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Abstract

Background: For Chagas disease, the most serious infectious disease in the Americas, effective disease control depends on
elimination of vectors through spraying with insecticides. Molecular genetic research can help vector control programs by
identifying and characterizing vector populations and then developing effective intervention strategies.

Methods and Findings: The population genetic structure of Triatoma infestans (Hemiptera: Reduviidae), the main vector of
Chagas disease in Bolivia, was investigated using a hierarchical sampling strategy. A total of 230 adults and nymphs from 23
localities throughout the department of Chuquisaca in Southern Bolivia were analyzed at ten microsatellite loci. Population
structure, estimated using analysis of molecular variance (AMOVA) to estimate FST (infinite alleles model) and RST (stepwise
mutation model), was significant between western and eastern regions within Chuquisaca and between insects collected in
domestic and peri-domestic habitats. Genetic differentiation at three different hierarchical geographic levels was significant,
even in the case of adjacent households within a single locality (RST = 0.14, FST = 0.07). On the largest geographic scale,
among five communities up to 100 km apart, RST = 0.12 and FST = 0.06. Cluster analysis combined with assignment tests
identified five clusters within the five communities.

Conclusions: Some houses are colonized by insects from several genetic clusters after spraying, whereas other households
are colonized predominately by insects from a single cluster. Significant population structure, measured by both RST and FST,
supports the hypothesis of poor dispersal ability and/or reduced migration of T. infestans. The high degree of genetic
structure at small geographic scales, inferences from cluster analysis and assignment tests, and demographic data suggest
reinfesting vectors are coming from nearby and from recrudescence (hatching of eggs that were laid before insecticide
spraying). Suggestions for using these results in vector control strategies are made.
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Introduction

Chagas disease is a parasitic disease in which the pathogenic

agent, Trypanosoma cruzi is transmitted by hematophagous insects of

the sub-family Triatominae. Triatoma infestans is the major vector in

the Andean highlands where the disease is endemic and has

infected humans for over 9000 years [1]. Chagas disease is the

most important parasitic disease in the Americas in terms of

mortality and economic impact [2]. In Bolivia the endemic area

covers 55% of the country and, in 1985, more than one million

people were infected [3]. In 1991 a public health program, the

Southern Cone Initiative was launched by the World Health

Organization to eliminate vector populations [4], through

spraying of houses and surrounding areas with pyrethroid

insecticides [5]. In Argentina, Brazil, Chile, and Uruguay, T.

infestans is exclusively domestic or peri-domestic, thus eradication

of the vector in these regions, followed by vigilance against re-

infestation, has proven largely successful in reducing transmission

of T. cruzi and thus the prevalence of Chagas disease [6]. In

contrast, in Bolivia the vectors occur in domestic, peri-domestic,

and sylvatic environments [7]; thus, control of T. infestans in towns

and homesteads is confounded by the possible re-infestation from

surrounding sylvatic areas.

Molecular genetic research can help vector control programs by

identifying and characterizing genetically distinct vector popula-

tions and then developing effective intervention strategies [8].

Several genetic markers including isozymes and the mitochondrial

cytochrome b gene have proved useful in studying the genetic

diversity of T. infestans [9,10]; however, markers with more

resolution would aid vector control efforts. DNA based microsat-

ellite markers have been widely used in population studies because

of their large polymorphism information content, widespread

distribution in the eukaryotic genome and robust methodology.

To reduce transmission of Chagas disease, estimates of

population differentiation are crucial to understand vector

dispersal, sources of reinfestation, and gene flow; this genetic

information is an important tool for effective management of

insect control programs. Here we aimed to investigate the

population genetic structure and inferred the source of coloniza-

tion of vectors in the department of Chuquisaca, Bolivia using ten
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highly polymorphic microsatellite markers. The geographic region

has high levels of human infection and house infestation and is

located in a region thought to be the evolutionary origin of T.

infestans.

Methods

Study sites and Triatomine sampling
Insects were collected from 23 localities including both peri-

urban (inhabited areas in the immediate vicinity of a city) and

rural sites (less than 2000 inhabitants) in the provinces of Oropeza,

Zudañez, Azurduy, Yamparaez, Tomina, Belisario Boeto and

Hernando Siles within the Department of Chuquisaca, in the

Bolivian highlands ranging from 1079 to 3020 meters above the

sea level (Table 1, Figure 1). This area presents a broken

topography with numerous valleys and small plateaus character-

ized by very diverse climates. In the Andean highlands, wheat is

grown predominantly in small-scale, subsistence farming systems.

