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Notation

• SSBs, sugar sweetened beverages.

• US, United States.

• UK, United Kingdom.

• TEI, total energy intake. See TEIinit for total energy intake at baseline.

• ENSANUT, National Health and Nutrition Survey.

• INSP, National Institute of Public Health.

• BMI, body mass index.

• WHO, World Health Organization.

• TEIinit, total energy intake at baseline.

• SSBmax, maximum consumption of kcals from SSB such that 10% added sugar is achieved.

• κp, percent added sugar desired.

• Others, consumption of other added sugars (kcal).

• SSBinit, current added sugar consumption from SSB (kcal).

• ∆c, theoretical consumption change to achieve κp × 100% consumption of added sugar.

• i (superscript), ith individual in the sample. TEI
(i)
init corresponds to total energy intake at baseline

for individual i.

• prop, estimated average proportional change for SSBs consumers such that κp × 100% added sugar is
achieved.

• y1, y2, . . . , y10, year 1, year 2, year 10 (respectively).

• Reduction(yk), reduction of sugar % at year k.

• λ, proportion of added sugar reduction that one desires to achieve by year `.

• `, year at which a λ× 100% added sugar reduction is achieved.

• t, variable for day.

• BW , body weight function (kg) as a function of time (BW ≡ BW (t)).

• ECF , extracellular fluid (kg) as a function of time (ECF ≡ ECF (t))

• G, glycogen reservoire (kg) as a function of time (G ≡ G(t)).

• F , fat mass (kg) as function of time (F ≡ F (t)).

• L, lean mass (kg) as function of time (L ≡ L(t)).

• EE, energy expenditure as function of time (EE ≡ EE(t)).

• AT , adaptative thermogenesis as a function of time (AT ≡ AT (t)).

• RMRinit, resting metabolic rate at baseline.

• Finit, fat mass at baseline.

• Hinit, height at baseline.
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• ∆TEI, change in energy intake as a function of time (∆TEI ≡ ∆TEI(t)).

• K, constant for the initial energy balance condition (equilibrium).

• p, proportion of lean mass attributable to energy intake/expenditure difference.

• PAL, physical activity level.

• TEF , thermal effect of feeding.
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1 Data collection

We used data from the National Health and Nutrition Survey (ENSANUT) from 2012 which is available
in [1]. The final dataset called ”Database Sugar regulation Mexico.dta” can be found at the Open Sci-
ence Framework [2] with the DOI: 10.17605/OSF.IO/VFCM8 (web link osf.io/vfcm8). Table A details the
variables in the dataset.

Name Variable
intp Identifier for each individual in ENSANUT’s dataset.
agecat Age category. Levels: “20 to 40”, “40 to 60”, “Over 60”.
code upm Identifier of primary sampling unit.
pondef a Complex survey weight.
est var Strata for the estimation of variances accounting for survey design.
folio Unique identifier for each household in ENSANUT’s dataset (to merge with anthropometric databases).
folio c2 Unique identifier for each household in ENSANUT’s dataset (to merge with nutritional databases).
sex Sex of the individual, coded as 1: “male”; 2: “female”.
age Age (yrs).
weight baseline Weight at baseline (kg).
height Height (cm).
bmicategories Categories of “normal” (1), “overweight” (2) and “obesity” (3) at baseline.
ses Socioeconomic level, divided in tertiles, using the weighted sample.
sugar ssb Added sugar consumption at baseline from SSB (kcal).
kcaltot Daily total caloric intake at baseline (kcal).
finalweight Weight after intervention (kg).
changekcal Change in energy after intervention (kcal).
changeweight Change in weight after 12 years (kg).
bmifinal Body mass index after 12 years (kg/m2).
changebmi Change in body mass index after 12 years (kg/m2).
final bmiprevalences Categories of “normal” (1), “overweight” (2) and “obesity” (3) after intervention.
sugar tot Added sugar consumption from all sources before intervention (kcal).

