
RESEARCH ARTICLE

Development of an automated artificial

intelligence-based system for urogenital

schistosomiasis diagnosis using digital image

analysis techniques and a robotized

microscope

Carles Rubio Maturana1,2, Allisson Dantas de Oliveira3, Francesc Zarzuela1, Edurne Ruiz1,

Elena Sulleiro1,2,4*, Alejandro Mediavilla1,2, Patricia Martı́nez-Vallejo1,2, Sergi Nadal5,
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Abstract

Background

Urogenital schistosomiasis is considered a Neglected Tropical Disease (NTD) by the World

Health Organization (WHO). It is estimated to affect 150 million people worldwide, with a

high relevance in resource-poor settings of the African continent. The gold-standard diagno-

sis is still direct observation of Schistosoma haematobium eggs in urine samples by optical

microscopy. Novel diagnostic techniques based on digital image analysis by Artificial Intelli-

gence (AI) tools are a suitable alternative for schistosomiasis diagnosis.

Methodology

Digital images of 24 urine sediment samples were acquired in non-endemic settings. S. hae-

matobium eggs were manually labeled in digital images by laboratory professionals and

used for training YOLOv5 and YOLOv8 models, which would achieve automatic detection

and localization of the eggs. Urine sediment images were also employed to perform binary

classification of images to detect erythrocytes/leukocytes with the MobileNetv3Large, Effi-

cientNetv2, and NasNetLarge models. A robotized microscope system was employed to

automatically move the slide through the X-Y axis and to auto-focus the sample.
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Results

A total number of 1189 labels were annotated in 1017 digital images from urine sediment

samples. YOLOv5x training demonstrated a 99.3% precision, 99.4% recall, 99.3% F-score,

and 99.4% mAP0.5 for S. haematobium detection. NasNetLarge has an 85.6% accuracy for

erythrocyte/leukocyte detection with the test dataset. Convolutional neural network training

and comparison demonstrated that YOLOv5x for the detection of eggs and NasNetLarge for

the binary image classification to detect erythrocytes/leukocytes were the best options for

our digital image database.

Conclusions

The development of low-cost novel diagnostic techniques based on the detection and identi-

fication of S. haematobium eggs in urine by AI tools would be a suitable alternative to con-

ventional microscopy in non-endemic settings. This technical proof-of-principle study allows

laying the basis for improving the system, and optimizing its implementation in the

laboratories.

Author summary

Urogenital schistosomiasis, categorized as a Neglected Tropical Disease (NTD) by the

World Health Organization (WHO), affects approximately 150 million individuals glob-

ally, predominantly in resource-limited regions of Africa. Gold standard diagnosis relies

on visually identifying of Schistosoma haematobium eggs in urine samples using optical

microscopy. However, novel diagnostic techniques based on digital image analysis by

Artificial Intelligence (AI) tools are a suitable alternative for schistosomiasis diagnosis. In

this technical proof-of-principle study, a small number (n = 24) of urine sediment samples

were analyzed using AI models in non-endemic settings. The study involved manually

labeling S. haematobium eggs in digital images, for training YOLOv5 and YOLOv8 mod-

els for automatic egg detection, and employing MobileNetv3Large, EfficientNetv2, and

NasNetLarge models for binary classification of erythrocytes/leukocytes. A robotized

microscope system facilitated automated sample movement and focusing. Results indi-

cated high precision (99.3%) and recall (99.4%) for S. haematobium detection with

YOLOv5x. NasNetLarge achieved 85.6% accuracy in erythrocyte/leukocyte detection.

Overall, YOLOv5x for egg detection and NasNetLarge for cell classification proved most

effective. The study suggests AI-based techniques offer a cost-effective alternative to con-

ventional microscopy for diagnosing S. haematobium infections. The automated system’s

robustness and simplicity could facilitate widespread adoption in laboratories worldwide.

1 Introduction

Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma [1].

It affects more than 250 million people worldwide, with a high prevalence in tropical and sub-

tropical areas [2]. Its transmission occurs by direct contact with contaminated water, in which

Schistosoma cercariae can penetrate human skin thus initiating infection. Freshwater snails of

the genera Biomphalaria, Oncomelania, and Bulinus act as intermediate hosts [3]. Schistosomi-

asis is considered a Neglected Tropical Disease (NTD) by the World Health Organization
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(WHO) due to its impact in resource-poor areas and its correlation with poverty [4]. The most

predominant causative species are Schistosoma haematobium and Schistosoma mansoni, classi-

fied as urogenital and intestinal schistosomiasis, respectively [1]. More than 90% of schistoso-

miasis cases occur in the African continent, and 66% are caused by S. haematobium [5]. Some

of the main countries with a high prevalence of urogenital schistosomiasis are Senegal, Nigeria,

Angola, and Cameroon, among others [6–8]. Therefore, urogenital schistosomiasis has a

major impact globally, with a significant incidence in the pediatric population of endemic

areas [5]. Resource-poor areas near infested rivers are considered high-risk communities in

which the prevalence of urogenital schistosomiasis is considerably high [9]. Digital images of

S. haematobium eggs are represented in Fig 1. Most patients are asymptomatic, although if the

disease is left untreated it can become chronic, cause hematuria and leukocyturia, and in some

cases it can lead to bladder cancer [10].