In higher precipitation areas, potato is the preferred crop. Rainfall

in these areas ranges from approximately 300 to 600 mm per year.

In the Andean Plateau the average temperature is less than 10uC
and there is less than 500 mm of annual precipitation. The

Andean valleys present moderate climates, with average temper-

atures of 18uC and approximately 500 and 600 mm of rain every

year. The relative humidity varies throughout the year, showing a

similar pattern to the other climatic parameters. The majority of

the vegetation in the plateau is grassy plain with a rich variety of

grasses and dichotomous herbs, but also shrubs and some trees.

The valleys contain fertile soils where vegetables, cereals and fruits

are grown.

Specimens of T. infestans included in the present study were a

mixture of nymphs and adults, collected from inside as well as the

immediate vicinity of homes. Collections were made in the months

of the Southern hemisphere summer 2002, spring 2005 and fall

2005. Forty-four insects came from a single corral in the

community of Jackota in the province of Zudañez, 78 insects

were collected in the community of Zurima in the province of

Oropeza, and 37 were collected in Sucre the capital and main city

of Chuquisaca located in the province of Oropeza. The remaining

71 insects came from collections in 20 localities throughout

Chuquisaca. All insects included in the study were identified as T.

infestans using taxonomic keys [11]. Insects from the first collection

were frozen live. Those from subsequent collections were placed in

95% ethanol while alive. Specimens then were sent to Vermont,

USA for molecular analysis.

Molecular analysis
DNA was extracted from three legs or 25 mg of tissue obtained

from the posterior part of the abdomen of a given specimen using

the Qiagen DNeasy DNA extraction kit (Qiagen, Inc., Valencia,

CA). Care was taken to avoid sampling from the mid-abdomen as

the stomach may inhibit the PCR reaction [12].

Microsatellite and genotyping system. We used ten

previously published microsatellite markers: TiA02, TiC02,

TiC08, TiC09, TiD09, TiE02, TiE12, TiF03, TiF11 and TiG03

[13]. To allow us to amplify and analyze all 10 loci in a single

multiplex reaction, primers for three loci (TiC08* ‘5-AAG CAA

ATA TTT TGT GTG TGT GTG -3’’, TiD09* ‘5 –GGT CTT

GGA TTT TAT GGG TTA TTT T -3’, and TiF03* ‘5 –CAC

Author Summary

Chagas disease is a protozoan infection caused by the
parasite Trypanosoma cruzi. Chagas is prevalent through-
out Central and South America, and it remains a chief
concern in Bolivia. A movement that began in 1991 called
the Southern Cone Initiative has been successful in
reducing the incidence of Chagas disease in the Southern
Cone countries of Argentina, Brazil, Chile, and Uruguay;
but due to socio-economic and other factors, incidence
remains high in Bolivia. The most important mode of
transmission of T. cruzi to humans and other mammals is
through feces of triatomine bugs. Thus, disease control
and transmission prevention focus on elimination of
triatomine vectors, and more specifically in Bolivia, it
focuses on the elimination of Triatoma infestans. This study
focuses on T. infestans in the Department of Chuquisaca,
Bolivia. Ten highly variable microsatellite markers were
used to analyze the population structure of insects
collected in different towns. Statistical analyses show that
T. infestans are highly structured, which means that they
colonize on a small geographic scale. The results also
suggest little active dispersal. These findings should be
implemented during control efforts so that insecticide
spraying focuses on geographic areas of colonization and
re-colonization.

Table 1. Locations of the 23 populations of Triatoma
infestans from Chuquisaca, Bolivia and their geographical and
ecological grouping.

