given in Table 2. For both A and B, each data point represents on average 180 nematodes
(n =3 repeats; 3 replicate wells per repeat). Error bars represent standard error of the mean for the three independent experiments. For converting to

a mM dose, 100 pug/mL tribendimidine is equivalent to 0.22 mM.
doi:10.1371/journal.pntd.0000499.9002

response of C. elegans to tribendimidine based on what percentage
of L) larvae are able to develop to the gravid adult stage at varying
doses of the drug (Figure 2A). We find that C. elegans demonstrates
a well-behaved, dose-dependent response to tribendimidine with
regards to inhibition of larval development (Figure 2A), with an
1C50 (inhibitory concentration at which 50% of the larvae are
unable to complete development at these conditions) of 18.4 g/
mL (95% confidence interval 16.2-22.3 ug/mkL).

Next, we placed C. elggans 14 animals in wells at varying
concentrations of the drug and assayed for mortality after 6 days at
25°. We find that C. elegans demonstrates a well-behaved, dose-
dependent response to tribendimidine with respect to mortality
(Figure 2B). The LCs, value (concentration at which half the
animals are dead) is 54.4 pg/mL (Table 2). As discussed below, we
also found that tribendimidine is able to produce a dose-dependent
decrease in C. elegans progeny production.

Isolation of C. elegans tribendimidine-resistant mutants
A forward genetic screen was carried out to find C. elegans
mutants resistant to tribendimidine (see Materials and Methods for
details). After screening 7,600 mutagenized Fy animals, a total of
ten resistant animals were identified that bred true in subsequent
generations. Initial identification and confirmation of resistance
were based on the fact that all were motile and healthy at
concentrations of tribendimidine that paralyze and intoxicate wild
type. Complementation testing among these ten different alleles
revealed they fell into four groups that we called #b-1 (five alleles),

Table 2. LC5, values associated with experimental results.

trb-2 (1 allele), #b-3 (1 allele), and #b-4 (3 alleles) (#b for
tribendimidine resistant). All #5 mutants are clearly resistant to
tribendimidine intoxication. In contrast to wild-type animals, &b
animals exposed to tribendimidine display a healthy body
morphology (Figure 1C) similar to that of wild-type animals
unexposed to the anthelmintic (Figure 1B).

To quantitatively demonstrate resistance, we measured the
ability of wild-type (N2) animals and animals from one
representative allele of each complementation group— namely
rb-1(ye492), trb-2(ye493), trb-3(ye494), and trb4 (ye495)—to survive
over a wide dose range of tribendimidine (Figure 3). At
tribendimidine concentrations where most or all of the wild-type
nematodes are dead (e.g., =200 ug/mkL), the #b-mutant nema-
todes are mostly or all alive. As opposed to wild-type animals, we
did not calculate an LCj5 value for any of the #4 mutants since
there was no concentration in this experiment at which =50% of
any #b mutant nematodes died. Larvae from all four #b mutants
are also resistant to Intoxication since they mature to adults at
doses that inhibit wild-type larval development (unpublished
observation).

Resistance to tribendimidine was also confirmed using a
quantitative brood size assay [21,22] for all four #5 mutants.
Wild-type C. elegans hermaphrodites show a dose-dependent
decrease in brood size production upon exposure to tribendimi-
dine (Figure 4). In contrast, all #6 mutant hermaphrodites exposed
to even high doses of tribendimidine show healthy brood sizes that
are statistically the same as brood sizes in the absence of the
anthelmintic, confirming their resistance (Figure 4).

