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Abstract

Background: Trachoma, caused by Chlamydia trachomatis (Ct), is the leading infectious cause of blindness. Sequence-based
analysis of the multiple strains typically present in endemic communities may be informative for epidemiology,
transmission, response to treatment, and understanding the host response.

Methods: Conjunctival and nasal samples from a Gambian community were evaluated before and 2 months after mass
azithromycin treatment. Samples were tested for Ct by Amplicor, with infection load determined by quantitative PCR
(qPCR). ompA sequences were determined and their diversity analysed using frequency-based tests of neutrality.

Results: Ninety-five of 1,319 (7.2%) individuals from 14 villages were infected with Ct at baseline. Two genovars (A and B)
and 10 distinct ompA genotypes were detected. Two genovar A variants (A1 and A2) accounted for most infections. There
was an excess of rare ompA mutations, not sustained in the population. Post-treatment, 76 (5.7%) individuals had Ct
infection with only three ompA genotypes present. In 12 of 14 villages, infection had cleared, while in two it increased,
probably due to mass migration. Infection qPCR loads associated with infection were significantly greater for A1 than for A2.
Seven individuals had concurrent ocular and nasal infection, with divergent genotypes in five.

Conclusions: The number of strains was substantially reduced after mass treatment. One common strain was associated
with higher infection loads. Discordant genotypes in concurrent infection may indicate distinct infections at ocular and
nasal sites. Population genetic analysis suggests the fleeting appearance of rare multiple ompA variants represents purifying
selection rather than escape variants from immune pressure. Genotyping systems accessing extra-ompA variation may be
more informative.
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Introduction

Trachoma is the leading infectious cause of blindness worldwide

[1]. Repeated infection by Chlamydia trachomatis provokes chronic

follicular conjunctivitis (clinically active trachoma), which leads to

conjunctival scarring, entropion, trichiasis and ultimately blinding

corneal opacification. Trachoma is a major public health problem

affecting some of the world’s poorest regions. Current estimates

indicate 84 million have active trachoma, with 7.6 million visually

impaired from trachomatous corneal opacification [2]. The World

Health Organization is leading a global effort to control blinding

trachoma through the implementation of the SAFE Strategy:

Surgery for trichiasis, Antibiotics to reduce the burden of

chlamydial infection, and face washing and environmental

improvements to limit transmission [3].

Endemic trachoma is caused by 4 of the 19 recognised serovars

of C.trachomatis: A, B, Ba and C. Serovars are distinguished from

each other on the basis of surface variations in the Major Outer

Membrane Protein (MOMP). As the main antigenic target for

strain specific humoral immunity to C.trachomatis, MOMP has been

considered a vaccine candidate [4]. MOMP is encoded by the

ompA gene, which contains four variable segments (VS) inter-

spersed between five conserved segments (CS). Comparative

genome sequence analysis has indicated considerable variation in

ompA, possibly driven by host immune pressure, and the study of

ompA variants may therefore be informative in disease settings [5,6]

Originally serovars were distinguished according to their recog-

nition by panels of patient sera, however the ompA sequence motifs

for each serovar have now been well characterised. Organisms

assigned to a serovar group on the basis of their ompA sequence are

referred to here as genovars.

OmpA genotyping has been used previously to investigate

C.trachomatis infections in trachoma endemic populations [7–14],

usually with the goal of better understanding C.trachomatis

transmission. However the analysis of ompA sequence variation is

also relevant to the utility of MOMP as a target for chlamydial

vaccine development. In genital infections caused by C.trachomatis

D-K genovars, evidence that genovar and strain variants associate

with clinically important differences in the biology of infection is

marginal [15], and has not been described in human ocular
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infection. Here we analyse ompA genotypic diversity before and

two months after mass antibiotic treatment of trachoma in

Gambian villages [16,17].

Methods

Ethical Permission
The Gambian Government/Medical Research Council Joint

Ethics Committee (SCC 856) and the London School of Hygiene

and Tropical Medicine Ethics Committee approved the study. All

subjects, or their guardians, gave written informed consent, or

witnessed consent by thumbprint where appropriate.