Province n Locality N Alt. Latitude Longitude a b c d e

Tomina 1 Alcalá 2 2138 19u229S 64u259W a1

2 Astillero 2 1922 19u309S 64u119W a1

3 Calle Calle 1 2600 19u069S 64u409W a1

4 Caraparı́ 1 1819 18u429S 64u309W a1

Zudanez 5 Cueva
Uyuni

4 2449 19u259S 64u549W a1

6 La Joya 3 2524 18u399S 64u459W a1

7 Jackota 44 2425 19u049S 64u489W a1 b d

8 Parajti Ajial 3 2433 19u039S 64u459W a1

9 Presto 3 2513 18u559S 64u569W a1

10 Toledo 2 3009 19u109S 65u059W a1

11 Zudáñez 2 2619 19u079S 64u429W a1

Oropeza 12 Sucre 37 2783 19u029S 65u159W a2 b

13 Chacarilla 2 2544 18u539S 65u059W a2

14 El Chaco 9 2381 18u529S 65u059W a2 b

15 Quiqui-jana 1 2847 18u499S 65u039W a2

16 Uñucurı́ 1 2648 18u469S 64u579W a2

17 Zurima 78 2514 18u459S 65u059W a2 b c e

Yamparaez 18 Mora
Pampa

2 2403 19u439S 64u229W a2

19 Peras
Pampa

2 2419 18u569S 65u069W a2

20 Vila Vila 1 3020 19u069S 64u529W a2

B. Boeto 21 Serrano 25 2235 19u069S 64u229W a1 b

Azurduy 22 Tarvita 3 2722 19u499S 64u319W a1

H. Siles 23 Ingre 2 1079 20u369S 63u569W a1

Alt. = meters above sea level, a) Eastern (a1, low altitude) vs. Western (a2, high
altitude), b) 5 communities ,100 Km apart, c) 7 houses in Zurima, d) corral in
Jackota, e) domestic vs. peridomestic habitats, n = locality identification,
N = number of insects.
doi:10.1371/journal.pntd.0000202.t001
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ACA AAC ACT TAA ACA CAC ACA A -3’) were modified so

that the PCR product size did not overlap with other products of

the same size range and fluorescence label. Our PCR reactions

used the Qiagen Multiplex PCR kit (Qiagen, Inc., Valencia, CA).

Template DNA (50–100 ng), primers and molecular biology grade

water were added to the 26multiplex PCR master mix to a final

volume of 25 mL. The concentration of each primer was adjusted

to permit good readings of the fluorescent peaks, modified by the

addition of a fluorescence label and produced PCR products with

the number of base pairs as follows: TiA02, 0.138, HEX, 173–225;

TiC02, 0.138, HEX, 157–211; TiC08*, 0.276, 6-FAM, 110–144;

TiC09, 0.552, NED, 125–159; TiD09*, 0.276, NED, 294–342;

TiE02, 0.138, HEX, 147–167; TiE12, 0.276, HEX, 303–321;

TiF03*, 0.276, 6-FAM, 215–269; TiF11, 0.138, NED, 256–280;

and TiG03, 0.552, HEX, 200–250. The amplification protocol

consisted of an initial step of 15 min at 95uC to activate the DNA

polymerase and denature the template DNA, followed by 30 cycles

of 30 sec at 94uC, 90 sec at 55uC, 60 sec at 72uC, and a final

extension step of 10 min at 72uC. All reactions were carried out in

a Techne TC-512 thermocycler (Techne Duxford, Cambridge,

MA). PCR products were diluted 1/10 in distilled water then

analyzed on an ABI Prism 3100 genetic analyzer using a ROX

labeled size standard. Genotypes were read using GeneMapperTM

version 4.0 software (Applied Biosystems, Foster City, CA). The

multiple PCR products were analyzed on an ABI Prism 3100

genetic analyzer using a ROX labeled size standard. Genotypes

were read using GeneMapperTM version 4.0 (Applied Biosystems,

Foster City, CA).

Data analysis
We investigated population genetic structure at both ecological

and geographic levels (Table 1 a–e). Ecological grouping included:

Eastern, low altitude (97 individuals) vs. Western, high altitude

(133 individuals) regions (Table 1 a) and domestic (36 individuals)

vs. peri-domestic habitats (42 individuals) within Zurima (Table 1

e). The geographic groupings included: among 5 communities

within a 100 Km diameter with a total of 193 individuals (Table 1

b), among 7 households within a 750 m diameter (defined as a

house and the associated peri-domestic buildings and corrals, with

4, 7, 14, 7, 6, 11 and 3 insects respectively) within Zurima (Table 1

c), and 36 nymphs from a single corral in Jackota (Table 1 d). Four

insects from a household in Zurima were collected in 2002 before

spraying, all other specimens were sampled in 2005, up to 6

months after spraying and were re-infesting insects.