According to the WHO, the gold standard diagnostic technique for schistosomiasis is the

microscopic observation of parasite eggs in stool/urine samples [1]. Serological tests are also

widely employed for the diagnosis of this disease [11], and molecular techniques such as real-

time PCR are currently being developed to improve the sensitivity and specificity of traditional

techniques [12]. However, in schistosomiasis-endemic areas, microscopy is still the most

employed technique for diagnosis. Microscopic diagnosis is expert-dependent, time-consum-

ing, and could trigger diagnostic errors due to observing large numbers of samples in short

periods of time [13].

As an emulation of traditional microscopy, novel image analysis techniques based on Artifi-

cial Intelligence (AI) tools are being developed to automate the diagnostic procedure. As an

example, a prototype based on AI image analysis was developed for the detection of soil-trans-

mitted helminths and S. mansoni parasites in Kato-Katz stool thick smears [14]. Moreover,

other studies demonstrate the utility of mobile phone-based microscopes for urogenital schis-

tosomiasis diagnosis in Côte d’Ivoire [15]. Nowadays, Convolutional Neural Networks

(CNNs) are the models most employed for object detection in digital image analysis [16]. Par-

ticularly, CNNs for poverty related diseases are postulated as a suitable supportive tool for the

microscopic diagnosis of several diseases, such as malaria [17,18], tuberculosis [19], and NTDs

[20]. Moreover, novel computational strategies, such as attention modules [21] and transform-

ers [22], are improving the performance of traditional CNNs, opening up a new range of pros-

pects for object detection algorithms in digital imaging. Several studies demonstrate that

YOLO models have outperformed other state-of-the-art CNN models for object detection,

Fig 1. Panel A. S. haematobium eggs in a urine sediment sample (10x ocular; 10x objective lens). Panel B. S. haematobium egg in a urine sediment sample

(10x ocular; 40x objective lens).

https://doi.org/10.1371/journal.pntd.0012614.g001
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such as Faster R-CNN and RetinaNet [23,24]. YOLOv5 and YOLOv8 used similar backbones

with changes in the CSPLayer/C2f module, and they were considered the best YOLO algo-

rithms [25]. Moreover, each YOLO model has different versions depending on its architecture,

considering YOLOv-s (small) and YOLOv-x (extra-large) as suitable versions for comparison,

regarding the remarkable differences in performance and speed [25]. The YOLOv8 model is

newer and considered an update of YOLOv5, nevertheless, the latter is still considered the best

model for object detection tasks in terms of accuracy [26].

In this study, we fine-tuned object detection algorithms (YOLOv5s, YOLOv5x, YOLOv8s,

and YOLOv8x) for the automated identification of S. haematobium eggs in urine samples. A

small number of biological samples from non-endemic settings were employed for digital

image acquisition and labeling of parasites by a smartphone/microscope camera. CNN train-

ing and metrics comparison were performed to determine the optimal algorithm for schistoso-

miasis diagnosis with our image database. Binary image classification algorithms

(MobileNetv3Large, EfficientNetv2, and NasNetLarge) were also trained to detect digital

images with the presence of erythrocytes and/or leukocytes in urine, as a suggestive, although

not exclusive, clinical sign of urogenital S. haematobium infection.

An automated robotized low-cost microscope prototype was employed for sample analysis,

with X-Y movements of the slide and autofocusing. A first proof-of-principle technical study

in non-endemic settings of the development of the system has been conducted, allowing to

evaluate the performance and to lay the basis to enhance it in further in-field studies.

According to the state-of-the-art there are several studies describing detection methods for

the automated identification of S. haematobium eggs in urine sediment samples. However, our

system could contribute novelties in terms of adaptability to conventional optical microscopes

and its autofocus algorithm, the usage of a smartphone device as a key controller for image

acquisition and AI-analysis, and the identification of erythrocytes and leukocytes in urine for

S. haematobium diagnosis orientation. Many of the published systems involve the detection of

S. haematobium eggs in digital images, although the combination of all system features provide

new advances in low-cost automated detection.

Thus, our image analysis strategy would join the global effort to fight against NTDs, provid-

ing clinical laboratories with novel diagnostic tools able to complement state-of-the-art tradi-

tional technologies.

2 Materials and methods

In this section, we describe the materials and methods used to develop the diagnostic system

based on image analysis by image classification and object detection. The details of all proce-

dures are sufficient to allow for experimentation by third parties.