Clinical Assessment
This study was conducted in 14 trachoma endemic Gambian

villages, located within a defined geographical area [16,17,18]. The

villages were surveyed and a population census was conducted.

Individuals normally resident in the study area for at least 6 months

of the year were enrolled. At baseline the entire available population

was examined for signs of trachoma and classified using the WHO

Trachoma Grading System [19]. A swab sample was collected from

the upper tarsal conjunctiva of each subject for DNA isolation and

kept cool until frozen at 220uC later the same day. Swabs of fresh

nasal discharge were collected.

Antibiotic Treatment
Following baseline clinical assessment, all participants were

offered antibiotic treatment. Adults and children over 6 months

old were given a single oral dose of azithromycin (20mg/kg up to a

maximum of 1g). Infants under 6 months were given tetracycline

eye ointment (twice daily, 6 weeks). All villages were examined and

treated within a 9 day period [17].

Follow-up
Two months after baseline assessment and antibiotic treatment,

participants were re-examined, and conjunctival and nasal

discharge samples again collected. Between these two time points,

the census was updated weekly, together with records of

destination and duration of travel and of the presence of any

external visitors.

Chlamydia trachomatis detection
DNA was extracted from the swabs and tested using the Amplicor

CT/NG kit (Roche) [16]. Amplicor extracts from specimens with

detectable C.trachomatis DNA were further purified and concentrat-

ed using the QIAamp DNA Mini Kit (Qiagen) [16]. Infection load

was estimated by quantitative real-time PCR for the chlamydial

ompA gene using a previously described method [20].

ompA Sequencing
Sequencing of ompA used primers spanning VS1-4 and

sequences were comfirmed by a second sequencing pass. A

1076bp fragment was amplified using primers 87: 59 - TGA ACC

AAG CCT TAT GAT CGA CGG - 39 and 1163: 59 - CGG AAT

TGT GCA TTT ACG TGA G - 39. If no amplified product was

visible on an agarose gel, nested PCR was performed, with primers

87 (above) and 1059: 59 - GCA AGA TTT TCT AGA TTT CAT

C - 39 used to amplify a 972bp target sequence. PCR products

were purified using the QIAquick PCR purification kit (Qiagen)

and sequenced using BigDye Terminator Cycle Sequencing

Ready Reaction kit V3.1(Applied Biosystems) with outer primers

97: 59 - CTT ATG ATC GAC GGA ATT TTC TAT GGG - 39

and 1047: 59 - GAT TTT CAT GAT TTC ATC TTG TTC

AAC TG - 39. Sequencing with inner primers 608: 59 - CTC TCT

GGG AAT GTG GGT GT - 39 and 627: 59 - ACA CCC ACA

TTC CCA GAG AG - 39 was performed to close sequencing gaps.

Sequences were edited and aligned using DNA*DNASTAR 5.07

(DNASTAR), with HAR 13 (NC_007429) as genovar A reference

and M33636 for genovar B. Here, a genotype denotes an ompA

sequence variant differing from the ompA reference sequence or

from another variant by one or more single nucleotide

substitutions, and is identified using the letter of its genovar and

an arbitrary number.

Analysis
Data were analysed in Stata 9.0, with differences in loads per

genotype examined using a two tailed t-test on logtransformed

loads. Sequence alignments were imported into DNAsp4.00 and

Tajima’s D value calculated [21,22]. P-values for each D test were

calculated using 10,000 coalescent simulations without the

presence of recombination to calculate the proportion of D values

generated which were greater than the observed D value. D* and

F* indices were calculated as further tests of the neutrality of

mutations [23].

Results

Study population
1319 (83%) of 1595 people enumerated at baseline were examined,

sampled and treated. At two-months 1344 (85%) were examined and

sampled. The overall prevalence of active trachoma in children

,10 years was 16% before and 12% two months after treatment,

with marked variations in prevalence between villages [16].

C. trachomatis Infection
The prevalence of C.trachomatis infection was 7.2% (95/1319)

before treatment and 5.7% (76/1344) two months after treatment.