Estimating population structure. Genetic population

structure was investigated using hierarchical analysis of

molecular variance (AMOVA) [14] for the model structures

shown in Table 1 (a–e), using both FST (based on the infinite alleles

model, IAM) and RST (based on a stepwise mutation model,

SMM) [15] using the software Arlequin version 3.1 [16]. Values

Figure 1. Distribution of T. infestans in Bolivia (shaded area) and locations of sample sites in Chuquisaca.
doi:10.1371/journal.pntd.0000202.g001
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for the two statistics were tested for significant departure from zero

using permutation tests contained within the software package.

Nei’s genetic distances among the 5 communities in group b

(Table 1) were calculated and a UPGMA dendogram was

constructed.

Isolation by distance. To test for isolation by distance we

performed a regression analysis of Slatkin’s [17] linearized FST,

(FST/12FST) onto the natural log of geographic distance. In

addition, a Mantel test [18] was used to assess the correlation

between geographic distances among localities and differences in

altitude with respect to Nei’s unbiased standard genetic distances

with 10000 random permutations using Arlequin version 3.1. The

analysis was done using the five localities with sample size .8

(mean = 38.60, Table 1 b).

Pairwise multilocus estimates of the effective number of

migrants (Nm) based on private alleles [17], were estimated using

the software Genepop 3.4 [19], because this technique is more

conservative than estimates based on RST for the sample sizes used

in our study. The results were adjusted for diploid data, M = 2Nm.

Based on the assignment test (see below) results from the software

Structure [20] which showed mismatches between source and

assigned populations from as far apart as 100 Km, we conducted a

second Mantel test with 1000 permutations to determine the

relationship between geographical distances and number of

migrants (Nm).

Assignment test. We performed a Bayesian clustering

analysis using the software Structure [20]. The number of

populations, K was determined using the admixture ancestry

model and correlated allele frequencies, testing K = 2 to 6 for the

five communities in group b (Table 1) and K = 2 to 8 for the 7

households in Zurima. Each replicate was run 100,000 times

following a burn-in of 50,000 runs. Individuals were assigned a

cluster if the proportion ancestry $0.7; when no cluster was $0.7,

the individual was unassigned.

Relatedness. The average relatedness (r) among groups of

insects within households from Zurima (12 households), Serrano

(4) and Ingre (1) was determined using the software Relatedness

version 5.0 [21]. All individuals from a single household were used

to define Px and Py.

Results

Population genetic structure
There was significant genetic differentiation among populations

based on RST and FST estimates for all hierarchical levels analyzed

(Table 2). Between low altitude East and high altitude West, RST

and FST are statistically significant (RST = 0.08, FST = 0.02); both

measures are also significant among the five communities

,100 Km apart (RST = 0.12, FST = 0.06) and among houses in

Zurima (RST = 0.14, FST = 0.07). We also observed significant

differentiation between domestic and peri-domestic populations

within the community of Zurima (RST = 0.05, FST = 0.03).

Although East and West were genetically differentiated, we did

not observe a trend towards higher diversity at higher altitude

when we compared the Western populations with a mean altitude

of 2600 m, which comprises the provinces of Oropeza and

Yamparaez, with the Eastern populations having a mean altitude

of 2300 m which includes the provinces of Zudañez, Belisario

Boeto, Azurduy, Tomina and Hernando Siles. The mean number

of alleles per locus was 15.362.23 and 13.662.31 at the high and

low altitudes respectively (t-test, P.0.05). The dendogram based

on Nei’s genetic distances showed a cluster comprising populations

from Zurima, El Chaco and Sucre differentiated from a sister

cluster with the Jackota population (Figure 2). These two clusters

were well differentiated from a cluster containing populations

from the more distant Serrano (Table 3). Pairwise estimates of

RST and FST among communities (Table 4) support the

conclusion that El Chaco, Zurima and Sucre are genetically

similar to each other and that these communities differ from

Jackota and Serrano. Within the town of Zurima, the estimates of

RST and FST among the 7 households are shown in Table 5.

With respect to RST, households 4 and 5 are the most

different from other households. These households represent

peri-domestic samples and their difference from the other

Table 2. Results of analysis of molecular variance (AMOVA) at ten microsatellite loci.