Table A: Variables in Database Sugar regulation Mexico.dta

1.1 Included beverages in the regulation

Table B shows the beverages included not included in the sugar regulation. The beverages classification is
the same as in Sanchéz-Pimienta, et al which states: [3]

“Regular soda” includes all brands of carbonated sodas with caloric sweeteners; “Fruit, flavored, sports,
and energy drinks” include noncarbonated flavored water, industrialized juice, and energy and sport
drinks; “sweetened coffee and tea” include coffee and tea with caloric sweeteners; “aguas frescas and
homemade SSBs” include aguas frescas frescas, a traditional flavored water-based preparation, and fruit
shakes without sugar or other caloric sweeteners, atoles without milk, and pozol (fermented corn bever-
age); and “sweetened milk and milk beverages” include milk, milk shakes, smoothies, coffee or tea made
with milk (more than one-third of the preparation), and atoles with milk.[3]

1.2 Survey design

ENSANUT is a cross-sectional, multi-stage, probabilistic survey representative of the Mexican population
survey whose methodology has been explained elsewhere [4]. To account for this design, we used the R [5]
package survey [6] with the following design:

svystr <− svydesign(id = ˜id , strata = ˜est var, weights = ˜pondef a, PSU = ˜code upm,
data = Adults)

options(survey.lonely.psu = "adjust")

The same design in Stata [7], is achieved by:

svyset [w = pondef a], psu(code upm) strata(est var) singleunit(centered)

All population-level estimations were done considering this design in either of the programmes.
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Sugar Regulation Beverages group Description

Included
Industrialized carbonated
beverages

Regular soda.

Industrialized non-carbonated
beverages

Fruit, flavored, sports, and energy drinks.

Not Included
Homemade sweetened beverages Sweetened coffee and tea, aguas frescas and

homemade SSBs.

Dairy beverages Sweetened milk and milk beverages

Table B: Beverages included in the regulation.

2 Estimation of the sugar reduction target for regulation

2.1 Formula derivation

To estimate the target for added sugar regulation in SSBs, we estimated the maximum added sugar intake
from SSBs such that overall consumption of added sugar was under the WHO guidelines. These guidelines
establish that at most, 10% of the total energy intake (TEIinit) should come from added sugars. To find the
target, we considered only those individuals that reported a consumption > 0 and we calculated the amount
of added sugar from SSBs and from other sources as well as the Total Energy Intake in kcals (TTEIinit).
To estimate the individual level of maximum consumption of kcals from SSBs (SSBmax), such that a 10%
added sugar is achieved, we set κp = 0.1 (10% of total energy intake coming from added sugar). This was
specified in the following equation:

κp =
SSBmax + Others

TEIinit + (SSBmax − SSBinit)
= 0.1, (1)

where Others is the consumption of other added sugars (kcal), TEIinit is the current total energy intake (kcal),
and SSBinit is the current added sugar consumption from SSBs (kcal). The maximum sugar consumption
from SSBs (SSBmax) hence equals:

SSBmax =
κp

1− κp
· (TEIinit − SSBinit)−

1

(1− κp)
·Others. (2)

Using the SSBmax, we obtained the theoretical consumption change, ∆C:

∆C =


0, if 0 ≤ SSBinit ≤ SSBmax,

−SSBinit, if SSBmax ≤ 0,

SSBmax − SSBinit, if 0 < SSBmax < SSBinit.

(3)

Intuitively, if current sugar consumption from SSBs (SSBinit) was lower than the maximum consumption
from SSBs (SSBmax), we kept consumption at the current level (∆C = 0). If sugar from additional sources
was above the 10% threshold, we reduced all sugar from SSBs (∆C = −SSBinit). Finally, if by reducing SSBs
to the SSBmax achieves the goal of 10% added sugars in overall energy intake, we reduced sugar consumption
from SSBs to ∆C = SSBmax − SSBinit.

2.2 Individual estimation to obtain added-sugar percent reduction

For each individual, i, in the sample, we estimated their maximum amount of sugar from SSBs (SSB(i)
max),

such that the amount of added sugar in their total energy intake,TEI
(i)
init, is, at most, 10% for each individual.

For that purpose, we used equation (2) and considered as inputs the individual’s current total energy intake
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(TEI
(i)
init), their SSBs caloric intake (SSB

(i)
init), and their caloric intake from other added sugars (Others(i)).

The latter stand for kcaltot, sugar ssb, and sugar tot variables in our database.

Using each individual’s SSB
(i)
init, and SSB(i)

max we obtained their theoretical consumption change ∆
(i)
C .

The individual proportional change of sugar consumption from SSB was then calculated as prop(i) =

−∆
(i)
C /SSB

(i)
init. We then estimated the average proportional change for consumers:1 prop = 0.522, which is

equivalent to a reduction of 52.2% of sugar in SSB, which we rounded to 50%.

