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Abstract

Acute kidney injury (AKI) is a critical systemic complication caused by Bothrops envenom-

ing, a neglected health problem in the Brazilian Amazon. Understanding the underlying

mechanisms leading to AKI is crucial for effectively mitigating the burden of this complica-

tion. This study aimed to characterize the urinary protein profile of Bothrops atrox snakebite

victims who developed AKI. We analyzed three groups of samples collected on admission:

healthy subjects (controls, n = 10), snakebite victims who developed AKI (AKI, n = 10), and

those who did not evolve to AKI (No-AKI, n = 10). Using liquid-chromatography tandem

mass spectrometry, we identified and quantified (label-free) 1190 proteins. A panel of 65

proteins was identified exclusively in the urine of snakebite victims, with 32 exclusives to the

AKI condition. Proteins more abundant or exclusive in AKI’s urine were associated with

acute phase response, endopeptidase inhibition, complement cascade, and inflammation.

Notable proteins include serotransferrin, SERPINA-1, alpha-1B-glycoprotein, and NHL

repeat-containing protein 3. Furthermore, evaluating previously reported biomarkers candi-

dates for AKI and renal injury, we found retinol-binding protein, beta-2-microglobulin, cysta-

tin-C, and hepcidin to be significant in cases of AKI induced by Bothrops envenoming. This

work sheds light on physiological disturbances caused by Bothrops envenoming, highlight-

ing potential biological processes contributing to AKI. Such insights may aid in better under-

standing and managing this life-threatening complication.
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Author summary

Envenomings caused by Bothrops species are a public health problem in the Brazilian

Amazon. These envenomings can lead to a renal clinical complication called acute kidney

injury. A better understanding of the causes leading to this complication is crucial for

patient care. We aimed to describe the protein profile in the urine of patients who suffered

envenoming and developed acute kidney injury. For this, we used large-scale analysis

methods to compare the urine protein content of three groups of samples: healthy individ-

uals, and snakebite patients with and without acute kidney injury. We identified a total of

1190 proteins, 65 of which were exclusive to patients suffering from snake bite envenom-

ing. For patients with a kidney injury outcome, 32 unique proteins were found, of which

the most abundant were associated with the body’s inflammatory response. We highlight

4 proteins, including serotransferrin and SERPINA-1. Furthermore, we also evaluated

candidate biomarkers of kidney injury already reported in the literature, such as retinol-

binding protein, cystatin-C, and hepcidin, concluding that they are significant in cases of

kidney injury caused by a jararaca snakebite. This work can help to better understand this

serious complication that threatens the lives of the population living in the Amazon.

1. Introduction

From the estimated 1.8–2.7 million people suffering from snakebite envenomings per year,

nearly 81–138,000 die from complications, and about 400,000 live with long-lasting sequelae

worldwide [1–3]. Brazil holds the 6th position in the number of snakebite envenomings world-

wide, and ranks the 1st in South America, with 26–29.000 cases/year [4,5]. The snake species

with the highest medical importance in Brazil and Latin America belong to the genera

Bothrops, Crotalus, Lachesis, and Micrurus [6]. The species Bothrops atrox gains prominence in

the Brazilian Amazon, causing 80–90% of snakebite accidents in this region [7]. Bothrops
envenoming presents local and systemic symptoms triggered by the complex combination of

metalloproteinases (SVMPs), serine proteases (SVSPs), phospholipases (PLAs), and other pro-

teins present in the Bothrops venom [6,8–10]. The tissue damage at the bite site can be evi-

denced by edema, blistering, bleeding, and pain. The systemic manifestations of the venom

include nausea, headache, mucosal hemorrhage, hematuria, hematemesis, disseminated intra-

vascular coagulation, and shock [11,12]. Clinical and environmental factors can lead to com-

plications such as necrosis, secondary infection, intracranial hemorrhage, compartment

syndrome, amputation, and acute kidney injury (AKI) [11,13,14].

AKI is defined by a rapid increase in serum creatinine, accompanied by a decrease in urine

volume [15]. It is a multifactorial disorder associated with chronic kidney disease (CKD)

development and a higher risk of mortality [15]. AKI can impair the functional status of other

organs, leading to short and long-term effects that contribute to patient morbidity and

increased medical resource expenses [14–16]. Along with Crotalus and Russell’s viper,

Bothrops envenoming accounts for most snakebite-induced AKI cases reported worldwide

[14,17,18]. In Bothrops snakebites, the registered incidence of AKI varies from 1.4 to 44.4%

[13,14,17]. However, the real incidence of this complication is unknown due to the under-

notification of snakebite accidents in rural areas and inconsistency in the criteria set for AKI

in several studies [13,17]. The variability in AKI diagnosis criteria poses challenges for diag-

nosing and understanding the onset of this condition [19–21]. The Acute Kidney Injury Net-

work (AKIN) proposed a serum creatinine increase of 50% or above 0,3 mg/dL in 48 hours to
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diagnose AKI [21]. Despite its sensibility, the 48-hours frame hinders the potential for early

interventions in emergency scenarios, such as snakebite envenomings, which can lead to

delayed patient management [14,22].

The use of large-scale analysis to unravel potential biomarkers and pathway disturbances

has shown promising results in various fields [19,20]. Among these, mass spectrometry-based

proteomics is highlighted due to its versatility for different samples, sensitivity, and resolution

power [23]. In contrast to genes, proteins are the main functional and structural cell compo-

nents, thus, offering more well-tuned information about the changes in an organism/tissue

condition [19,20,23]. Protein research has already prompted new insights in the context of

renal lesions [19,20,22,24,25] as well as snake venom composition [26,27]. Nonetheless, the

pathophysiological mechanisms of acute kidney injury are not well established so far, espe-

cially in the context of snakebite envenoming [14,17,22,24].

Therefore, we aimed to characterize the protein profile in the urine of Bothrops accident

victims with clinical outcomes of AKI. We expect that the information provided in this study

may enhance the clinical management of these patients, contributing to the development of

alternative prevention and reduction strategies for severe kidney injuries in Bothrops enven-

oming victims.