2.1. Ethics statement

This study was conducted in accordance with the Declaration of Helsinki and approved by the

Clinical Research Ethics Committee (CEIm) of the Vall d’Hebron University Hospital / Vall

d’Hebron Research Institute, with reference number PR(AG)40/2023. The urine samples were

not collected for the study, they were obtained from the regular clinical visits in our Interna-

tional Health Center and retrospectively analyzed. Formal consent was not obtained with eth-

ics committee approval.

2.2. Sample preparation and observation

In this study, 24 S. haematobium-positive urine sediment samples and eight negative urine

sediment samples from (i) the Drassanes-Vall d’Hebron International Health and Infectious
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Diseases Centre (Barcelona, Spain), and (ii) the Microbiology Department of the Vall

d’Hebron University Hospital (Barcelona, Spain) were employed. Urine sediment samples

were collected directly in a 100 mL recipient. Samples are left to settle for 1 hour, and 10 mL

were centrifuged for 5 minutes at 15,000 rpm. Parasite eggs were searched in urine sediment

samples for microbiological diagnosis. Standard objective lenses, 10x and 40x, were employed

to perform a large-scale observation and confirm the diagnosis, respectively. Between 1–20

images of different microscopy fields were acquired from each sample, considering parasite

densities, presence/absence of erythrocytes and leukocytes in urine, and number of S. haema-
tobium eggs per sample. This range of image numbers avoids an imbalance in the training of

the neural networks by employing a stipulated number of data. Biological samples were

obtained from symptomatic/asymptomatic patients from S. haematobium-endemic areas,

mainly migrants, and Visit Friends and Relatives (VFR), following our reference center’s pro-

tocols [27]. Most individuals came from Sub-Saharan Africa region, mainly from Gambia,

Mali and Senegal. Regarding epidemiological studies, the prevalence of S.haematobium infec-

tion in these countries is between 9% to 10.2% [28–32]. Microscopic examination of clinical

samples was performed following WHO sample observation statements for S. haematobium
diagnosis [32]. Samples were observed at most 48h after extraction and discarded, following

our International Health Laboratory protocols.

2.3. Image acquisition

Digital images of each microscopic Field of View (FoV) were acquired with an integrated

Leica ICC50W camera attached to a Leica DM750 microscope (5.0MP / 2592 x 1944 pixels)

and consecutively with the camera of a Samsung Galaxy S20 smartphone device (64MP,

0.8μm, f/2.0, OIS / 3024 x 4032 pixels). Smartphone-acquired images were captured using an

ocular adapter for smartphone attachment to the microscope. A 3D adapter bracket attached

to the ocular lens of the microscope was used to standardize the image-capturing procedure

with the smartphone device. Both, the integrated camera and smartphone-acquired images

were captured by the visualization of urine sediment samples with a Leica DM750 microscope

lens with 100x and 400x total magnification (10x ocular; 10x and 40x objective lens). Image

acquisition is represented in Fig 2.

2.4. Image pre-processing

Images acquired with a smartphone device were cropped to highlight the central area of inter-

est of the image and to eliminate black borders due to ocular lens attachment. Cropping was

performed to remove the outer edges without losing any information (Fig 2). Original smart-

phone images were cropped automatically (Python script) to obtain a 4:3 image in the center

and subsequently rotated 90˚ for horizontal image reorientation. With this procedure, it is pos-

sible to crop an image regardless of its dimensions and the number of pixels as proportions

were used to perform the cropping. The cropped images have the same 4:3 image proportion

as those acquired with the microscope-integrated camera. Cropping confers a re-composition

of the image that may positively affect the final results, providing a clearer image and removing

elements irrelevant to the prediction and identification functions of the neural networks, as

mentioned in the previous literature [33].

2.5. Image annotation and classification

Digital images were labeled by laboratory professionals from the Drassanes-Vall d’Hebron

International Health and Infectious Diseases Centre. For image labeling, the area of interest

was selected by creating a bounding box with the object inside (Fig 2). This bounding
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box defines the label. S. haematobium eggs (viable and calcified) were labeled in digital images

using Annotation App software. Labeling eggs with bounding boxes was required to train the

object detection algorithms based on CNNs. Once labeling was finished, the Annotation App

software created a json type file with labels linked to the original image file, in which the coor-

dinates of the labeled objects are specified (annotated images). Whole-image classification was

performed by creating two subgroups of images depending on whether erythrocytes/leuko-

cytes were present or not in urine sediment samples.

2.6. Binary classification algorithms for hematuria and leukocyturia

detection

Whole-image binary classification models (MobileNetv3Large [34], EfficientNetv2 [35], and

NasNetLarge [36]) were employed to automatically classify digital images in two subgroups.