Model Variation among d.f. RST * P-value FST* P-value

a) Between East and West populations within regions 1 7.74 (RST:0.08) ,0.001 2.40 (FST:0.02) ,0.001

individuals within populations 226 34.94 (RIS:0.38) ,0.001 37.07 (FIS:0.38) ,0.001

Within individuals 230 57.31 (RIT:0.43) ,0.001 60.52 (FIT:0.40) ,0.001

b) Between localities
,100 Km apart

populations 4 12.35 (RST:0.12) ,0.001 6.55 (FST: 0.06) ,0.001

individuals within populations 188 30.99 (RIS:0.35) ,0.001 33.80 (FIS:0.36) ,0.001

Within individuals 193 56.65 (RIT:0.43) ,0.001 59.65 (FIT:0.40) ,0.001

c) Houses 100–1500 m apart houses 6 14.15 (RST:0.14) ,0.001 6.69 (FST:0.07) 0.02

individuals within houses 48 12.62 (RIS:0.14) 0.006 31.13 (FIS:0.33) ,0.001

individuals 52 73.23 (RIT:0.27) ,0.001 62.18 (FIT:0.38) ,0.001

d) single Corral individuals 36 49.26 (RIS:0.49) ,0.001 35.83 (FIS:0.36) ,0.001

e) domestic vs peri-domestic habitats 1 5.06 (RST:0.05) ,0.001 2.69 (FST:0.03) ,0.001

individuals within habitats 76 32.00 (RIS:0.34) ,0.001 37.77 (FIS:0.39) ,0.001

Within individuals 78 62.94 (RIT:0.37) ,0.001 59.54 (FIT:0.41) ,0.001

For population information see Table 1. Significance levels based on 1000 permutations, * = percent of variation.
doi:10.1371/journal.pntd.0000202.t002
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households is also shown by the significant difference among

habitats (Table 2 e).

Assignment test
Five clusters were identified among the 5 communities (Table 3).

When assigning individuals to genetic populations based on these

communities, 78–86% of the individuals were assigned. The

clusters represent insects with similar genotypes. Assignment tests

can be viewed in terms of the number and evenness of

communities in a single cluster and with respect to the number

and evenness of clusters represented in a single community.

Cluster 1 was a mixture of insects from the three close localities,

Sucre, El Chaco and Zurima. The other four clusters contained

insects from primarily one locality: clusters 2 and 3 were primarily

from Zurima (24/29 = 83% and 24/28 = 86% respectively);

cluster 4 from Jackota (32/33 = 97%) and cluster 5 from Serrano

(18/28 = 64%). About 15–20% of the insects from each commu-

nity were not assigned. From the community perspective, most of

the insects from four of the communities are from a single genetic

group: Jackota (73% from cluster 4), Sucre (67% from cluster 1), El

Chaco (56% from cluster 1) and Serrano (72% from cluster 5).

Zurima contains a mixture of groups, 13% group 1, 31% from

group 2 and another 31% from group 3.

At the household level, five genetic clusters were identified from

the seven households (Table 6). Insects from households 1, 2, 5

and half of those from household 7 were collected in peri-domestic

settings, all the others came from domestic structures. The

assignment test was quite successful for some households (100%

assigned), yet for other households none of the insects were

assigned. There does not seem to be any tendency for insects

collected from domestic vs. peri-domestic sites to be assigned. With

respect to the life stage and household of origin for the insects in

each cluster, clusters 3 and 5 were mostly from a single household

(86% and 100% respectively) with cluster 5 being composed only

of the most geographically isolated insects and cluster 3 containing

5 nymphs and one adult from household 3 along with one adult

male from household 6. Cluster 2 contains insects from 5 of the 7

households and cluster 1 contains insects coming from 4

households. Cluster 4 contains only nymphs, five from household

3 and four from household 2. The fifth cluster was a mix of adults

and nymphs coming exclusively from Z-6. All four insects from the

pre-spraying collection were not assigned to any cluster (Z-1)

(Table 6).

Relatedness
Relatedness of insects in nine out of seventeen houses was not

significantly different from 0 (Table 7). From these nine

households, in six cases at least one adult was collected and in

three cases only nymphs were collected. For one household (S-1),

r,0 (P,0.05) indicating significant outcrossing. For seven houses

r.0 (P,0.05). A value of r<0.25 (half sibs) was obtained for four

households, and although the relatedness was similar in these

households, the composition of the insect collection varied (1 site

Figure 2. Dendogram of 5 populations of T. infestans from
Chuquisaca, Bolivia. Dendogram based on Nei’s (1978) standard
genetic distance using the UPGMA method modified from the Neighbor
procedure of Phylip version 3.5. Numbers are distances between nodes.
doi:10.1371/journal.pntd.0000202.g002

Table 3. Assignment of individuals from 5 localities to genetic populations through Bayesian analysis.