Of individuals infected at baseline, 30% were still infected two

months after treatment and of those infections detected at two

months 36/66 (59%) occurred in subjects uninfected at baseline

(Table 1). Most infections (74/76; 97%) detected two months after

treatment were in two villages. Almost all residents of these two

Author Summary

Trachoma is an important cause of blindness resulting
from transmission of the bacterium Chlamydia trachomatis.
One way to understand better how this infection is
transmitted and how the human immune system controls
it is to study the strains of bacteria associated with
infection. Comparing strains before and after treatment
might help us learn if someone has a new infection or the
same one as before. Identifying differences between
disease-causing strains should help us understand how
infection leads to disease and how the human host
defences work. We chose to study variation in the
chlamydial gene ompA because it determines the protein
MOMP, one of the leading candidates for inclusion in a
vaccine to prevent trachoma. If immunity to MOMP is
important in natural trachoma infections, we would expect
to find evidence of this in the way the strains varied. We
did not find this, but instead found that two common
strains seemed to cause different types of disease.
Although their MOMPs were very slightly different, this
did not really explain the differences. We conclude that
methods of typing strains going beyond the ompA gene
will be needed to help us understand the interaction
between Chlamydia and its human host.

Chlamydial Genotypes in Trachoma
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villages travelled en masse to a religious festival one month after the

treatment. This travelling event was very strongly associated with

infection at two months [16]. In contrast, in the other 12 study

villages all cases of C.trachomatis infection found at baseline had

resolved by two months and there were only 2 new cases of

infection in previously uninfected individuals.

ompA genotypes
77/95 (81%) baseline and 64/76 (84%) two-month ocular

C.trachomatis samples yielded sequence data. On both occasions

sequence data were obtained from all 5 Amplicor-positive nasal

specimens. 73 (95%) of the baseline ocular sequences were

genovar A and 4 (5%) were genovar B. Overall, ten separate

genotypes were identified; 8 genovar A and 2 genovar B. Sequence

variation compared to reference strains is shown in Table 2. For

most genotypes single nucleotide polymorphisms (SNPs) resulted

in amino acid changes in the variable sequence domains of

MOMP. Within genovar A baseline sequences, there were eight

polymorphic sites, of which five contained singletons (SNPs found

only in a single isolate). Tajima’s D value for baseline genovar A

sequences was 21.06, revealing trend towards an excess of rare

mutations, (p = 0.16). This was supported by significantly negative

D* and F* indices, indicating an excess of singleton mutations

amongst genovar A sequences (22.59; P = 0.02 and 2 2.45;

P = 0.02 respectively). Only four genovar B sequences were found,

therefore frequency based analyses could not be performed.

However, addition of these four sequences to the genovar A

sequences for calculation of an overall Tajima’s D value revealed a

significant excess of rare mutations within the baseline dataset as a

whole (D = 21.76 ; p = 0.018).

Genotype distribution
Genotype frequencies are presented in Table 3. The dominant

strain, A2, accounted for 74% of baseline ocular isolates. All other

strains, except A1, were detected in only a few individuals. The 14

villages contained 79 family compounds (fenced areas inhabited

usually by the members of one extended family). 16 (20%)

contained subjects infected at baseline. Seven compounds

contained multiple strains; three of which had 3 strains and one

5 different strains. Obvious environmental risk factors which might

explain this concentration of diversity were not identified: however

the latter compound had an unusually high proportion of its

children attending the local primary school (7/25; 28%) compared

to (30/773: 4%) in the study area generally.

Genotypes following treatment
At two months post-treatment only three strains A1, A2 and A5

were found. The A2 proportion increased to 90%. Rare strains

had mostly disappeared. In 23 individuals ocular samples yielded

sequence data at both time points. 18 (78%) of these had the same

strain at both timepoints: 3 A1, 14 A2 and 1 A5 (the only example

of A5 at either timepoint). 5 (22%) showed a change in genotype:

from A1 to A2 in three cases, from A3/A4 to A2 in one case each.

34/35 (97%) newly infected individuals at two-months had the A2

genotype.