Digital images with or without the presence of erythrocytes/leukocytes in urine samples, with

100x magnification (10x ocular; 10x objective) were manually classified by three clinical labo-

ratory experts from the Vall d’Hebron International Health and Infectious Diseases Centre.

The image database was divided, allocating 90% for training/validation and 10% for testing.

Images were resized by default to 331x331 pixels for NasNetLarge, 224x224 pixels for Mobile-

Netv3Large, and 300x300 pixels for EfficientNetv2, and trained for 30 epochs and batch size

20. Only 100x magnification images (10x ocular; 10x objective) were employed for binary clas-

sification algorithm training.

2.7. Object detection algorithm training and comparison analysis

CNN object detection models were fine-tuned with our S. haematobium-labeled digital image

database. You Only Look Once (YOLO) [37] versions 5s, 5x, 8s, and 8x were trained. YOLO

was considered an optimal algorithm for object detection tasks, with several studies in the area

of diagnosis [25,38,39]. The YOLO versions were also crucial, considering YOLO “s” (small) as

Fig 2. Representative scheme of sample visualization, image acquisition, image pre-processing, and image

annotation procedures. Sample/slide, image, annotated image, and label are represented. Schistosoma haematobium
digital images were acquired with an integrated camera/smartphone camera in the Microbiology Laboratory of the Vall

d’Hebron Drassanes International Health and Infectious Diseases Centre. Illustrations were obtained from open source

resources.

https://doi.org/10.1371/journal.pntd.0012614.g002
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a fast and efficient alternative and YOLO “x” (extra-large) as a more accurate algorithm

[25,39]. The Schistosoma image database was divided, allocating 80% for training, 15% for vali-

dation, and 5% for testing. Images were resized by default to 640x640 pixels and CNNs were

trained for 30 epochs and batch size 16. Images were organized randomly considering the pro-

portions, and test subset images were unseen by the CNN model to avoid unreliable results

and preserve patient-level structure [40]. Neural networks were pre-trained with the Common

Objects in Context (COCO) dataset [41]. Object detection CNNs were compared using the

analytical metrics of precision, recall, F-score, and mAP0.5. Two consecutive image datasets

were employed for CNN training and evaluation. An initial image dataset containing 491

images was employed, and thereafter, a second dataset containing 1017 images, which also

included the images of the initial database (491). The number of images employed for CNN

training was determined considering supervised single-class classifiers performance and other

similar studies, although the minimum amount of labels to obtain reliable results depends on

the labels quality and classifier architecture [42,43].

2.8. Statistical analysis

Statistical analyses were performed to determine significant differences between validation

and test subset performance for each CNN model. Metric means were calculated individually

for each CNN model. To evaluate significant statistical differences between CNN models, a

paired t-test analysis (p-value<0.05, t-value > -2 or 2), mean (M), and standard deviation (SD)

were employed. The same statistical analysis was employed for binary classification algorithms.

The IBM SPSS software statistics environment was used.

2.9. Microscopy automation system

The system [44] was employed to automate a conventional Leica DM750 optical microscope

for malaria diagnosis. This technology can autofocus the image/FoV and guide the automated

movements of the slide through the X-Y axis of the microscope. All the diagnostic technology

is embedded into a smartphone/computer application, responsible for acquiring the images,

automating microscope auto-focus and stage movements, and using CNN algorithms for para-

site detection. The system is designed with 3D-printing technology and does not need an inter-

net connection or an electrical power supply. Smartphone-based, adaptability and auto-focus

results were previously published [44].

3 Results

3.1. Schistosoma haematobium urine sediment image database analysis

S. haematobium urine sediment samples, digital raw images, annotated images, and labels

were analyzed. A total of 1017 annotated digital images were imported into the database for

further CNN training and algorithm generation. A total of 1189 labels identifying S. haemato-
bium eggs (calcified/non-calcified) were annotated in digital images. Of the 1017 digital

images, 744 were acquired with the LEICA ICC50W integrated microscope camera, and 273

were acquired with the Samsung Galaxy S20 smartphone camera. For the detection of erythro-

cytes and/or leukocytes in urine, 762 images were acquired with the integrated microscope

camera LEICA ICC50W and manually classified as urine samples with (493 images) or without

(269 images) erythrocytes/leukocytes, respectively. A summary of the urine sediment sample

image database information is shown in Table 1.
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3.2. Convolutional Neural Network performance comparison for S.

haematobium egg detection

CNN models were trained with our S. haematobium image database and compared to evaluate

their performance in a test subset. Table 2 shows the most relevant metrics of the YOLOv5s,

YOLOv5x, YOLOv5x-DA, YOLOv8s, and YOLOv8x CNNs trained with 491- and 1017-image

databases. Overall analysis confirms that the 1017-image database provides higher metric

results for CNN training than the 491-image database, as expected. Considering the

1017-image database training, precision analysis shows optimal values with the YOLOv5

model, with 99.3% for YOLOv5x and 97.1% for YOLOv5s. Recall analysis demonstrates a

99.4% rate for YOLOv5x and 97.2% for YOLOv5s. Consequently, F-score analysis demon-

strated optimal values with the YOLOv5x (99.3%) and YOLOv5s (97.1%) models. Mean aver-

age precision (mAP0.5) analysis shows higher values for YOLOv5x, YOLOv5s, and YOLOv8s

with 99.4%, 98.8%, and 98.7% respectively, all with the 1017-image database. Overall metric

analyses in terms of precision, recall, F-score, and mAP0.5 indicated that the best CNN model

for S. haematobium detection in urine sediment samples with our image database was

YOLOv5x (1017).