2. Methods

2.1. Ethics statement

This study was conducted according to the guidelines of the Declaration of Helsinki and

approved by the Ethics Committee of Fundação Medicina Tropical Dr. Heitor Vieira Dourado

(CAEE: 31535420.1.0000.0005; protocol of approval n: 4.026.226). All participants signed a

consent form after reading of the study objectives and procedures.

We performed a cross-sectional study analyzing a subset of patients (n = 20) victims of

snakebite caused by the Bothrops genus. We recruited these patients from October 2019 to

December 2020 at the Fundação de Medicina Tropical Doutor Heitor Vieira Dourado

(FMT-HVD). FMT-HVD is the sole referral emergency hospital to treat snakebite accidents in

Manaus (AM), a city in North Brazil located in the Amazon region.

2.2. Study design

For descriptive comparison matters, three groups of samples were submitted to proteomic

analysis: healthy controls (n = 10), Bothrops snakebite victims that developed AKI (n = 10),

and patients that did not develop this condition (No-AKI, n = 10).

The control group was conveniently sampled from healthy individuals with sex and age,

pairing the snakebite victims’ profiles. The inclusion criteria for snakebite patients were indi-

viduals of any sex or age, victims of Bothrops envenoming, without prior treatment, with at

least two measures of serum creatinine, being the first before the antivenom and the second at

least 48h after the first one. We excluded patients with diabetes mellitus, renal diseases, auto-

immune disease, and continuously using non-steroidal anti-inflammatory drugs. We consid-

ered the accidents as caused by Bothrops through recognition of clinical symptoms of Bothrops
envenoming or snake identification by a trained herpetologist when possible. As an additional

confirming step, we performed a venom antigenemia assay consisting of an ELISA with Mab

anti-B. atrox plus biotin.

The snakebite clinical severity was classified on hospital admission according to the Brazil-

ian Ministry of Health Guidelines for Snakebite Diagnosis and Treatment, as mild cases, char-

acterized by pain and/or local edema, affecting one or two body segments, may present

coagulopathy, without distant bleeding; moderate cases, characterized by pain and evident
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edema affecting three to four body segments, may present coagulopathy or other systemic

symptoms, such as gingival bleeding, but without impairment of general condition, and severe

cases, characterized by edema involving the entire affected limb (5 body segments), severe

pain, may present coagulopathy or other systemic symptoms, such as hypotension, may also

present distant bleeding, necrosis, and/or compartment syndrome.

AKI diagnosis and staging followed the Acute Kidney Injury Network (AKIN) criteria [21].

The patients who had a primary change in serum creatinine of�0.3mg/dL or�150 to 199%

on their baseline value were considered to have AKI clinical outcomes. The stages of kidney

injury according to AKIN [21] consider Stage 1 lesion—an increase in serum creatinine

of> 0.3mg/dL or� 150 to 199% about baseline creatinine, Stage 2 lesion—an increase in 200

to 299%, and Stage 3 Lesion–an increase of� 4.0mg/dL or� 300% or patient starting Renal

Replacement Therapy. To minimize data variability, only patients classified with AKI at Stage

2 lesion were selected for proteomic analysis.

2.2.1. Data collection and demographics analysis. To collect data regarding demo-

graphic and clinical characteristics, we applied interviews and consulted medical records.

2.2.2. Sample collection and laboratory assays. In total, we collected 15 ml of peripheral

blood and 60 ml of urine samples from snakebite patients at hospital admission before anti-

venom. Parallel to regular hospital laboratory analysis, we analyzed creatinine, fibrinogen, and

d-dimer levels. For fibrinogen and d-dimer analysis, the blood samples were collected in falcon

tubes with 3,8% sodium citrate and 2% pentavalent antivenom as the internal protocol to neu-

tralize the venom. For the determination of serum creatinine, the patients must have under-

gone two measurements—the first before the antivenom and the second at least 48 hours after

the first one. For the measurement, we used the AA Kinetic Creatinine-liquid line (Wiener

Laboratory, Santa Fe, Argentine). Using an ACL TOP 300 CTS coagulation analyzer (Werfen

Instrumentation Laboratory, Barcelona, Spain), we measured fibrinogen by the Clauss method

[28] and D-Dimer by immunoturbidimetry. The control group patients contributed 15 ml of

urine and 5 ml of blood for serum creatinine analysis, performed as described for envenoming

victims.

2.3. Proteomic sample preparation

2.3.1. Protein extraction. Two milliliters (2 ml) of snakebite patients’ urine and two milli-

liters (2 ml) of healthy controls urine were thawed and centrifuged (3,000xg at 4˚C) for 50 min

to precipitate cellular debris. To extract the proteins, we applied a methanol precipitation pro-

tocol followed by Urea/Thiourea (7M/2M) extraction. First, we added methanol 100% at nine

times (9x) the supernatant volume, vortexed for 10 min, then incubated for 16h at -20˚C.

After, we centrifuged (3,000xg at 4˚C) for 90 min. We added on the result pellet methanol

100% at five (5x) times the supernatant volume, manually homogenized for 10 min, then cen-

trifuged (3,000) at 4˚C for 1h30 min. The resulting pellet dried at 4˚C overnight. Following,

150μl of urea/thiourea (7M/2M) solution was added to the precipitated material; it was vor-

texed for 1 min and incubated for 50 min on ice, then centrifuged (3,000xg at 4˚C) for 3 min.

The protein content was quantified using the fluorometric test Qubit 3.0 Protein Assay Kit

(Thermo-Fisher Scientific), as instructed by the manufacturer.

2.3.2. Sample preparation for mass spectrometry. One hundred micrograms (100 μg) of

each sample were reduced with 10 mM of dithiothreitol (DTT) at 37˚C for 1h30 min, alkylated

with 30 mM of iodoacetamide (IAA) at room temperature in the dark for 45 min, and then

incubated with 5 mM of DTT for 15 min at room temperature. Lastly, the urea concentration

was diluted to 1 M with ammonium bicarbonate (50 mM). Afterward, all samples were

digested overnight with trypsin (Promega) at the ratio of 1/50 (w/w) (E/S) at 37˚C. A volume
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of 10% trifluoroacetic acid (1% v/v final) was added to stop the enzymatic reaction. According

to the manufacturer’s instructions, the subsequent peptide mixture was quantified using the

Qubit 3.0 (Thermo-Fisher Scientific). Each sample was desalted and concentrated using Stage

Tips (STop and Go-Extraction TIPs) as previously described [29].