Genotypes and infection load
Infection load data from this population has been previously

described [16,17]. Geometric mean infection loads for strains A1

and A2 were compared by unpaired, two-sided t-tests on

logarithmically transformed data. Chlamydial load was signifi-

cantly higher in A1 infections before mass treatment: geometric

mean for A1 5809 copies (95% CI 374–90189) (n = 6) and for A2

92 copies (95% CI 59–144) (n = 14) (p,0.0001). Similarly, after

mass treatment geometric mean for A1 was 343 copies (95% CI

Table 1. Comparative ocular C. trachomatis infection status
(by Amplicor) before and two months after antibiotic
treatment amongst all those tested at both time points.

2 months Total

+ 2

Baseline

+ 27 60 87

2 39 1030 1069

Total 66 1090 1156

(+ infected, 2 not infected).
doi:10.1371/journal.pntd.0000306.t001

Table 2. Chlamydia trachomatis strains identified in this study.

Genovar A strain VS1 VS1 CS2 CS2 VS2 VS2 CS4 VS4 VS4
Genovar B
strain VS2

Nucleotide 278 289 304 353 505 523 790 991 1020 511

Ref A (HAR13) T (V) G (E) G (A) C (A) G (G) A (I) A A (T) G Ref B (M33636) G(G)

A 1 . . . . . . G . . B1 A (GRS)

A 2 . . A (ART) . . C (IRL) G . A B2

A 3 . . A (ART) . . C (IRL) G . .

A 4 . . . . . . G G (TRA) .

A 5 A (VRE) C (ERQ) . . A (GRS) . G . .

A 6 . . A (ART) T (ARV) . C (IRL) G . A

A 7 . . A (ART) . . . G . A

A 8 . . . . . . G . A

Only single nucleotide polymorphisms and their locations are shown. Reference strains are C. trachomatis HAR 13 (genovar A) (NC_007429) and C. trachomatis M33636
(genovar B). Letters in parenthesis represent the amino acid and any resulting change. Genotype B2 is identical to the reference strain. (VS, variable sequence. CS,
conserved sequence.)
doi:10.1371/journal.pntd.0000306.t002
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42–277663) (n = 3) compared to 115 copies (95% CI 66–202)

(n = 19) (p = 0.0021). At both baseline and two-months, subjects

infected with A1 were more likely than those infected with A2 to

have clinically active disease: baseline: 7/10 vs 6/57 (RR = 6.65,

x 2 = 15.63, p,0.0001); two-months 3/5 vs 7/58 (RR = 4.97

p = 0.025 2-tailed Fisher’s Exact Test). We have previously found

that infected individuals with clinical signs of trachoma have

higher chlamydial loads than those without signs [16,17]. These

analyses are not adjusted for potential clustering by village:

however A1 only occurred in one village (village 3).

Nasal genotypes
C trachomatis was detected in nasal samples from 5/58 subjects at

baseline, and from 5/54 at two months. In seven subjects ompA

sequence was determined in both ocular and nasal samples at the

same time point: 5/7 (71%) had different genotypes at the two

sites: A1(ocular)/A2 (nasal) in three cases, with A1(ocular)/

A3(nasal) and A2 (ocular)/A7(nasal) in one each. Differing

genotypes were found in all four individuals in whom baseline

ocular and two-month nasal ompA sequence were both determined,

and in the two individuals in whom baseline nasal and two-month

ocular ompA sequences were both determined.

Discussion

In this study, 972 bp sequences comprising almost the entire

C.trachomatis ompA gene were determined in samples from infected

individuals in a trachoma endemic area. Previous trachoma

studies have sequenced primarily VS regions: variation in the

interspersing ‘conserved’ segments is recognised but not usually

examined at the pathogen population level. All variants were

confirmed with double pass sequencing methods: dubious calls on

the chromatogram were all clarified by resequencing. We discuss

the utility of ompA genotyping for determining the existence and

nature of selection pressure on the locus, for examining whether

variants affect the features of infection or disease, and for

distinguishing causes of reemergent infection after treatment.

Ten C.trachomatis genotypes were identified at baseline. Except-

ing B2, these differed from strains previously sequenced from The

Gambia and elsewhere [7–11,13]. Before treatment most (87%)

infections were one of two strains (A1 and A2). Six of the minority

genovar A strains had SNPs resulting in amino acid changes

within variable segment domains. A similar pattern of a few

dominant strains with several other strains present at low

frequency has been described previously [7,10,14]. The variety

of strains in this limited geographical area might suggest that new

strains are regularly introduced through mixing with other

populations or alternatively that the emergence of new variants

is promoted by pressure from the human immune response. To

test this frequency based analyses of polymorphism were carried

out.