Table 1. Summary of the urine sediment sample image database.

Category Sub-total Total

Sample source

Drassanes-Vall d’Hebron International Health and Infectious Diseases Centre

(Barcelona, Spain) 24 (samples/patients) 24 (samples/patients)

Image acquisition type Microscope integrated camera (ICC50W Leica) 744 (annotated

images) 1017 (annotated

images)Smartphone camera (Samsung Galaxy S20) 273 (annotated

images)

Image magnification 10x ocular lens and 10x objective lens 500 (annotated

images) 1017 (annotated

images)10x ocular lens and 40x objective lens 517 (annotated

images)

Annotation category

Schistosoma haematobium eggs 1165 (labels)

1189 (labels)Schistosoma haematobium calcified eggs 24 (labels)

Binary image

classification

Presence of erythrocytes and/or leukocytes in urine 493 images

762 imagesNon-presence of erythrocytes and/or leukocytes in urine 269 images

Negative sample

validation

Non-presence of Schistosoma haematobium eggs in urine 8 (samples/patients) 400 images

https://doi.org/10.1371/journal.pntd.0012614.t001

Table 2. Summary of Convolutional Neural Network training and performance parameters with the test image dataset. DA: Data augmentation, mAP: mean average

precision, YOLO: you only look once.

Neural Network model Epochs Precision (%) Recall (%) F-score (%) mAP0.5 (%) Images

YOLOv5x 30 92.3 73.3 81.7 81.7 491

YOLOv5x - DA 30 88.2 72.4 79.5 85.3 491

YOLOv8s 30 94.3 97.0 95.6 97.3 491

YOLOv8x 30 95.3 89.8 92.5 96.8 491

YOLOv5s 30 97.1 97.2 97.1 98.8 1017

YOLOv5x 30 99.3 99.4 99.3 99.4 1017

YOLOv8s 30 96.3 96.5 96.4 98.7 1017

YOLOv8x 30 96.3 95.1 95.7 96.6 1017

https://doi.org/10.1371/journal.pntd.0012614.t002
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To determine differences between neural network performances for S.haematobium egg

detection in digital images, a statistical analysis was conducted considering the test data subset.

As expected, models trained with a larger image dataset (1017) show considerably higher per-

formance when compared with the previous smaller image dataset (491) (p<0.05). The impact

of the size of the database was studied, even though it might seem obvious, to analyze whether

results using more images were necessary. Results of the paired t-test indicated that there were

significant statistical differences between YOLOv5x–DA-491 (M = 42.3, SD = 41.7) and

YOLOv5x-1017 (M = 51.3, SD = 51), t = 2.4, p<0.05. Moreover, results of the paired t-test

indicated that there were significant statistical differences between the YOLOv5-491

(M = 42.8, SD = 40.1) and YOLOv5-1017 trained versions (M = 50.7, SD = 49), t = 3, p<0.05).

These data demonstrate the performance gain due to the higher number of data/images for

training the YOLOv5x model. In contrast, there are non-statistically significant differences

between models YOLOv8s-491 and YOLOv8s-1017 (p>0.05) and models YOLOv8x-491 and

YOLOv8x-1017 (p>0.05). The performance gain due to the image dataset increase was not

obtained with model YOLOv8s or YOLOv8x. The optimal results of YOLOv8 with a relatively

small image database (491) demonstrate the efficiency of the neural network compared with

YOLOv5. F-score values, which are the harmonic mean between precision and recall, and

mAP0.5, provide valuable information to determine the best model for our image dataset.

Fig 3 shows the correlation between the F-score and mAP0.5 values of the multiple trained

neural networks. The dots represented in the top right part of the graph reflect optimal perfor-

mance. Overall analysis and comparisons demonstrate that the YOLOv5x model is the most

optimal CNN for our digital image dataset, although the YOLOv8 models are more efficient in

terms of training and image database size. Differences between small “s” and large “x” CNN

Fig 3. Graphical representation of F-score/mAP0.5 of the different CNNs trained on the test dataset. Orange dots represent the performance of CNNs

trained with the 491-image dataset. Blue dots represent the performance of CNNs trained with the 1017-image dataset.

https://doi.org/10.1371/journal.pntd.0012614.g003
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architectures were not statistically significant (p>0.05). Image identification was represented

in Fig 4.