2.3.3. LC-MS/MS analysis setting and data acquisition. The desalted peptide mixture

was resuspended in 0.1% formic acid and analyzed with an UltiMate 3000 Basic Automated

System (Thermo Fisher) online with a Fusion Lumos Orbitrap mass spectrometer (Thermo

Fisher). The mixture chromatographic separation occurred on a column (30 cm x 75 μm)

packed in-house with ReproSil-Pur C18-AQ 1.9μm resin (Dr. Maisch GmbH HPLC) with a

gradient of ACN (5–50%) in 0.1% formic acid for 125 min in a flow rate of 250 nL/min. The

Fusion Lumos Orbitrap was set in data-dependent acquisition (DDA) mode and automatically

alternated between full-scan and MS2 acquisition with a 60s dynamic exclusion list. The full

scans range from 200 to 1500 m/z with 60,000 at m/z 200 resolution. The ten most intense ions

captured in a 2s cycle time were selected for MS2, excluding those unassigned or with a 1

+ charge state. The selected ions were isolated and fragmented using Higher-energy collisional

dissociation with a normalized collision energy of 40. The fragment ions were analyzed with a

resolution of 15,000 at 200 m/z. The mass spectrometer ionization settings were as follows: 2.5

kV spray voltage, no sheath or auxiliary gas flow, heated capillary temperature of 250˚C, pre-

dictive automatic gain control (AGC) enabled, and an S-lens RF level of 40%. Mass spectrome-

ter scan functions and nLC solvent gradients were regulated using the Xcalibur 4.1 data system

(Thermo Fisher).

2.3.4. Search and identification of spectral data. The data analysis for protein identifica-

tion and relative quantitation was performed using the software PatternLab for Proteomics V

(PLV), freely available at http://www.patternlabforproteomics.org [30]. For peptide/protein

sequence identification, we applied a peptide spectrum match approach (PSM) using the search

engine Comet 2021.01 rev. 0 [31]. The target-decoy database was prepared by including peptide

sequences from Homo sapiens and Bothrops atrox, plus sequences from the 123 most common

mass spectrometry contaminants for protein analysis, and a decoy database generated through

reversion of each sequence from the target database [30]. The sequences from H. sapiens were

downloaded on March 23rd, 2023, from the Swiss-Prot database. The B. atrox sequences were

obtained from a transcriptome database kindly provided by collaborators at Butantan Institute.

The search parameters for identification were configured at the High-High option [32], consid-

ering fully and semi-tryptic peptide candidates with mass ranging from 500 to 6,000 Da, up to

two missed cleavages, 35 ppm for precursor mass, and fragment ion bins of 0.02 m/z for MS/

MS. The amino acid residue modifications evaluated were carbamidomethylation of cysteine as

fixed, oxidation of methionine, and carbamylation of lysine and arginine as variable.

2.3.5. Validation of PSMs. The Search Engine Processor (SEPro) was used to assess the

validity of PSMs [31]. The identifications were grouped by charge state (2+ and� 3+), and

then by tryptic status, generating four distinct subgroups. The XCorr, DeltaCN, DeltaPPM,

and Peaks Matches values were used to produce a Bayesian discriminator, in each group. The

identifications were sorted in nondecreasing order according to the discriminator score. A

false-discovery rate (FDR) of 2% at the peptide level based on the number of decoys was

accepted for the cutoff score. This process was independently executed on each data subset,

resulting in an FDR independent of charge state or tryptic status. Additionally, as filtering

parameters, we required a protein score greater than three, and a minimum sequence length of

six amino-acid residues. Lastly, identifications deviating by more than 10 ppm from the theo-

retical mass were discarded.

2.3.6. Quantification and data analysis. The quantitation was performed according to

PatternLab’s Normalized Ion Abundance Factors (NIAF) as a relative quantitation strategy
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and as previously described [30] being NIAF the equivalent to NSAF [32], though applied to

extracted ion chromatogram (XIC). Considering each patient sample, a biological replicate, we

quantitated the 10 biological replicates with two technical replicates, independently, for each

group condition.

The T-fold and the Approximately Area-Proportional Venn Diagram PLV’s modules were

used to describe and analyze the proteomic data between conditions. The TFold parameters

were set as a minimum of 2 replicates, no normalized, 0.05 BH q-value, 0.66 F-Stringency, 0.0

L-Strigency, 15 upper fold cutoff, and 0.0001 p-value cutoff. The Venn Diagram was set on

stringent mode, without counting reverse sequences and contaminants, a minimum of 2 bio-

logical replicates, and 0.05 probability. The results read in ’Total satisfying a minimum of 2’

and ’Total’ consider the proteins found in at least two samples within the condition analyzed–

biological replicates. The results in ’Venn Sum’ point out the number of proteins found in

both replicates of a given sample, minus proteins found in one replicate of another sample. In

this situation, the PLV’s Venn Diagram dismisses both samples’ identification, hence the dif-

ference between ’Total’ and ’Venn Sum’. Then, we used online database tools such as the Reac-

tome Pathway Analysis (www.reactome.org) [33] and the STRING software (ww.string-db.

org) [34] to search for the biological pathways associated with and the interaction networks

within the list of identified proteins.

3. Results

A total of 30 patients were included in the analysis, equally distributed among the three groups

evaluated: healthy controls, Bothrops snakebite patients who developed acute kidney injury

(AKI), and those who did not (No-AKI). A comprehensive summary of the demographic, clin-

ical, and laboratory characteristics of the cohort can be found in Tables 1 and 2.

In overview, the population analyzed predominantly comprises men (90%), from rural

areas (95%), with hypertension as the main comorbidity found among the envenoming victims

(15% of patients). Furthermore, 20% of the individuals had experienced previous snakebites,

and 55% suffered moderate accidents. Interestingly, despite 90% of the patients receiving med-

ical treatment within less than 6 hours, 50% of this population developed AKI according to the

AKIN criteria.