Figure number Genotype Drug LCso (ug/mL) 95% Confidence Interval
2B N2 (wt) Tribendimidine 54.4 45.2-63.5
3 N2 (wt) Tribendimidine 50.0 45.2-72.2
6 N2 (wt) Levamisole 26.8 23.0-31.2
trb-1(ye492) 363.1 340.6-387.2
trb-2(ye493) 437.5 Very wide
trb-3(ye494) 412.2 361.7-469.7
trb-4(ye495) 2171 176.2—267.6

doi:10.1371/journal.pntd.0000499.t002
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Figure 3. trb mutants resist tribendimidine-induced mortality.
The response of wild-type N2 and four trb mutant animals to various
doses of tribendimidine as measured by viability after 6 days at 25°.
Each data point represents on average 180 worms (n=3 repeats; 3
replicate wells per repeat). Error bars represent standard error of the
mean for the three independent experiments. Allele designations are as
in Figure 1. The LCs, value for wild-type is reported in Table 2.
doi:10.1371/journal.pntd.0000499.9g003

trb mutant animals are resistant to levamisole and
pyrantel

In the course of our studies, we noticed that tribendimidine
stimulated egg-laying in wild-type animals, a behavior that had
been previously reported for wild-type C. elegans exposed to the

2001 EE N2(wt)

= trb-1
= trb-2
mn trb-3
trb-4

%Mf

Tribendimidine (ung/mL)

Figure 4. trb mutants resist tribendimidine-induced sterility.
Brood sizes of N2 wild-type (wt) and trb mutant hermaphrodites after
64 h on either no drug or three different doses of tribendimidine. The
experiment was done at 25° and repeated a total of three times with
five wells/experiment/genotype/dose (thus each bar represents brood
sizes from 15 worms). Whereas the brood size of wild-type animals
decreases upon exposure to tribendimidine (P<0.01 for 0 vs. 50 png/mL;
P<0.001 for 0 vs. 100 and 200 pug/mL), the brood sizes of all four trb
mutants are unaffected even by the highest dose of tribendimidine
tested (P>0.05 for all pair-wise comparisons of all doses for any given
mutant). The relative brood sizes of wild-type animals at 50, 100, and
200 pg/mL are respectively 31%, 12%, and 5% of the brood size without
toxin. The brood size of trb-4 animals in the absence of drug is clearly
lower than that of the other genotypes. Further data and discussion of
brood sizes of wild-type vs. trb animals in the absence of drug is given
in Figure S2. Error bars represent standard deviations. Allele designa-
tions are as in Figure 1.

doi:10.1371/journal.pntd.0000499.g004
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nAChR agonist anthelmintic levamisole [23]. We therefore
speculated that tribendimidine might have a similar mechanism
of action as levamisole. If so, then one might hypothesize that #
resistant animals might have altered responses to levamisole. To
test this hypothesis, we place #b mutant animals on levamisole-
containing plates. Whereas wild-type animals become paralyzed
and aggregate when exposed to levamisole for 24 h, #b mutant
animals are motile and mostly fail to aggregate on levamisole
(Figure 5). Identical results were obtained with pyrantel, another
nAChR agonist anthelmintic of the same subtype and mechanism
of action as levamisole (Figure 5; pyrantel and levamisole are
collectively known as the L-subtype nAChR agonists [24]).

These data indicate that tribendimidine-resistant C. elegans are
also resistant to L-subtype nAChR agonists. To quantitatively
confirm this result, we performed dose-dependent mortality assays
of trb-1(ye492), trb-2(ye493), trb-3(ye494) and trb-4(ye495) hermaph-
rodites on levamisole (Figure 6). Resistance can be readily
discerned at specific concentrations of levamisole; for example at
100 pg/mL only 20% of wild-type animals are alive whereas
99.5%, 95%, 99% and 81.5% of tb-1(ye492), tb-2(ye493), trb-
3(e494) and trb-4(ye495) animals are alive (P=0.001, ANOVA
Tukey’s test). Based on LCs values (Table 2), these mutants are 8—
16 fold more resistant than wild-type animals to levamisole. We
also performed dose-dependent mortality assays of wild-type, #b-
2(ye493), and #rb-3(ye494) animals on pyrantel (Figure S3).
Although pyrantel is not as effective as levamisole at killing C.
elegans ([16]; this study), animals from both #b mutants are resistant
to pyrantel relative to wild-type animals.