3.3. Binary image classification performance for erythrocyte/leukocyte

detection in urine sediment images

Whole-image classification algorithms were trained with our S. haematobium image database and

compared to evaluate their performance. Table 3 shows the most relevant metrics to evaluate the

performance of the MobileNetv3Large, EfficientNetv2, and NasNetLarge models. There were no

statistically significant differences between the performance of these three models (p>0.05), or

between validation (M = 85.5, SD = 3.9) and test (M = 82.4, SD = 4) subsets in terms of accuracy

results (t = 1.8, p> 0.05). However, NasNetLarge was considered the best option for the erythro-

cytes/leukocytes image classification task with an 85.6.0% accuracy, followed by the MobileNetv3-

Large and EfficientNetv2 models, with 83.7% and 77.9% accuracy, respectively.

3.4. Negative sample validation

Analysis and validation tests were performed to evaluate the reliability of the YOLOv5x-1017

model trained with confirmed negative samples. Urine sediment samples (n = 8) with a

Fig 4. Panel A. Digital image (400x) of a urine sediment sample with hematuria and leukocyturia and three Schistosoma
haematobium eggs detected with the YOLOv5x trained model. Panel B. Digital image (100x) of a urine sediment sample with

three S. haematobium eggs detected with the YOLOv5x trained model.

https://doi.org/10.1371/journal.pntd.0012614.g004

Table 3. Summary of binary image classifier training and performance parameters on validation and test image datasets.

Image classifier model Epochs Batch size Validation Accuracy Test Accuracy

MobileNetv3Large 30 20 83.3 83.7

EfficientNetv2 30 20 83.3 77.9

NasNetLarge 30 20 90.0 85.6

https://doi.org/10.1371/journal.pntd.0012614.t003
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negative microscopic examination result for S. haematobium eggs were employed. Samples

were observed and validated by professional microscopists with proven experience in parasito-

logical diagnosis. Five microscope slides of each sample were prepared to observe the whole

urine sediment. A total of 400 images were acquired from urine sediment samples and ana-

lyzed by the trained YOLOv5x model (confidence threshold value = 0.7). These negative sam-

ple images were not used for CNN algorithm training. After analysis, 394/400 (98.5%) were

negative (true-negative) for S.haematobium infection, and six false-positive results were

reported (epithelial cells, urine crystals, and artifacts). All false-positive images were from a

single urine sediment sample.

3.5. Testing analysis with other image databases

To determine the robustness of our trained models, we tested the considered optimal model,

YOLOv5x, with digital images from other sources. However, there are no publicly available

large state-of-the-art S. haematobium urine sediment databases to compare our results. As an

alternative, publicly available single images were obtained from contrasted cited sources [23–

26,45–47]. We selected and employed images with different input sizes (from 1600 x 1200 pix-

els to 400 x 300) and different image weights (from 895 KB to 25.9 KB), ensuring a representa-

tive sample (n = 19). Digital images with parasite eggs were empirically tested with our fine-

tuned YOLOv5x model with positive results (27/27 eggs detected, average detection probabil-

ity value = 0.79).

3.6. Automated microscope for diagnosis and smartphone software

application

To automatically perform an autonomous detection of S. haematobium eggs in urine sediment

samples, we designed a fully automated low-cost robotized microscope. Three-D polylactic

acid pieces for microscope automation were built with an Ender 3-Pro printer. Automation

allows the emulation of optical microscope movements via 9G servo motors and an Arduino

MKR Wi-Fi 1010 controller. X-Y and Z (auto-focus) through the microscope slide permit the

system to acquire images of different FoVs for further CNN detection. To auto-focus each

FoV, a Variance of the Laplacian algorithm was employed [48]. Considering Schistosomiasis-

endemic areas, which are usually resource-poor settings, the microscope was designed with

low-cost materials and does not require continuous electric power supply. However, its imple-

mentation in resource-poor settings should be tested. Portable solar batteries grant the system

energy autonomy if this is not available in the laboratory. In addition, the 3D pieces were

designed with a range of measures as universal adapters for the vast majority of optical micro-

scopes. A smartphone device controls the system’s movements, via servo motors, through the

X-Y-Z axis of the microscope. The Arduino controller is connected to the smartphone device

via a Bluetooth low-energy connection, which additionally acquires the images and auto-

focuses the sample for further CNN object detection analysis. The whole diagnostic process is

integrated into a smartphone-based application developed with Android Studio Programming

environment v.2021 [49]. This automated system has already been employed by our research

group for the automated detection of Plasmodium trophozoites and leukocytes in thick blood

smear samples for malaria diagnosis [50].