2.3 Regulation scenarios

After obtaining the λ% change of added sugar we then established different scenarios of regulation that
would achieve said change. The decreasing scenario (section 2.3.1) was used for all analysis in the article
(with k = 50) whilst the increasing (section 2.3.2) and constant (section 2.3.3) scenarios were used for the
sensitivity analysis. As was shown in the sensitivity analysis; all scenarios converge after 12 years.

2.3.1 Decreasing scenario

Let y1, y2, . . . , y10 denote year 1, year 2 upto year 10 (respectively). The decreasing scenario assumes a yearly
SSB-added-sugar reduction in which the yearly difference in added sugar% decreases in time. This scenario
was implemented in [8] and is given by:

Reduction(y1) = 1−
(
1− Reduction(yk)

) 1
k , (4)

for k = 1, 2, . . . , 10. The previous equation is equivalent to:

Reduction(yk) = 1−
(
1− Reduction(y1)

)k
. (5)

To achieve a λ× 100% reduction by year y` one would plug in the λ in Reduction(y`) (4) to obtain the first
year reduction associated to λ:

Reduction(y1) = 1−
(
1− λ

) 1
` , (6)

and then substitute in (5) to obtain an expression for the reduction in year k:

Reduction(yk) = 1−
(
1− λ

) k
` . (7)

In the specific case of a a reduction of λ = 0.5 (50%) after 10 years, the k-th year formula is:

Reduction(yk) = 1−
(
0.5
) k

10 . (8)

The proportion reduced yearly from the original amount of sugar for a reduction of λ = 0.5 after 10 years is
shown in Table C.

Year y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

Reduction 6.7% 12.9% 18.8% 24.2% 29.3% 34.0% 38.4% 42.6% 46.4% 50.0%
Difference 6.7% 6.2% 5.8% 5.4% 5.1% 4.7% 4.4% 4.1% 3.8% 3.6%

Table C: Yearly proportion of sugar reduced from original amount of sugar for a reduction
of λ = 0.5 after 10 years and difference in reduction % with previous year (Difference(yk) =
Reduction(yk)− Reduction(yk−1)).

1In accordance with the survey design established on section 1.2
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2.3.2 Increasing scenario

This implementation scenario was done for sensitivity analysis. Instead of implementing a decrease in
reduction of added sugar; we created a scenario in which the yearly difference in % reduction increases over
time. In this case, the equation for the k-th year is given by:

Reduction(yk) = λ ·
(
1− λ

) `−k
k ; (9)

where λ×100% is the desired reduction by year `. In the case of a 50% (λ = 0.5) SSB-added-sugar reduction
by year 10 the specific equation for the k-th year is given by:

Reduction(yk) =

(
0.5
) 10−k

k

2
, (10)

which yields the values in Table D.

Year y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

Reduction 3.6% 7.4% 11.6% 16.0% 20.7% 25.8% 31.2% 37.1% 43.3% 50.0%
Difference 3.6% 3.8% 4.1% 4.4% 4.7% 5.1% 5.4% 5.8% 6.2% 6.7%

Table D: Yearly proportion of sugar reduced using incremental scheme with a 50% reduction
(λ = 0.5) after ` = 10 years and difference in reduction % with previous year (Difference(yk) =
Reduction(yk)− Reduction(yk−1)).

These reduction values are the ones implemented in the paper’s sensitivity analysis (see section 4 below).

2.3.3 Constant scenario

This implementation scenario was done for sensitivity analysis (see section 4). In this scenario we imple-
mented a constant % reduction such that if a λ% reduction is implemented over ` years then each year a
λ%/` is reduced such that by year `, λ% is achieved. For the specific case of λ = 0.5 (50% reduction) for
` = 10 years the percent reduction is presented in Table E. The general formula for the k-th year in this case

Year y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

Reduction 5% 10% 15% 20% 25% 30% 35% 40% 45% 50.0%
Difference 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%

Table E: Yearly proportion of sugar reduced using the constant 50
10

% reduction and difference
in reduction % with previous year (Difference(yk) = Reduction(yk)− Reduction(yk−1)).

is given by:

Reduction(yk) = k · λ
`
, (11)

where λ denotes the expected reduction at year `. In the particular case of a 50% reduction in 10 years (the
one implemented in the paper’s sensitivity analysis) the formula is:

Reduction(yk) = k · 0.5

10
. (12)

2.4 Individual modelling of energy intake for reduction scenarios

The caloric reduction scenarios were designed globally. However, the reductions were conducted individually.
Thus for each individual i we modelled their energy intake change at day t with a function ∆TEI(i) given
by:

∆TEI(t)(i) = TEI
(i)
init − Reduction(ydt/365e) · SSB

(i)
init (13)

with d·e the ceiling function where dxe stands for the smallest integer larger or equal to x. In the previous

equation, TEI
(i)
init stands for the total energy intake (kcals) of the i-th individual and SSB

(i)
init their initial

SSB consumption (kcals).
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3 Weight change model

The weight change model [9] defines individual weight (kg) as the sum of fat F and lean mass L, extracellular
fluid ECF and glycogen G:

BW = ECF + 3.7G+ F + L. (14)

Extracellular fluid ECF ≡ ECF (t) is the solution to the ordinary differential equation system:
dECF

dt
= 1

Na

(
∆Nadiet + ξNa(ECF − ECFinit)− ξCI(1− CI/CIb)

)
,

ECFinit = 0.

(15)

where Na = 3.22 mg/ml, ξNa = 3000 mg/L/d, and ξCI = 4000 mg/d, are phisiological constants [9].
∆Nadiet represents the change in sodium (mg/d) for the individual (3). CIb is the carbohydrate intake at
baseline (assumed to be 1/2 of energy intake estimated in (3)) and CI ≡ CI(t) is the carbohydrate intake
after the consumption reduction (assumed to be half the energy intake after reduction, CI ≡ ∆TEI(t)/2).
Glycogen mass G ≡ G(t) is described by the ordinary differential equation:

dG

dt
=

1

ρG

(
CI − kG ·G2

)
, (16)

where ρG = 4206.501kcals/kg (17.6MJ/kg), and kG = CIb/G
2
init is a constant with Ginit = 0.5 kg the initial

glycogen mass.
Fat and lean mass, F ≡ F (t) and L ≡ L(t), represent the solutions to the following system of nonlinear

ordinary differential equations:

dF

dt
=

(
1− p

)
ρF

(
TEIinit − EE − ρG

dG

dt

)
,

dL

dt
=

p

ρL

(
TEIinit − EE − ρG

dG

dt

)
,

(17)

with ρF = 9440.727 kcals/kg (39.5 MJ/kg), ρL = 1816.444 kcals/kg (7.6 MJ/kg) are constants, and p ≡
C/(C + F ) a function of fat mass with C = 10.4 · ρLρ−1F . Total energy expenditure EE is given by:

EE = K + γFF + γLL+ δBW + TEF +AT + ηL
dL

dt
+ ηF

dF

dt
, (18)

with γF = 3.107075 kcals/kg/d (13 kJ/kg/d), γL = 21.98853 kcals/kg/d (92 kJ/kg/d), ηF = 179.2543
kcals/kg (750 kJ/d), ηL = 229.4455 kcals/kg (960 kJ/kg) are physiological constants. K is determined by
the initial energy balance condition:

K = RMRinit · PAL− γLLinit − γFFinit − δBWinit (19)

with RMRinit the initial resting metabolic rate (as estimated by (21)), PAL the physical activity level
(assumed PAL = 1.5), Linit, Finit, BWinit the initial lean, fat and body weight masses. The constant δ is

determined defined as δ = RMRinit

(
(1 − βTEF ) · PAL − 1

)
/BWinit with βTEF = 0.1. Furthermore, the

thermal effect of feeding is defined as TEF ≡ βTEF ∆TEI(t) with ∆TEI(t) as specified in (13). Finally,
adaptative thermogenesis is given by the solution to the ODE system:

dAT

dt
= βAT ∆TEI −AT,

ATinit = βAT · PAL ·RMRinit.

(20)

We remark that for each individual, the initial resting metabolic rate RMRinit is described by the equations
[10]:

RMRinit =

{
9.99 ·BWinit + 625 ·Hinit − 4.92 ·AGEinit + 5 if Sex = Male,

9.99 ·BWinit + 625 ·Hinit − 4.92 · ·AGEinit − 161 if Sex = Female.
(21)
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with Hinit, AGEinit initial height and age respectively. Initial fat mass was obtained via the function:

Finit =

(1/100) ·BWinit ·
(

0.14 ·AGEinit + 37.31× ln(BWinit/H
2
init)− 103.94

)
if Sex = Male,

(1/100) ·BWinit ·
(

0.14 ·AGEinit + 39.96 · ln(BWinit/H
2
init)− 102.01

)
if Sex = Female.