Population genetic analysis of baseline genovar A ompA

sequences showed negative Tajima’s D, Fu and Li’s D* and F*

statistics, suggesting that in this environment novel genovar A

ompA mutations are being eliminated from the population. Despite

this, the location of some of the polymorphic sites is intriguing. In

genotype A5 the neutralizing antibody epitope which defines

serovar A (70DVAGLEK76) is significantly altered

(70DEAGLQK76): previously we noted significant alteration in

close proximity to this epitope (69(SRR)DVAGLEK76) in strains

which subsequently failed to establish themselves in the commu-

nity [10]. One would expect that novel mutations which allow

immune evasion offer the pathogen a selective advantage (at least

while these strains remain uncommon), and ought to spread

through the pathogen population until they reach intermediary

frequencies. The excess of rare mutations observed at baseline

therefore does not support the hypothesis that ompA polymor-

phisms are maintained within this population by immune selection

pressure. Instead it implicates either ongoing negative selection

(where most mutations are deleterious and removed from the

population by purifying selection) or a recent selective sweep

(whereby a single haplotype has reached fixation within the

population, driving out diversity at the locus). Few studies have

applied population genetic methods to analyse selection of

C.trachomatis genes, but they have similarly generated little evidence

that ompA is under immune selection pressure: both cross sectional

studies of genovar A ompA sequences from Tanzania and sequence

analysis of genital Ct genovars have found similar evidence of

purifying selection in ompA [11,24] These data and the existence of

individuals within trachoma endemic communities who are often

or repetitively infected with the same ompA genovar lead us to

question whether the ompA locus is a target of selective pressure in

trachoma populations, and consequently whether targeting

MOMP will lead to an effective vaccine.

Strain-specific differences affecting infection or disease mani-

festations are described in genital chlamydial infection, but not

previously in trachoma. On both occasions strain A1 was

associated with clinical signs of active trachoma and with higher

mean infection loads to a greater extent than A2, but it was less

common in the community and so not necessarily a more

successful pathogen. The sampling method used here has been

shown elsewhere to give adequate yields of host RNA [18], but the

infection loads were not standardised, for example against host

DNA yield in the sample. In natural infections the number of cells

sampled, the proportion of host cells which are infected and the

state of the chlamydial developmental cycle within them will all

affect the measured load, and the best way to standardise the

measurements is not clear. A1 and A2 might amplify differently by

PCR, although there was no support for this suggestion in the

amplification of standards, and no variation affecting primer

binding sites. Differences in sampling, in PCR amplification or in

the infection/disease course within the sampled individuals might

explain this observation, or alternatively it could result directly or

indirectly from variation in ompA .

Table 3. Frequency of C. trachomatis strains present at
baseline and 2 months, subdivided by site of collection.
Numbers in parenthesis are %.

Ocular Nasal

Genotype
Baseline
(n = 77)

2 Months
(n = 64)

Baseline
(n = 5)

2 Months
(n = 5)

A1 10 (13) 5 (8) - 1 (20)

A2 57 (74) 58 (90.5) 4 (80) 3 (60)

A3 2 (2.5) - 1 (20) -

A4 1 (1.3) - - -

A5 1 (1.3) 1 (1.5) - -

A6 1 (1.3) - - -

A7 - - - 1 (20)

A8 1 (1.3) - - -

B1 1 (1.3) - - -

B2 3 (4) - - -

doi:10.1371/journal.pntd.0000306.t003
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Three differences exist in the ompA sequence of A1 and A2, of

which two cause non-synonymous amino acid substitutions. These

might alter the conformation of MOMP or have direct effects on

‘fitness’, transmission or the host response. The GRA mutation at

position 304 introduces a cleavage motif for cathepsin-L, which

generates of peptide fragments for antigen presentation [25,26].