3.1. Urine protein profile

Our analysis identified up to 20,482 peptides and 2,168 proteins (with redundancy) with false dis-

covery rates at the protein level under 2.31% for all search results. We were able to quantify 1,190

proteins with at least two unique peptides. The list of identified proteins is available in S1 File, tab

S1. Notably, no Bothrops venom-derived protein or peptide was identified in the urine samples.

To identify proteins exclusive and shared between different conditions, we employed the

"Venn Diagram" feature of the PLV software (Fig 1). The analysis revealed 436 proteins com-

monly found in all conditions, and 65 proteins exclusively detected in snakebite victims: 33 of

these proteins were shared between AKI and No-AKI patients, while 32 were specific to the

AKI samples. Notably, no proteins were identified as exclusive to the No-AKI group. The com-

plete list of all proteins identified under each condition can be found in S2 File.

3.2. Proteins exclusive to B. atrox snakebite victims’ and shared between the
different outcomes
Using the Reactome Pathway Analysis tool (www.reactome.org) [33], we assessed the biologi-

cal pathways associated with the 33 proteins identified in both clinical outcomes evaluated.

Afterward, we performed a manual analysis of their relative abundance in each condition.
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Table 1. Demographic and clinical characteristics of Bothrops snakebite patients at admission.

Variable Total (n = 20) No-AKI (n = 10) AKI* (n = 10)

Age range (years)

16–45 13 (65.0%) 8 (80.0%) 5 (50.0%)

45–60 3 (15.0%) 1 (10.0%) 2 (20.0%)

>60 4 (20.0%) 1 (10.0%) 3 (30.0%)

Sex

Male 17 (85.0%) 9 (90.0%) 8 (80.0%)

Occurrence zone

Rural 19 (95.0%) 10 (100.0%) 9 (90.0%)

Urban 1 (5.0%) 0 (0.0%) 1 (10.0%)

Time to medical assistance

<6 hours 18/20 (90.0%) 9/10 (90.0%) 9/10 (90.0%)

Site of bite

Foot 12/20 (60.0%) 6/10 (60.0%) 6/10 (60.0%)

Leg 6/20 (30.0%) 3/10 (30.0%) 3/10 (30.0%)

Hand 2/20 (10.0%) 1/10 (10.0%) 1/10 (10.0%)

Previous snakebite 4/20 (20.0%) 0/10 (0.0%) 4/10 (40.0%)

Use of tourniquet 2/20 (10.0%) 1/10 (10.0%) 1/10 (10.0%)

Use of traditional medicines 5/20 (25.0%) 1/10 (10.0%) 4/10 (40.0%)

Severity classification

Mild 3/20 (15.0%) 2/10 (20.0%) 1/10 (10.0%)

Moderate 11/20 (55.0%) 4/10 (40.0%) 7/10 (70.0%)

Severe 6/20 (30.0%) 4/10 (40.0%) 2/10 (20.0%)

Comorbidities 4/20 (20.0%) 0/10 (0.0%) 4/10 (40.0%)

Chronic gastric 1/4 (25.0%) 0/10 (0.0%) 1/4 (25.0%)

Hypertension 3/4 (75.0%) 0/10 (0.0%) 3/4 (75.0%)

Concomitant medication

Amlodipine 1/4 (25.0%) NA 1/4 (25.0%)

Losartan 2/4 (50.0%) NA 2/4 (50.0%)

Omeprazole 1/4 (25.0%) NA 1/4 (25.0%)

Local manifestations 8/20 (40.0%) 5/10 (50.0%) 3/10 (30.0%)

Bleeding 6/20 (30.0%) 4/10 (40.0%) 2/10 (20.0%)

Edema 6/20 (30.0%) 4/10 (40.0%) 2/10 (20.0%)

Ecchymosis 1/20 (5.0%) 1/10 (10.0%) 0/10 (0.0%)

Blisters 2/20 (10.0%) 0/10 (0.0%) 2/10 (20.0%)

Necrosis 1/20 (5.0%) 1/10 (10.0%) 0/10 (0.0%)

Systemic manifestations 9/20 (45.0%) 5/10 (50.0%) 4/10 (40.0%)

Headache 5/20 (25.0%) 3/10 (30.0%) 2/10 (20.0%)

Diarrhea 1/20 (5.0%) 0/10 (0.0%) 1/10 (10.0%)

Vomit 1/20 (5.0%) 1/10 (10.0%) 0/10 (0.0%)

Nausea 2/20 (10.0%) 0/10 (0.0%) 2/10 (20.0%)

Gum bleeding 2/20 (10.0%) 2/10 (20.0%) 0/10 (0.0%)

NA–Not Applicable.

*All AKI patients were diagnosed at Stage 2 Lesion following AKIN criteria.

https://doi.org/10.1371/journal.pntd.0012072.t001
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Table 2. Laboratory characterization of the patients at admission.

Variable Total (n = 20) No-AKI (n = 10) AKI (n = 10)

Creatinine

Normal 12/20 (60.0%) 10/10 (100.0%) 2/10 (20.0%)

High value 8/20 (40.0%) 0/10 (0.0%) 8/10 (80.0%)

Creatinine mean (SD) 1.2 (0.6) 0.8 (0.2) 1.5 (0.7)

Urea

Normal 16/20 (80.0%) 10/10 (100.0%) 6/10 (60.0%)

High value 4/20 (20.0%) 0/10 (0.0%) 4/10 (40.0%)

Urea mean (SD) 38.2 (19.1) 28.8 (8.2) 47.5 (22.6)

Lactate dehydrogenase

Normal 8/15 (53.3%) 4/6 (66.7%) 4/9 (44.4%)

High value 7/15 (46.7%) 2/6 (33.3%) 5/9 (55.6%)

Lactate dehydrogenase mean (SD) 600.4 (590.9) 440.3 (152.7) 707.1 (751.3)

Creatine phosphokinase

Normal 9/14 (64.3%) 3/4 (75.0%) 6/10 (60.0%)

High value 5/14 (35.7%) 1/4 (25.0%) 4/10 (40.0%)

Creatine phosphokinase mean (SD) 218.3 (199.4) 134.8 (77.2) 251.7 (226.0)

Clotting time

Normal 7/20 (35.0%) 4/10 (40.0%) 3/10 (30.0%)

Prolonged 1/20 (5.0%) 0/10 (0.0%) 1/10 (10.0%)