Extensive screens for C. elegans resistant to levamisole have been
carried out and have identified a number of genes that mutate to
levamisole resistance [25]. Since mutations in #b-1, -2, -3, and -4
resist levamisole, we hypothesized that these mutations might exist
in genes known to mutate to levamisole resistance. We mapped the
trb-1, -2, -3, and -4 genes to various segments of chromosomes I,
X, III, and IV, respectively (see Materials and Methods for details).
Each #b mutant was then subjected to genetic complementation
tests against known levamisole-resistant mutants located on the
same chromosome, to wit &b-1 was tested against unc-29, unc-38,
unc-74, and unc-63, (but not lev-11 or lev-10 mutants since these
were far away on the right arm of chromosome I); #rb-2 was tested
against lev-8 and lev-9 mutants; rb-3 was tested against the unc-50
mutant; and #b-4 was tested against two alleles of the wunc-22
mutant and the /le-/ mutant (alleles given in Materials and
Methods). We found that tr6-1(ye492),trb-2 (ye493), trb-3(ye494), and
trb-4(ye495) each unambiguously failed to complement just one
mutant, namely wunc-63(x13), lev-8(x15), unc-50(e306) and unc-
22(e66 or s12) respectively. To confirm these identities, we
sequenced genomic DNA or cDNA isolated from #b-1(ye492),
trb-2(ye493), and trb-3(ye494) animals (trb-4/unc-22 is an extremely
large locus covering more than 37 kb of DNA and hence was left
out of sequencing analyses). For trb-2(ye493) and trb-3(ye494), we
found that these alleles are associated with point mutations in lev-8
(tryptophan 164 to a stop codon) and unc-50 (serine 261 to leucine)
respectively. The mutation in #b-2(ye493) is predicted to result in
truncation of the C-terminal 70% of the LEV-8 protein, consistent
with a null mutant. #b-3(ye494) is associated with a non-
conservative change in an amino acid that is also conserved in
unc-50 homologues of other nematodes such as Caenorhabditis
briggsae and Brugia malayt, consistent with the fact it might reduce or
eliminate function. For #b-1(ye492), we found three alterations in
nucleotides located in intron 9 of the unc-63 gene (Figure 7). These
alterations occur in conserved Intron sequences and can be
required for normal splicing [26,27]. Thus, the resistance,
mapping, complementation, and sequence data indicate that the
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trb-3 trb-4

Figure 5. trb mutants are qualitatively resistant to levamisole, and pyrantel. L, hermaphrodites of the genotype indicated above the panels
were seeded onto plates with no anthelmintic (control), 0.22 mM tribendimidine (100 pg/mL), T mM levamisole, or 2 mM pyrantel. Animals were
incubated at 25° for 24 h. Photos were taken under the dissecting scope at 30 x magnification (scale bar in first panel=0.5 mm). Wild-type (wt) N2
animals are immotile and cluster on plates with any of these drugs. trb-1, trb-2, and trb-3 animals are motile on all three drugs and do not cluster,
indicating their resistance to all three. trb-4 animals are motile on these drugs but are Unc even in the absence of drugs and therefore cannot move
normally. Some of these animals cluster and some do not on the drugs, but they are clearly resistant. Allele designations are as in Figure 1.

doi:10.1371/journal.pntd.0000499.9g005

four complementation groups identified for tribendimidine
resistance all occur in genes previously found in screens for
levamisole resistance.

100+

10° 0.1 1 10 100

1000

Levamisole (ug/mL)

Figure 6. trb mutants are quantitatively resistant to levamisole.
Mortality of wild-type (wt) N2 and trb-1, -2, -3, and -4 mutant animals
exposed to varying doses of levamisole for 6 days at 25°. Each data
point represents on average 180 worms (n =3 repeats; 3 replicate wells
per repeat). Error bars represent standard error of the mean for the
three independent experiments. Allele designations are as in Figure 1.
The LCsq value for each genotype is reported in Table 2. For converting
to a mM dose, 100 ug/mL levamisole is equivalent to 0.42 mM.
doi:10.1371/journal.pntd.0000499.g006
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Levamisole-resistant mutants are resistant to
tribendimidine