Whether peptide fragments of A1 and A2 MOMP are therefore

presented differently during the generation of adaptive cellular

immunity is unknown. Alternatively, strain differences might be

unrelated to ompA itself but reflect linkage between ompA genotype

and polymorphism(s) elsewhere on the chlamydial chromosome

leading to differences in fitness or metabolic advantage. Trachoma

strains may differ in their laboratory properties, and a recent study

found differences in in vitro growth rate, interferon-c sensitivity and

virulence in non-human primates [27], attributable to variation

affecting 22 open reading frames(ORFs) in addition to ompA. Both

clinical differences between strains, and the purifying selection at

the ompA locus could result from variation or selection pressure at

linked chlamydial ORFs.

Following mass antibiotic treatment there was a modest

reduction in the prevalence of infection [17]. Only 3 of the

original 10 genotypes were still present. Most (90.5%) of these

infections were with A2, and almost all in two villages (1 and 3 in

Table 4), in which the prevalence of infection actually increased

[17], with strains A1 and A2 continuing to dominate. New

infections, 97% with strain A2, were strongly associated with travel

to a festival in Senegal, at which over a million people from the

region congregated in basic conditions, where the opportunity to

acquire ocular C.trachomatis infection was probably considerable.

These data suggest that a remarkable re-infecting exposure to

strain A2 occurred in the treated subjects during this event. The

persistence of the common A1 or A2 strains in 17 individuals in

these villages could be due to treatment failure or to reinfection

facilitated by the same unusually effective environment for

C.trachomatis transmission. Genotyping provides some evidence

that antibiotic treatment was not 100% effective, as strain A5 was

found twice, but in the same individual both before and after

treatment, strongly suggesting primary treatment failure. Never-

theless antibiotic treatment cleared all baseline infections in the

other 12 villages [17].

The surprising demonstration of discordant genotypes in

concurrent ocular and nasal samples may imply that these two

mucosal surfaces function as distinct sites of infection, despite

direct communication via the nasolacrimal duct. This could result

from differences in the time course of infection or in the route of

inoculation. Autoreinfection of the conjunctiva from extraocular

sites such as the nasal mucosa has been suggested, however, a

study from Tanzania did not support this hypothesis [28]. Here,

the limited nasal genotyping data does not provide support

significant transmission between eye and nose.

Our study illustrates the use and limitations of ompA sequence

data in the molecular epidemiology of C.trachomatis infection. The

pattern of ompA sequence diversity remains intriguing and

inconsistent with immune selection pressure. Typing systems

including other polymorphic loci may lead to better elucidation of

key events in ocular C.trachomatis infection. An ongoing extended

longitudinal study of C.trachomatis genotypes might better define

the population dynamics, and determine implications for the long-

term success of mass treatment [14].
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Table 4. Clinical activity, infection (Amplicor) and genotypes by village and timepoint.

BASELINE 2 MONTHS

Village Examined TF/TI CT+ Genotypes Examined TF/TI CT+ Genotypes

1 142 25 20 A2(17) A5(1) 145 21 19 A2(11) A5(1)

2 97 2 0 - 97 2 2 A2(2)

3 115 18 41 A1(10) A2(19) A3(2) A4(1) 105 16 55 A1(5) A2 (45)

4 255 14 8 A2(5) 277 9 0 None

5 107 6 0 - 126 10 0 None

6 39 6 2 A2(1) B2(1) 37 1 0 None

7 86 0 1 - 83 0 0 None

8 83 3 1 - 77 6 0 None

9 23 0 0 - 21 1 0 None

10 60 4 0 - 57 2 0 None

11 97 5 0 - 93 1 0 None

12 103 14 0 - 98 5 0 None

13 53 0 0 - 64 1 0 None

14 58 6 22 A2(14) A6(1) A8(1) B1(1)
B2(2)

64 4 0 None

For each village, ‘Examined’ is the number of people examined ‘TF/TI’ is the number of individuals (all ages) with active trachoma, and ‘CT+’ the number of those whose
ocular swabs tested positive by Amplicor. The numbers bracketed after the genotype indicate the number of times it appeared: A2 (14) denotes 14 samples contained
genotype A2.
doi:10.1371/journal.pntd.0000306.t004
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