Unclottable 12/20 (60.0%) 6/10 (60.0%) 6/10 (60.0%)

Prothrombin activity time

Normal 3/19 (15.8%) 2/9 (22.2%) 1/10 (10.0%)

Prolonged 11/19 (57.9%) 5/9 (55.6%) 6/10 (60.0%)

Unclottable 5/19 (26.3%) 2/9 (22.2%) 3/10 (30.0%)

Hemoglobin

Normal 14/20 (70.0%) 7/10 (70.0%) 7/10 (70.0%)

High 4/20 (20.0%) 2/10 (20.0%) 2/10 (20.0%)

Low 2/20 (10.0%) 1/10 (10.0%) 1/10 (10.0%)

Hemoglobin mean (SD) 14.2 (2.6) 13.9 (3.3) 14.5 (1.7)

Leukocytes

Normal 8/20 (40.0%) 4/10 (40.0%) 4/10 (40.0%)

High 12/20 (60.0%) 6/10 (60.0%) 6/10 (60.0%)

Leukocytes mean (SD) 11483.3 (4643.6) 11602.3 (5958.0) 11364.2 (3161.1)

Platelets

Normal 19/20 (95.0%) 10/10 (100.0%) 9/10 (90.0%)

Low 1/20 (5.0%) 0/10 (0.0%) 1/10 (10.0%)

Platelets mean (SD) 203538.0 (51744.2) 218880.0 (33080.2) 188196.0 (63522.1)

Fibrinogen

Normal 5/20 (25.0%) 3/10 (30.0%) 2/10 (20.0%)

High 2/20 (10.0%) 1/10 (10.0%) 1/10 (10.0%)

Low 13/20 (65.0%) 6/10 (60.0%) 7/10 (70.0%)

D-dimer

Normal 2/19 (10.5%) 2/9 (22.2%) 0/10 (0.0%)

High 17/19 (89.5%) 7/9 (77.8%) 10/10 (100.0%)

Urine hemoglobin 5/10 (50.0%) 0/2 (0.0%) 5/8 (62.5%)

Urine leukocytes 3/10 (30.0%) 1/2 (50.0%) 2/8 (25.0%)

Urine crystals 1/10 (10.0%) 0/2 (0.0%) 1/8 (12.5%)

(Continued)
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As a result, Fig 2 lists 10 significant pathways associated with the proteins commonly found

between AKI and No-AKI urine, and Fig 3 displays the 11 most abundant proteins in this

comparison and their respective relative abundance in each condition.

The most abundant proteins found in the urine of No-AKI patients were myoglobin (MB),

carboxypeptidase B2 (CPB2), and coagulation factor IX (F9). The main pathways linked to

these proteins were ‘Formation of Fibrin Clot’, ‘Defective factor VII causes hemophilia A’,

‘Defective factor IX causes thrombophilia’, and ‘Intracellular oxygen transport’.

Meanwhile, urine proteins more abundant in the AKI group include Apolipoprotein C-II

(APOC2), Dermicidin (DCD), Complement components C8 gamma chain (C8G) and C2,

insulin-like growth factor binding protein 6 (IGFBP6), SH3 domain-binding glutamic acid-

rich-like protein (SH3BGRL), osteoglycin (OGN), and serglycin (SRGN). The main pathways

associated with these proteins were the ‘CLEC7A/inflammasome pathway’, ‘Terminal pathway

of complement’, and ‘AIM2 inflammasome’ [33,35–37]. Moreover, the pathways ‘Platelet

degranulation’, ‘Regulation of complement cascade’, and ‘Peptide hormone metabolism’ were

found to be associated with proteins abundant in both clinical outcomes.

3.2.1. Proteins exclusively found in snakebite victims developing AKI. Using the

STRING software, we explored potential interactions within the exclusive protein set of AKI

patients, aiming to discover the biological processes associated with these proteins. As a result,

we found a network with 10 proteins with at least 3 points of interaction (Fig 4).

Table 2. (Continued)

Variable Total (n = 20) No-AKI (n = 10) AKI (n = 10)

Urine casts 6/10 (60.0%) ½ (50.0%) 5/8 (62.5%)

Reference values: Lee-White clotting time:� 9 min; Prothrombin activity time: 13 secs; Creatinine: 0.5 ± 1.2 mg/dL; Lactate dehydrogenase: 211 ± 423 IU/L; Creatine

phosphokinase: 24 ± 190 IU/L; Leukocytes: 4,000 ± 10,000/mm3; Fibrinogen: 180 ± 350 mg/dL; D-dimer: < 500 ng/dL. Hemoglobin: 12.5±15.5 g/dL; Leukocytes: 4,000

±10,000/mm3; Platelets: 150,000±450,000/mm3; Fibrinogen: 180±350 mg/dL; D-dimer: <500ng/dL.

*All AKI patients were diagnosed at Stage 2 Lesion following AKIN criteria.

https://doi.org/10.1371/journal.pntd.0012072.t002

Fig 1. Venn Diagram showing the common and exclusive proteins identified in the urine of B. atrox snakebite

victims.

https://doi.org/10.1371/journal.pntd.0012072.g001
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Regarding Fig 4, the green-marked proteins were assigned as part of a network comprising

elements from the complement cascade, the coagulation cascade, and lipid metabolism that

may interact, such as the complement 8 beta chain (C8B) and alpha chain (C8A), complement

5 (C5) and Serum paraoxonase/arylesterase 1 (PON1). The term ‘acute phase response’ refers

Fig 2. Biological pathways of proteins exclusively found in the urine of Bothrops snakebite victims, shared by both

clinical outcomes.

https://doi.org/10.1371/journal.pntd.0012072.g002

Fig 3. Distribution of the 10 most abundant proteins exclusive to Bothrops snakebite victims’ urine between No-

AKI and AKI patients. Protein listed: Apolipoprotein C-II (APOC2), Myoglobin (MB), Carboxypeptidase (B2CPB2),

Dermcidin (DCD), Component C8 gamma chain (C8G), SH3 domain-binding glutamic acid-rich-like protein

(SH3BGRL), Insulin-like growth factor binding protein 6 (IGFBP6), Osteoglycin (OGN), Serglycin (SRGN),

Complement C2 (C2), and Coagulation factor IX (F9).

https://doi.org/10.1371/journal.pntd.0012072.g003
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to the acute inflammatory response involving non-antibody proteins whose plasma concentra-

tions increase or decrease by at least 25% in response to an infection or injury; marked with

red, the proteins in this process include C-reactive protein (CRP) and the Serum Amyloid A

proteins—SAA1 and SAA4 [38–41]. The blue-marked proteins point out components associ-

ated with the ‘endopeptidase inhibitor activity process’: Protein Z-dependent protease inhibi-

tor (SERPINA10), Myc box-dependent-interacting protein 1 (BIN1 and inter-alpha-trypsin

inhibitor heavy chain H3 (ITIH3).