To determine how much overlap there is between genes that
mutant to levamisole resistance and tribendimidine resistance, we
took C. elegans strains mutated for eleven levamisole-resistance
genes and performed dose-dependent tribendimidine mortality
assays (Figure 8). Taking into account of that some of these
mutants (i.e., unc-22 and lev-11) have compromised health even in
the absence of drug, these data clearly show that all eleven mutants
are resistant to tribendimidine as demonstrated by their robust
survival at doses of the drug that are highly lethal to wild-type
(=200 pg/mL; Figures 8 and S4). Thus, for eleven out of eleven
levamisole resistant mutants tested, they are also resistant to
tribendimidine.

exon 9 intron 9 exon 10
unc-63 AACAG gtgsgt...tttcag GTAAT
trb-1(ye492) tt a

Figure 7. Mutations in trb-71(ye492) are associated with exon/
intron boundaries of the unc-63 gene. Above, nucleotide sequence
of the unc-63 gene at the exon 9/intron 9 and intron 9/exon 10
boundaries. Below, three altered nucleotides in trb-1(ye492) as indicated
by down arrows. Assuming the mutant intron is not spliced, then
inclusion of intron 9 would result in a translated protein with two
missense mutations at amino acids 458 and 459 followed by a
premature stop codon (the full length protein is normally 502 aa).
doi:10.1371/journal.pntd.0000499.9g007
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Figure 8. Levamisole-resistant mutants are resistant to triben-
dimidine. Eleven mutants isolated based on their ability to resist
levamisole were subjected to dose-dependent tribendimidine mortality
assays. Each data point represents viability for three independent trials
for each mutant, with three wells per trial (average of 180 worms per
data point). Error bars represent standard error of the mean.
doi:10.1371/journal.pntd.0000499.g008

Discussion

The free living nematode C. elegans has been extensively used in
the study of anthelmintics [15,25,28]. C. elegans is considered an
excellent model for anthelmintic mode of action and resistance
and has proven invaluable in finding the mechanism of action of
almost all anthelmintics in use today. There are many excellent
examples of forward genetic screens to discover mutants that allow
C. elegans to resist anthelmintics, thereby leading to an under-
standing of their mechanism of action and mechanisms whereby
resistance can develop, including screens for resistance to
levamisole [29], benzimidazoles [17], aldicarb [30], ivermectin
[31,32], and most recently amino-acetylnitriles [33].

Using the same approach, we have demonstrated that new
anthelmintic tribendimidine is an L-subtype nAChR agonist of the
same family as levamisole and pyrantel. Tribendimidine causes
changes in the egg-laying behavior of C. elegans grossly similar to
levamisole. More importantly, a forward genetic screen for C.
elegans animals resistant to tribendimidine resulted in the isolation
and identification of four mutants that are also resistant to both
levamisole and pyrantel and that in fact mutate the same genes
that give rise to levamisole resistance. Furthermore, a retrospective
study of eleven mutant strains isolated based on their resistance to
levamisole demonstrated that all of these mutants are also resistant
to tribendimidine. In contrast to these levamisole-resistant
mutants, we find that two mutants that affect signaling at the
neuromuscular junction independent of levamisole, namely acr-
16(0k789) animals, which lack a levamisole-insensitive nACh
receptor [34], and unc-10(el02) animals, which are resistant to the
cholinesterase inhibitor aldicarb [30], are qualitatively sensitive to
tribendimidine (Figure S5). Consistent with the fact that
tribendimidine does not behave like an cholinesterase inhibitor
we find that tribendimidine at 0.5 mM, like levamisole at 1 mM,
paralyzes animals in seconds, most noticeably at the tip of head,
versus cholinesterase inhibitors that take many minutes to affect
wild type and contract the body before the head [29].

Thus, although not necessarily intuitive based on its chemical
structure (Figure S1), tribendimidine intoxicates C. elegans using the
same pathway as levamisole and thus shares the same mechanism
of action as the L-subtype nAChR agonists levamisole and
pyrantel. Given the extensive and complete correspondence in the
nematode C. elegans between levamisole resistance and tribendi-
midine resistance, we are certain that tribendimidine will have the
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same mechanisms of action and resistance as levamisole/pyrantel
in parasitic nematodes as well.