Population N Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 NA %A

Jackota 44 1 2 2 32 1 6 86

Sucre 37 25 1 1 1 3 6 84

El Chaco 9 5 1 0 0 1 2 78

Zurima 78 10 24 24 0 5 15 81

Serrano 25 1 1 1 0 18 4 84

Total 193 42 29 28 33 28 33

The numbered clusters represent distinct groups identified by Bayesian cluster analysis, using Structure [20]. Each cell contains the number of individuals from each
population assigned to the cluster with q$0.70.
NA = Not Assigned = number of individuals not assigned to any cluster.
%A = percent assigned to a genetic cluster.
doi:10.1371/journal.pntd.0000202.t003

Table 4. Pairwise estimates of multilocus RST (below
diagonal) and FST (above diagonal) between samples of T.
infestans from Chuquisaca.

Jackota Sucre El Chaco Zurima Serrano

Jackota 0.10*** 0.09*** 0.09*** 0.09***

Sucre 0.14*** 0.05* 0.02*** 0.05***

El Chaco 0.22*** 0.02 0.04** 0.07***

Zurima 0.22*** 0.01 0.04 0.03***

Serrano 0.10*** 0.05*** 0.19*** 0.10***

Results of permutation test of RST or FST.0: *P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pntd.0000202.t004

Microsatellites in T. infestans in Bolivia
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only adults 1 site only nymphs and 2 sites a mix of adults and

nymphs). For the sites with the highest relatedness values (r<0.33,

0.44 and 0.48), in 2 houses a single adult and 2–4 nymphs were

collected and for one household only nymphs were collected.

Number of migrants
The estimates of the effective number of migrants per

generation, Nm, among towns ,40 Km apart was higher (2.03)

compared with those among more distant communities (1.42) and

among houses within the town of Zurima (0.99). The Mantel test

of isolation by distance revealed a non-significant correlation

between Slatkin’s linearized FST and Nm vs. the natural log of

geographic distance (R2 = 0.001, P = 0.294; R2 = 20.184,

P = 0.725 respectively). Non-significant results were also observed

when applying the Mantel test for a correlation between Nei’s

genetic distances and geographic distances among populations

(R2 = 0.00056, P = 0.135), and altitude (R2 = 20.000012,

P = 0.548). The Mantel tests had low power because of the small

samples within many of the communities.

Discussion

Our study region is an ecologically diverse but geographically

small valley–mountain environment in the department of

Chuquisaca in Southern Bolivia. This region has high levels of

house infestation and vector and human T. cruzi infection [22–24].

The use of microsatellite loci, now routine in many insect

population genetic studies because they are inherently more

polymorphic than allozyme loci and generally not targets of

selection, allows us to detect population structure with more

statistical power [25].

Structure among T. infestans populations
Previous studies on population genetics and morphometry of T.

infestans from Bolivia have found geographical variation in patterns

of population structure in this vector; therefore we examined

distinct ecological and geographic hierarchical groups ranging

from a single goat corral to comparing western and eastern regions

of Chuquisaca.

Genetic analysis over twenty-three localities throughout the

department of Chuquisaca have revealed moderate but highly

significant levels of genetic variation among populations. Both FST

and RST showed differentiation even within a community.

Previous study in the same area using a mitochondrial cyt b gene

[10] failed to verify significant genetic diversity comparing distant

rural and peri-urban settings. However, significant differentiation

was revealed when populations from Chuquisaca (Andean) were

compared with non-Andean populations from Brazil, Argentina

and the Bolivian Chaco. Cytogenetic [26] and allozyme [9] studies

have also confirmed genetic differences between T. infestans from

highlands (.1800 m) and lowlands (,500 m). We examined

insects from eastern and western Chuquisaca that significantly

differ in altitude, both groups are .2000 m, and we detected

significant differentiation at this ecological level.

In our study, RST values were larger than FST, suggesting

polymorphism is high and rates of migration are low [27]. The

IAM-based estimates (FST) indicate lower differentiation because

they do not distinguish among shared alleles in different

populations that are not identical by descent. Similar values of

RST and FST are only to be expected when mutation rates are

negligible in comparison to migration and drift. When the SMM

contributes to population differentiation, RST values should be

larger than FST values [28]. When comparing the 5 communities

(Table 4), in general, pairwise RST.FST suggesting that mutation

contributes to differences at this geographic level. However, there

is no such pattern for pairwaise RST and FST among households

suggesting that mutation does not contributes much to differen-

tiation at this level.