3.2.2. Differential abundance in proteins common to all conditions. To unravel the dif-

ferential distribution of proteins identified and quantified among all the study conditions, we

used the ’TFold’ module on PLV. By comparing the findings among the different groups of

snakebite victims, we obtained the results shown in Fig 5. Additionally, the proteins and their

respective fold-changes can be found in Online Source 2.

As a result, we observed that serotransferrin (TF), alpha-trypsin 1 (SERPINA1), Alpha-1B-

glycoprotein (A1BG), and NHL repeat-containing protein 3 (NHLRC3) exhibited differential

abundance in the AKI patients’ group.

Fig 4. Protein-protein interactions within the group of proteins exclusively found in the urine of Bothrops

snakebite patients with acute kidney injury. Colors represent the associated biological processes: Red–Acute phase

response (GO:0006953); Green–Mixed processes, including complement and coagulation cascades, and lipoprotein

particles (CL:19706); Blue–Endopeptidase inhibitor activity (GO:00048630).

https://doi.org/10.1371/journal.pntd.0012072.g004
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3.3. Identification of biomarkers candidates for kidney injury

In our dataset, we carefully examined the identification of previously described candidates for

acute kidney injury or renal injury, whether provoked by snakebite venom or not. Our search

for previously described candidates included terms such as kidney injury, acute kidney injury,

acute renal injury, renal biomarkers, proteomic snakebite, and envenoming into Google

Scholar and PubMed search engines. We aimed to assess their potential relevance in the evalu-

ation of Bothrops accidents. Fig 6 shows the distribution of protein abundance between No-

AKI and AKI samples for 13 biomarkers that have been suggested as relevant in this context.

Our data suggest retinol-binding protein (RBP4), beta-2-microglobulin (B2M), cystatin-C

(CST3), hepcidin (HAMP), and fatty acid-binding protein (L-FABP) hold promise as candi-

dates for kidney damage surveillance in Bothrops envenoming. However, neutrophil gelati-

nase-associated lipocalin (NGAL), Clusterin (CLU), and alpha-2-HS-glycoprotein (AHSG)

did not show potential as prognostic parameters in Bothrops snakebite-induced AKI based on

our data. Interestingly, we found an abundance of protein S100-A8 (S100A8) and protein

S100-A9 (S100A9) in No-AKI patients’ urine.

In addition to the mentioned markers, other appointed indicators of kidney injury, such as

kininogen-1 (KNG1), aminopeptidase-N (ANPEP), and glutathione S-transferase P (GTSP)

[42–49], were found in our data (S1 File, tab S1); however, they did not present a significant

abundance or difference among the studied groups.

4. Discussion

Multiple factors may influence the onset of acute kidney injury in Bothrops envenoming

including sex, age, presence of comorbidities (i.e., diabetes mellitus and hypertension), delay

Fig 5. Differential abundance of proteins in the urine of Bothrops snakebite victims with distinct outcomes

regarding acute kidney injury. Each protein was represented in the graph as a dot, plotted based on the (-"Log")2(" p-

value) on the x-axis and Log2 (Fold change) on the y-axis. Red dots indicate proteins that did not meet the q-value

cutoff or the fold change cutoff. Green dots represent proteins that met the fold change but not the q-value. Blue dots

signify proteins that satisfied both fold change and q-value (0.05). The proteins plotted include alpha-1B-glycoprotein

(A1BG), NHL repeat-containing protein 3 (NHLRC3), serotransferrin (TF), alpha-trypsin 1 (SERPINA1),

molybdopterin synthase sulfur carrier subunit (MOCS2), fructose-bisphosphate aldolase B (ALDOB), neurosecretory

protein VGF (VGF), putative phospholipase B-like 2 (PLBD2), lysosome-associated membrane glycoprotein 2

(LAMP2), tumor necrosis factor receptor superfamily member 19L (RELT), coagulation factor V (F5) and filaggrin

(FLG).

https://doi.org/10.1371/journal.pntd.0012072.g005
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in reaching medical assistance, accident severity, snake species and size, snake geographic dis-

tribution, and amount of venom inoculated [8,11–13, 50–52]. The main mechanism attributed

to inducing AKI involves inflammation, formation of immune complexes, hemodynamic dis-

orders, and direct action of venom on kidney tissues [13,14,18,24,53–55]. Hematological disor-

ders are frequently associated with snakebite-induced AKI; in this context, these disorders

encompass hemoglobinuria, disseminated intravascular coagulopathy, thrombotic microan-

giopathy, and glomerular microthrombi deposition [14,17,18,43]. In a minor proportion,

hypertension and myoglobinuria might provoke kidney injury [14,18,24,56]. These events pre-

dominantly lead to a decrease in renal vascular resistance (RVR), glomerular filtration rate

(GFR), and urine flow [17,18,43]. However, it is noteworthy that the description of these

mechanisms for Bothrops envenoming primarily comes from studies conducted in animal

models and cell cultures [17,55,57,58]. In contrast, the data presented in this study originates

from the urine analysis of Bothrops snakebite patients.