4. Discussion

Schistosomiasis diagnosis by microscopic examination of urine and stool samples is still the

gold standard technique and is widely used in resource-poor areas. However, the continuous

reduction in microscopy parasitologist experts [13] requires the development and
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implementation of novel diagnostic techniques for the diagnosis of schistosomiasis and other

NTDs. In this study, we have developed a novel diagnostic technique based on the automatic

detection of S. haematobium eggs in urine sediment samples using AI tools and a robotized

low-cost 3D microscope system. Moreover, a first proof-of-principle study was performed to

evaluate its detection potential and implementation in non-endemic settings.

Following WHO guidelines for Schistosomiasis diagnosis, we have employed urine sedi-

ment samples and consequent image acquisition [32]. Clinical urine sediment samples are cru-

cial to properly acquire digital images of S. haematobium eggs, train CNN models, and finally

emulate a traditional microscopic diagnosis by AI image analysis techniques. In vivo and in
vitro cultures of S. haematobium for laboratory-kept parasite lifecycle were described in the

mid-1960s [51]; according to our knowledge, there are no publications describing their use for

digital image acquisition and database generation for further CNN training. The conservation

of fresh S. haematobium eggs can be difficult due to degradation. It would be optimal to cap-

ture images of S.haematobium eggs in situ at field laboratories, in order to obtain a more

robust and representative database. As a limitation of the study, (i) images should be acquired

at most 24/48 hours after sample collection, if not kept at 4˚C [52]. Moreover, (ii) system

development was performed in non-endemic settings, resulting in sample collection difficul-

ties due to the lower number of cases received in comparison with endemic regions. Sample

size was small, therefore further investigation is needed to obtain more robust and conclusive

results. Finally, (iii) a system validation should be pursued in S. haematobium endemic regions,

to evaluate its performance in such environments. Although the system has been designed for

its implementation in resource-poor settings, it has initially been evaluated in non-endemic

areas. Therefore, it is crucial to conduct pilot tests in the field and further studies to assess diag-

nostic performance in such environments. Some of the system aspects that would allow its

implementation in rural areas with few resources are: its adaptability to conventional optical

microscopes, its portability, the low-cost of the system and the non-internet connection

required.

As an attribute of the study, the detection of S. haematobium basal stage and calcified eggs

was implemented to detect both egg forms. Calcified eggs are typically found in chronic blad-

der infections and, sometimes, basal-stage eggs were not present, making their detection essen-

tial for a proper diagnosis [53]. One of the main strengths of our study is the training and

comparison of different YOLO neural network models. The continuous advancements in

CNN development and improvement are generating more efficient models for object detec-

tion. The YOLOv5 and YOLOv8 models were considered optimal options in terms of accuracy

and inference speed for object detection tasks [38]. Our results have shown that YOLOv5x was

the best option for S. haematobium egg detection with our digital image database (Table 2).

The improved YOLOv8 model shows a more efficient performance in terms of training in

comparison with YOLOv5; YOLOv8 models trained with the 491-image dataset demonstrated

optimal performances for all descriptive parameters. However, when the 1017-image dataset

was employed, the YOLOv5 models demonstrated better performance compared with

YOLOv8 (Fig 3). Other studies have compared the performance of the YOLOv5 and YOLOv8

models with very variable results [39,54]. Sary et al. 2023, compared the performance of both

models for human detection in aerial images, showing better precision and F-score values for

YOLOv8 and higher recall values for YOLOv5 [55]. Nevertheless, Sirisha et al. 2023, reported

that the YOLOv5 model has a higher mAP0.5 value compared with other YOLO versions [38].

In addition, both YOLOv5 and YOLOv8 were employed for diagnostic tasks such as detecting

developmental dysplasia of the hip in radiography images [56], and localization of dermo-

scopic structures [57], conferring the algorithms a contrasted efficacy for image-based

diagnosis.
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Another important aspect of this study was the identification of erythrocytes and leukocytes

in the urine with the NasNetLarge model, allowing a diagnostic orientation due to the high

correlation between the presence of erythrocytes in urine and S. haematobium eggs. It is

important to note that haematuria may appear in multiple clinical situations; however, in

schistosomiasis diagnostic protocols, a high correlation rate (78%) was observed, as shown in

other studies [58]. We could not confirm that haematuria and leukocytes are specific to the

infected individual, although if they were detected through images we could continue observ-

ing several sample replicas to find parasite eggs. Moreover, the NasNetLarge model had pro-

vided contrasted results for binary image classification with other similar diagnostic tasks,

such as melanoma skin lesion detection and classifying diabetic retinopathy severity in digital

images [59,60].

Other studies demonstrated the applicability of object detection algorithms for Schistosoma
egg detection in stool and urine samples [61–64]. Before the irruption of CNNs, other strate-

gies, such as the multi-class support vector machine (MCSVM) for parasite egg classification,

were developed with an overall performance of 97.7% [62]. However, CNNs improved tradi-

tional image object detection in terms of computational potential, speed, and performance.