Table 5. Pairwise estimates of multilocus RST (below
diagonal) and FST (above diagonal) for T. infestans from 7
households in Zurima.

Z-1 Z-2 Z-3 Z-4 Z-5 Z-6 Z-7

Z-1 0.07 0.10** 0.13*** 0.11* 0.14** 0.07

Z-2 0.03 0.08*** 0.11*** 0.09* 0.13*** 0.05

Z-3 0.12 0.11* 0.05* 0.05* 0.09*** 0.04

Z-4 0.25*** 0.25*** 0.07* 0.01 0.14*** 0.10

Z-5 0.11 0.19** 0.16*** 0.07* 0.08** 0.09

Z-6 0.03* 0.03 0.20*** 0.29*** 0.14* 0.10*

Z-7 0.003* 0.10 0.12 0.31*** 0.33* 0.14

Results of permutation test of RST or FST.0: *P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pntd.0000202.t005

Table 6. Assignment of individuals from 7 households in Zurima to genetic populations through Bayesian analysis.

Household Habitat N Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 NA %A

Z-1 P 4 0 0 0 0 0 4 0

Z-2 P 7 0 1 0 4 0 2 71

Z-3 D 14 1 1 6 5 0 1 93

Z-4 D 7 1 2 0 0 0 4 43

Z-5 P 6 1 1 0 0 0 4 33

Z-6 D 11 0 1 1 0 8 1 91

Z-7 P/D 3 3 0 0 0 0 0 100

Total 52 6 6 7 9 8 16

The numbered clusters represent distinct groups identified by Bayesian cluster analysis, using Structure [20]. Each cell contains the number of individuals from each
population assigned to the cluster with q$0.70.
H = habitat, D, domestic; P, peri-domestic; N = total number of individuals from each household, NA = Not Assigned = number of individuals not assigned to any cluster.
%A = percent assigned to a genetic cluster.
doi:10.1371/journal.pntd.0000202.t006
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Population structure and the panmictic unit
As suggested by RST.FST, T. infestans has a low capacity for

active dispersal [29] but can passively disperse over long distances

when associated with human migration. It seems that this has been

the structuring pattern of T. infestans in Chuquisaca. In our study,

the results of the assignment of individuals to genetic clusters

(Table 3) shows the assignment of insects to genetic populations

located .100 Km apart.

Several studies using isozymes have examined population

structure in T. infestans and report variation among regions in

the spatial scale of population differentiation. Variation in

population structure among regions was established using twelve

isozymes [9,30]. There was significant differentiation of T. infestans

populations between villages located 50 Km apart in Vallegrande,

Santa Cruz yet in the Yungas of La Paz, populations only a few

Km apart showed significant differences. Using 19 isozyme loci,

significant differences in allele frequencies between populations

separated by 20 Km were found in central Bolivia [31], but this

study failed to detect differentiation between sylvatic and domestic

populations of T. infestans. By contrast, incipient differentiation

between sylvatic and domestic populations was revealed using

morphometry of the head capsule [32]. Other studies [33] have

indicated that the panmictic unit may be no larger than a single

household, based on the finding of significant differentiation within

households in Yungas, Bolivia. Differences have also been detected

between geographically close populations based on wing geometric

morphometry [34].

The results of our study show significant population structure

among communities. These results are supported by cluster

analysis, which identified the geographically isolated communities

as separate clusters (Jackota and Serrano, Table 3); however the

closer communities are not as genetically distinct (Sucre, El Chaco

and Zurima, Table 3). If migration depends on habitat quality,

when insects find favorable conditions at the microhabitat level it

can reduce their dispersal tendency and consequently reduce gene

flow. Within the community of Zurima we sampled 7 houses and

statistical analysis estimated 5 clusters within an area of 750 m

diameter. These results suggest the single household is not the

panmictic unit in this area of Chuquisaca and is in accordance

with a study on dispersal capacity in the towns of Trinidad and

Mercedes, Argentina, that clustered the source of re-infestation at

,500 meters [35].

The isolation-by-distance tests based on allozyme markers in

populations from several areas in Bolivia and Peru found a positive

correlation between genetic and geographic distances [9]. We

found no evidence of isolation by distance within this area of

Chuquisaca. Differences between the two studies may result

because our study had low statistical power due to sampling a

relatively small number of communities, few samples per

community and microsatellite data, because of the high number

of alleles, require large sample sizes. However, the non-significant

results may also be because our study covers a small geographic

area of Chuquisaca characterized by a high human migration rate

in the last 40 years [36].