There are several practical applications of these results. For
treating hookworm infections, the intestinal parasitic nematode
with the highest disease burden , the benzimidazole albendazole is
currently the treatment of choice since it has much better cure
rates than levamisole and pyrantel as a single dose and can be
given as a fixed dose, unlike the nAChR agonists that are given as
dose/weight [7,35]. Recent work with tribendimidine suggests that
it is superior to levamisole or pyrantel at a single dose and
comparable to single-dose albendazole in treating Ascaris or
hookworms [11,12]. Our data indicate that in places where
resistance to benzimidazoles exists or is suspected (e.g., in Mali,
Zanzibar, Vietnam [10,36,37]), tribendimidine would be a good
alternative since its mechanism of action is different from that of
the benzimidazoles. However, tribendimidine would be a poor
choice in places where nAChR agonist resistance exists or is
suspected (e.g., in Australia [37]). Furthermore our data indicate
that tribendimidine would be useful in combinatorial anthelmintic
strategies, such as with benzimidazoles [36], but not in others, such
as with levamisole or pyrantel since it shares the same mechanism
of action. Our data also highlight the importance of determining
the molecular changes associated with L-subtype nAChR agonist
resistance in human parasitic nematodes since these changes
would allow us to simultaneously track resistance to tribendimi-
dine, levamisole, and pyrantel.

Our study highlights the utility of using C. elegans in studying the
mechanism of action of anthelmintics used for clinical and
veterinary use. This laboratory nematode allows one to rapidly
uncover important aspects of new anthelmintic mechanism of
action and resistance and can inform how to design strategies for
maximizing anthelmintic therapy and minimizing the develop-
ment of anthelmintic resistance.

Supporting Information

Figure S1 Structures of all the drugs used in this study. A.
tribendimidine. B. levamisole. C. pyrantel.
Found at: doi:10.1371/journal.pntd.0000499.s001 (0.73 MB TTF)

Figure 82 'The total brood sizes of wild-type and tribendimidine
resistant animals in the absence of tribendimidine at three different
temperatures. Pair-wise comparisons between wild-type (wt) N2
and #rb-1, irb-2, or irb-3 at each temperature indicate that the total
brood sizes are not significantly different at any given temperature
(P>0.05). The total brood size of #b-4 mutant animals at each
temperature is different from the corresponding wild-type brood
size (P<<0.001). Error bars represent standard deviations. n=25
animals for all bars except n=4 for N2 and #)-2 brood sizes at
25°.

Found at: doi:10.1371/journal.pntd.0000499.s002 (4.40 MB TIF)

Figure 83 #b-2 and #)-3 mutant animals are resistant to
pyrantel. Standard mortality assays were carried out for wild-type
(wt) N2 and #6-2 and #b-3 mutant animals as described in the
main text. The data come from three replicate experiments with
an average of 180 animals per data point. * =P value relative to
N2<0.05; ** =P value relative to N2<<0.01; *** =P value relative
to N2<0.001 (ANOVA analysis, Tukey’s HSD test). Error bars
represent standard error of the mean.

Found at: doi:10.1371/journal.pntd.0000499.s003 (0.11 MB TIF)

Figure S4 Quantitative resistance of levamisole-resistant mu-
tants at 200 pg/mL tribendimidine. Data are taken from the
200 pg/mL dose in Figure 8.

Found at: doi:10.1371/journal.pntd.0000499.s004 (0.18 MB TIF)
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Figure 85 Semi-quantitative analysis of various mutants on
tribendimidine (Tri). L4 staged animals of the indicated genotype
were placed in wells with the indicated amount of tribendimidine
and incubated for 24 h at 25°. The acr-16 and unc-10 mutant
animals are clearly susceptible to tribendimidine as shown by the
fact that they are as paralyzed as wild-type animals by the drug at
all concentrations and that they are more pale in color than wild-
type animals even at lower drug concentrations. #b-/ mutant
animals were included as a resistant control. Scale bar is 1 mm.

Found at: doi:10.1371/journal.pntd.0000499.s005 (4.93 MB TTF)
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