Werd et al. 2022, developed an affordable AI-based system for the detection of soil-transmitted

helminths and S. mansoni eggs in stool samples with the R-FCN ResNet101 COCO model

[14]. They obtained an F-score of 88.9% for Schistosoma detection in stool samples, in compar-

ison with the 99.3% value in urine samples of our fine-tuned YOLOv5x model. However, we

must consider that the number of artifacts in stool samples is much higher than in urine sam-

ples. In addition, the number of images employed for CNN training was larger in our study.

The difficulty in obtaining parasite egg digital images has led to several studies using data aug-

mentation (DA) strategies [63]. Oliveira et al. 2022, used a DA strategy (66 original images) for

S. mansoni egg detection in microscopy images with the Faster R-CNN model, showing a

76.5% precision [64]. Nevertheless, with our image dataset, we did not observe any statistically

significant differences between DA and non-DA training, as shown in Table 2. As a break-

through, Oyibo et al. 2022, developed an optical automated system based on AI for the detec-

tion of S. haematobium and S. mansoni eggs in urine and stool, respectively, for

implementation in resource-poor settings [65]. Moreover, they mainly used non-clinical sam-

ples for UNET model training, which may interfere with its final performance. In addition,

Schistoscope 5.0 shows an 80.1% sensitivity and 95.3% specificity for S. haematobium detec-

tion. However, it is a non-optimal system for transportation and needs to be suitable for the

WHO target product profile for new diagnostics [66]. Its contribution is a milestone for auto-

mated schistosomiasis diagnosis and could be an alternative to conventional diagnosis in coa-

lescence with other similar studies. Additionally, they have demonstrated that the employment

of negative urines from endemic regions is crucial in validation studies, due to the presence of

abundant artifacts that could be identified as parasite eggs [66]. Therefore, in our study, a neg-

ative sample validation should be pursued with a large amount of samples (>8) to evaluate the

system performance in the field. Oyibo et al. 2023 also developed a detection framework for

the diagnosis of urogenital schistosomiasis in microscopy images with from low-resource set-

tings. The framework demonstrates a clinical sensitivity, specificity, and precision of 93.8%,

93.9%, and 93.8%, respectively, using results from an experienced microscopist as reference

[67]. As another example, Coulibaly et al. 2023 performed a community based schistosomiasis

screening program with a smartphone-based AI device showing 85.7% sensitivity and 93.3%

specificity [15]. Its design is also 3D-printed, innovative and portable; although there are some

differences with our system in terms of adaptability to other smartphone devices or micro-

scopes. An alternative to using CNN-based models such as YOLO would be to use Vision

Transformer models. However, they require larger model sizes, greater memory, and larger
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databases [68]. Since our database is relatively small, we decided to use CNN-based models,

which provide excellent results. AiDx multi-diagnostic microscope was tested in 17 communi-

ties in Abuja, Nigeria; showing 89% sensitivity and 99% specificity for the identification of S.

haematobium eggs in urine with the fully automated AiDx Assist mode [69].

Our system has proven to be robust in our microbiology laboratory (non-endemic settings)

and should be validated for its implementation in resource-poor settings for further evalua-

tion. However, developmental stages, such as the ones presented in this manuscript, were cru-

cial to evaluate the reliability of the system before a diagnostic validation, and were the basis

for further in-field studies. Overall, we believe that this novel automated low-cost AI-based

diagnostic system for parasite detection could join the global effort to fight NTDs and poverty-

related diseases worldwide.

5. Conclusions

Automated schistosomiasis detection is a big challenge to support and optimize traditional

microscopic diagnosis. Deep learning-based diagnostic techniques would help improve diag-

nostics and could be a suitable tool for the training and education of professionals. NTDs,

such as schistosomiasis, are being significantly overlooked by national and international health

organizations; therefore, novel solutions to improve the management of these diseases would

be of significant benefit to the most vulnerable affected populations. Comparison of different

YOLO object detection models allowed us to choose the best algorithm for our detection,

ensuring that these results could be replicated in other similar studies. The automation of the

entire process by robotization with 3D parts and servomotors for a conventional optical

microscope allows the emulation of the X-Y slide movements and sample auto-focus. The inte-

gration of image analysis and microscope automation provides the system with attributes that

render it accessible, affordable, and highly autonomous. Moreover, the low-cost and easy-to-

handle technology was designed to be implemented in any laboratory, regardless of their

resources. To this end, it is important to understand the needs related to the diagnosis of schis-

tosomiasis and other NTDs in the field and to jointly develop solutions for the correct imple-

mentation of new AI-based technologies. In conclusion, we are getting closer to developing an

automated diagnostic system for schistosomiasis diagnosis based on AI tools, to fight NTDs

and other poverty-related diseases.
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