Control implications
Previous studies [37] identified unique local characteristics in

landscape and vegetation, distances between houses, the abun-

dance of bugs and hosts, and presence of many peri-domiciliary

structures in conjunction with the existence of sylvatic populations

as contributing to spatial patterns of re-infestation. Identification of

the source of re-colonizers can direct control programs in the

surveillance phase. We have found significant differentiation at the

household level in populations from Chuquisaca, Bolivia. Cluster

Table 7. Average relatedness and confidence intervals among T. infestans collected from households from 3 communities in
Chuquisaca, Bolivia.

Household Habitat N A? AF AM N1 N2 N3 N4 N5 R C.I.

S-1 D 2 1 1 20.19 0.14

S-4 D 4 4 0.03 0.07

Z-12 D 3 2 1 0.05 0.08

Z-3 D 14 1 1 5 4 2 1 0.05 0.07

Z-2 P 7 2 5 0.10 0.13

Z-7 P/D 3 1 1 1 0.14 0.30

Z-9 D 6 1 2 3 0.16 0.21

Z-6 D 11 3 6 2 0.17 0.15

Z-4 D 7 4 3 0.19 0.21

Z-1 P 4 1 2 1 0.23 0.37

Z-5 P 6 3 3 0.23 0.21

S-3 D 6 1 1 2 2 0.26 0.21

I-1 D 2 1 1 0.26 0.36

S-2 D 5 1 2 2 0.27 0.13

Z-11 D 5 1 1 1 2 0.33 0.31

Z-8 D 3 1 1 1 0.44 0.42

Z-10 D 3 2 1 0.48 0.45

Households are ordered from highest to lowest relatedness.
*S = Serrano, Z = Zurima, I = Ingre, D = domestic, P = peri-domestic, N = total number of individuals from each household, A? = adult, AM = adult male, AF = adult female,
N1-N5 = first to fifth instars R = relatedness (,0 = outbred, 0 = random, 0.125 first cousins, 0.25 half sibs, 0.5 = full sibs, parent-offspring, C.I. = 95% confidence interval for
relatedness estimate.

doi:10.1371/journal.pntd.0000202.t007
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analysis, relatedness estimates and life stage data can be combined

to understand pre-spraying population dynamics and infer

patterns of re-colonization.

Within Zurima, individuals collected in the most geographically

isolated household (Z-6) were assigned to one cluster. The

relatedness of insects in Z-6 was significantly greater than 0 (Z-

6, r.0.17, c.i. = 0.15, Table 7). Eight of the nine adults and the

two nymphs in Z-6 were assigned to a single cluster, but this house

also had insects from two other clusters.

The reinfestation patterns for individual houses are quite

variable including repeated colonization from several sources (Z-

2, seven peri-domestic adults, r<0.10, c.i. 0.13, Table 7), a single

multiply mated female (S-3, 1 adult 5 nymphs, r<0.26, c.i. = 0.21,

Table 7), multiple colonization from a single source (Z-5, 3 males

and 3 females, r<0.23, c.i. = 0.21, Table 7), recrudescence of full

sibs (Z-10, 3 nymphs, r<0.48, c.i. = 0.45, Table 7) and

recrudescence of unrelated eggs (Z-3, 14 insects mostly nymphs,

r<0.05, c.i. = 0.07, Table 7). Of course there are multiple

possibilities for each household and these inferences are to show

the range of possibilities, not to infer a given scenario for a specific

household.

The presence of adults in many households less than 6 months

after spraying suggests that for many cases, structures around

human habitations may be playing a key role as the source of

insects invading houses. The presence of nymphs in houses where

no adults were found suggests recrudescence. Hence, recrudes-

cence from a residual population and colonists from peri-domicile

structures, rather than reinvasion from surrounding localities,

seems to be a probable explanation of the source of re-colonists

found during surveillance activities in this area.

The variety of results suggest that continuous surveillance

consisting of analyzing relatedness among reinfesting insects at the

household level is critical to maintain insect free houses and

optimize insecticide spraying in this region.

Supporting Information

Alternative Language Abstract S1 Translation of the abstract

into Spanish by Juan Carlos Pizarro.

Found at: doi:10.1371/journal.pntd.0000202.s001 (0.05 MB PDF)
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