The urine proteome of the snakebite envenomed patients revealed an abundance of classical

protein biomarkers of renal injury, such as albumin, along with more recently identified candi-

dates for kidney injury, such as retinol-binding protein 4 (RBP4), beta-2-microglobulin

(B2M), and cystatin-C (CST3) [42,43,49]. In our comprehensive analysis, we identified a

group of 65 proteins exclusively found in the urine of snakebite victims. By examining 32 pro-

teins shared between both AKI and No-AKI patients, we observed a group of proteins with

higher levels in the urine of AKI; Searching these through a pathway database analysis, we

found these were associated with lipid metabolism and inflammation processes, particularly

Fig 6. Distribution of literature-appointed biomarkers for kidney injury in Bothrops snakebite urine samples. The

proteins listed are retinol-binding protein (RBP4), beta-2-microglobulin (B2M), alpha-1-acid glycoprotein 1 (ORM1),

cystatin-C (CST3), alpha-2-HS-glycoprotein (AHSG), hepcidin (HAMP), clusterin (CLU) and fatty acid-binding

protein (L-FABP), neutrophil gelatinase-associated lipocalin (NGAL), insulin-like growth factor-binding protein 7

(IGFBP7), protein S100-A9 (S100A9), vascular cell adhesion protein 1 (VCAM1) and protein S100-A8 (S100A8).

https://doi.org/10.1371/journal.pntd.0012072.g006

PLOS NEGLECTED TROPICAL DISEASES Urinary proteomics and acute kidney injury in Bothrops envenomings

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012072 March 27, 2024 13 / 22

https://doi.org/10.1371/journal.pntd.0012072.g006
https://doi.org/10.1371/journal.pntd.0012072


involving the AIM2 and CLEC7A (Dectin-1) inflammasome pathways and the complement

cascade. Inflammation plays a significant role in both Bothrops’ envenoming and the onset of

AKI [58–61]. The venom’s direct action triggers inflammation while the complement cascade

process further debilitates the patient [55,62,63]. The precise venom components and path-

ways responsible for this condition remain a subject of investigation. Our data suggest the

AIM2 and Dectin-1 inflammasome pathways, along with complement cascade elements C2

and C8, and lipidic disorders associated with apolipoprotein C-II (APOC2), can be associated

with the development of renal failure in Bothrops snakebites.

Regarding the protein profile found in No-AKI patients, we highlight the great abundance

of myoglobin and carboxypeptidase B2 (CPB2). The elevated myoglobin levels in this group

add a layer of evidence of myoglobinuria as a less contributing factor to kidney injury in

Bothrops envenoming, particularly B. atrox [14,18,24,56]. This could be attributed to differ-

ences in myotoxic venom components among Bothrops species. For instance, the venom of B.

atrox has been reported to contain 5 to 8-fold lower myotoxic activity compared to venom

from species such as B. jararacussu, B. moojeni, B. neuwiedi, and B. pradoi [64]. Furthermore,

carboxypeptidase B2 (CPB2), also known as a thrombin-activatable fibrinolysis inhibitor

(TAFI), plays a role in down-regulating fibrinolysis [57,65]. Previous studies have demon-

strated that TAFI presents an important role in preventing tubulointerstitial fibrosis in

obstructive nephropathy [66]. In this context, while it increases the risk of venous thrombosis,

CPB2 may also act to mitigate direct kidney damage caused by fibrinolysis byproducts [65].

It is important to highlight the identification of 32 proteins exclusively found in the AKI

patient group. Within this group, we observed a core network of proteins associated with the

acute phase response, the complement and coagulation cascades, lipid metabolism, and endo-

peptidase inhibitor activity. These findings strongly support the idea of snakebite envenoming

inducing a typical acute response, resembling the body’s reaction to acute traumas [17]. It also

reinforces the potential role of the complement cascade and lipidic disorders in inflammation

feedback during snakebite envenoming [13,14,18,24,55,57]. Further, the most differentially

abundant proteins found to be associated with renal failure were serotransferrin (TF), alpha-

trypsin 1 (SERPINA1), alpha-1B-glycoprotein (A1BG), and NHL repeat-containing protein 3

(NHLRC3). serotransferrin or transferrin, is the main glycoprotein responsible for the blood

transport of iron. It carries the iron from sites of absorption and heme degradation to sites of

storage and utilization [67]. High levels of urine transferrin were reported on a cisplatin-

induced AKI murine model investigating persistent renal vulnerability after AKI [68]. Addi-

tionally, it also has been found in patients’ blister fluids following envenoming by snakes in

India, which could be associated with local tissue damage [8,9,69,70]. The high levels of sero-

transferrin in the urine of AKI patients might indicate iron toxicity as an early and preeminent

event in the establishment of AKI, like observations in chronic kidney disease and renal inju-

ries promoted by other diseases [67]. Regarding the abundance of SERPINA1, a serine prote-

ase inhibitor, we hypothesize it may serve as a direct response to the serine proteases in

Bothrops venom, which can directly affect the kidneys [8,9,18,55–57,69]. Although high levels

of SERPINA1 have been found in acute kidney injury patients and nephrotic syndromes, such

as glomerulonephritis [71,72], this protein is also associated with a protective role in maintain-

ing kidney membrane integrity [73]. Therefore, its presence in urine might signal glomerular

membrane impairment, and its abundance could correlate to the venom-inoculated dosage

and toxicity [72,73]. Alpha-1B-glycoprotein (A1BG) is a plasma glycoprotein of unknown

function; transcriptome analysis shows enrichment in liver tissue and sequence similarity to

the variable regions of some immunoglobulin supergene family members [74–76]. Large-scale

analyses have found it as the content of urinary exosomes in healthy patients [77] and detected

an A1BG fragment significantly abundant in the urine of pediatric steroid-resistant nephrotic
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syndrome patients [78]. NHL repeat-containing protein 3 (NHLRC3) is a protein containing

NCL-1, HT2A, and Lin-41 (NHL) family repeats; not associated with any specific biological

pathway, its NHL-repeat content suggests it may be involved in a variety of enzymatic pro-

cesses, such as protein modification, particularly ubiquitination [76]. Literature regarding the

functions or disease correlations of A1BG and NHLRC3 is scarce. Hence, our findings provide

new data on these proteins. Since both A1BG and NHLRC3 are plasma proteins and an

increase in A1BG levels in urine has been described in nephrotic syndrome patients, we specu-

late their abundance in the urine of snakebite victims may act as an early indicator of

impairment in the glomerular permeability barrier [78].

Upon evaluating the biomarkers candidates already proposed for acute kidney injury and

other renal diseases in our data, the results appointed retinol-binding protein (RBP4), beta-

2-microglobulin (B2M), cystatin-C (CST3), hepcidin (HAMP), and fatty acid-binding protein

(L-FABP) as promising candidates for kidney function surveillance in Bothrops envenoming.

Previously, RBP4 was suggested as a prognostic marker for AKI, as its urine levels responded

more sensibly than serum creatinine in monitoring AKI patients’ recovery [48]. Increased lev-

els of B2M in urine have been associated with renal tubular injury following renal allografts

procedures and toxins exposure, including viper venom [49,79,80]. CST3 was identified as a

candidate marker for early diagnosis and prognosis of AKI stages 2 and 3, during the 4–8-hour

period post-bite in Russel’s viper envenoming [22]. Like serotransferrin, hepcidin is an iron-

binding protein, and its urine levels were recorded to increase in lupus nephritis [81]. Interest-

ingly, the isoform hepcidin-25 was accounted as a prognostic marker for non-AKI outcomes

in patients who went through cardiopulmonary bypass surgeries [82]. In our data, the candi-

date biomarker associated with the No-AKI group was calprotectin, a complex composed of

the proteins S100-A8 (S100A8) and S100-A9 (S100A9). This pro-inflammatory complex pres-

ents a mediator role in inflammation and the immune system and prevents exacerbated tissue

damage by scavenging oxidants [46,47]. A decrease in urine calprotectin levels was observed in

kidney sclerosis in an autoimmune disease setting [83], while increased levels were found in

chronic kidney disease when compared to healthy controls [82]. Their abundance in the urine

of No-AKI patients may suggest a protective role in Bothrops snakebite envenoming. Lastly,

NGAL, AHSG, and clusterin displayed no significant differential abundance in Bothrops
snakebite-induced AKI, despite being described as promising biomarkers candidates for AKI

development, even in viper envenoming [18,42,43,45]. Others, such as angiopoietin-1

(ANG1), kidney injury molecule-1 (KIM-1), and the urinary monocyte chemotactic protein-1

(MCP1) were not identified [22]. The absence of VCAM-1 and ANG-1 in our study’s urine

samples might be explained by the accident severity and the time point of sample collection.

VCAM-1 and ANG-1 are urinary biomarker candidates that have been associated with mild

cases of envenoming, and their levels typically peak within 12–16 hours after the bite [24,25].

In urine analysis, considering the time point perspective is crucial, as several biomolecules

exhibit a fine-tuned behavior in response to physiological changes, and their abundance may

fluctuate over short or long periods [22,24,42,48]. For instance, VCAM-1 and ANG-1, as men-

tioned above, show variation in their levels within a specific time frame after the envenoming.

However, this study is limited to a single time point observation.

Moreover, the naturally high variability in urine poses a challenge for analyzing these sam-

ples, particularly for biomarker research [19,20,42]. Various factors are already known to influ-

ence the urinary protein landscape, such as the patient’s sex and age, the timing of sample

collection, the presence of comorbidities, dietary composition, the volume of venom inocu-

lated, and even the time between the bite and hospital care [22,63,84]. Thus, the results of this

work are also limited by the small size cohort of AKI patients, the few female patients observed,

the presence of AKI patients with hypertension, and the analysis of only AKI at Stage 2; thus,
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further studies with larger cohorts observing these aspects are needed to validate and reinforce

the results presented in our study. These limitations impose still unknown effects on the data

presented, especially the presence of hypertensive patients. Hypertension frequently causes

renal damage, the extension of it is correlated to several factors, such as individual susceptibil-

ity, the degree of hypertension, or even if it’s being properly treated or not [85]. These possible

injuries might lead to a higher abundance of some proteins and create a bias for these in the

data. However, hypertension is a common comorbidity in the general population and among

AKI patients [86], then, we opted to include this population in our work since our proposal

was to observe a more ‘closer to reality’ cohort when designing the study.

Regarding limitations on protein identification, we were not able to identify Bothrops
venom-derived protein or peptide in the urine samples. This lack of identification derives

from the challenges of studying a non-model organism due to fewer curated gene or transcript

sequence databases [26,87,88]. In addition to this, the diversity of toxins proteoforms in snake

venoms presents an additional challenge to bottom-up analysis of complex samples, such as

those analyzed in this study [26,89]. Lastly, it’s noteworthy that absolute quantitation through

labeling methods is considered the gold standard for quantitation in proteomics due to its

higher accuracy and reproducibility when compared to label-free methods [89]. We performed

a label-free protocol with relative quantitation by the extracted ion chromatogram (XIC) strat-

egy. This means our quantitative results, and the conclusions derived from them, are impacted

by the limitations on the accuracy of this method’s use. Still, among the label-free quantitation

protocols, the approach we applied—extracted ion chromatogram (XIC)- has the greater accu-

racy [89]. In addition, the use of a label-free protocol presents the benefit of identifying a larger

number of proteins with a wider dynamic range of detection, when compared to labeling-

methods [89]. We believe the use of a label-free protocol was sufficient to achieve the intended

aim of exploring the protein profile of snakebite victims who developed AKI, a still understud-

ied topic.

5. Conclusions

This study explored the mechanisms leading to acute kidney injury (AKI) caused by Bothrops
envenoming. The urinary protein profile of AKI patients revealed associations with acute

phase response, endopeptidase inhibition, complement cascade, and inflammation. Specific

proteins, such as serotransferrin, alpha-trypsin 1, alpha-1B-glycoprotein, and NHLRC3, were

identified as differentially abundant in AKI, potentially contributing to early AKI develop-

ment. On the other hand, the No-AKI group showed proteins related to hemostasis and

immune response. Promising biomarker candidates for kidney damage in Bothrops snakebites

were retinol-binding protein (RBP4), beta-2-microglobulin (B2M), cystatin-C (CST3), hepci-

din (HAMP), and fatty acid-binding protein (L-FABP). In contrast, NGAL, AHSG, and CLU

did not perform well as early biomarkers for AKI-induced envenoming. Future studies with

larger cohorts and multiple time points are needed to validate and expand these findings.

Overall, this work sheds light on the physiological disturbances and potential biomarkers asso-

ciated with AKI in Bothrops envenoming.
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