(22)

Additional information on the model can be found in [9, 11, 12, 13]

3.1 Individual implementation

For each individual i in the ENSANUT sample we estimated their energy intake change (13) as a function of

time from their individual SSB consumption, SSB
(i)
init (sugar ssb in database) and their reported total energy

intake TEI
(i)
init (kcaltot). We used this quantity to obtain their carbohydrate intake change CI(i)(t) =

∆TEI(i)(t)/2 and their carbohydrate intake at baseline CI
(i)
b = TEI

(i)
init/2.

The individual’s resting metabolic rate RMR
(i)
init was estimated from their initial body weight in kilograms

BW
(i)
init (weight baseline in database), height in centimeters H

(i)
init (height in database), age in years

AGE
(i)
init (age in database), and sex, Sex(i) (sex in database) following (21). Their initial fat mass F

(i)
init was

also estimated from BW
(i)
init, H

(i)
init, AGE

(i)
init,Sex(i) in accordance to (22). The individual’s initial lean mass

was obtained by setting L
(i)
init = BW

(i)
init−

(
F

(i)
init + 3.7 ·Ginit +ECFinit

)
, with Ginit = 0.5 and ECFinit = 0.

Finally each individual’s energy balance constant was estimated as K(i) = RMR
(i)
init · PAL(i) − γLL(i)

init −
γFF

(i)
init − δ(i)BW

(i)
init where δ(i) = RMR

(i)
init

(
(1− βTEF ) · PAL(i) − 1

)
/BW

(i)
init. For all individuals we set a

physical activity level of 1.5 (PAL(i) = 1.5) which corresponds to “sedentarism” in accordance to [9].
For each individual, we estimated lean and fat masses, glycogen and extracellular fluid from the system

of equations given by (15—20) using the parameters described above and setting ∆NA
(i)
diet = 0.2 To solve

this system of differential equations, we used a 4th order Runge-Kutta algorithm (RK4) [14] with a stepsize
∆t = 1. RK4 was programmed in C++ for speed and connected to R via the Rcpp package.[15, 16].

The RK4 algorithm throws numerical estimates for each time t of each individual’s extracellular fluid
ECF (i)(t), glycogen G(i)(t), fat and lean masses F (i)(t), L(i)(t). We estimated body weight for each indi-
vidual adult in the ENSANUT sample as:

BW (i)(t) = ECF (i)(t) + 3.7 ·G(i)(t) + F (i)(t) + L(i)(t)

where t stands for the number of days since the intervention. Each individual’s BMI was estimated as:

BMI(i)(t) = BW (i)(t)/(H
(i)
init)

2.

The previous model is completely programmed in the bw package in R [17]. Finally, we used the survey

package [18, 19] to create summary statistics of BW (i)(t) and BMI(i)(t) (both in the overall adult population
and in specific subpopulations by sex, SES, and age). For these estimates we accounted for the survey design
as established in section 1.2.

This model has been written in pseudocode and is presented in Algorithm 1.
The different scenarios described in section 2.3 were implemented following the same algorithm by chang-

ing the formula for the reduction by year k in (13) and thus obtaining a different ∆TEI(t).

2Albeit we assumed no change in sodium intake ∆Nadiet = 0, reducing sugar in SSB can have an effect on the recipe
resulting in sodium intake changes.
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Algorithm 1 Individual level weight change model

1: procedure Weight change model

2: Input:

3: n . Number of individuals in sample

4: Years . Number of years to run the model for

5: wk . Survey weight for k-th individual (k = 1, 2, . . . , n)

6: TEI
(k)
init . k-th individual’s reported total energy intake (k = 1, 2, . . . , n)

7: SSB
(k)
init . k-th individual’s reported SSB consumption (k = 1, 2, . . . , n)

8: BW
(k)
init . k-th individual’s reported body weight (k = 1, 2, . . . , n)

9: H
(k)
init . k-th individual’s reported height (k = 1, 2, . . . , n)

10: AGE
(k)
init . k-th individual’s reported age (k = 1, 2, . . . , n)

11: Sex(k) . k-th individual’s sex (k = 1, 2, . . . , n)

12: PAL(k) . k-th individual’s physical activity level (k = 1, 2, . . . , n)

13: ∆NA
(k)
diet . k-th individual’s change in sodium intake (k = 1, 2, . . . , n)

14: for i in 1 to n do

15: ∆TEI(t)(i) ← TEI
(i)
init − Reduction(ydt/365e) · SSB(i)

init

16: CI(i)(t)← ∆TEI(i)(t)/2

17: CI
(i)
b ← TEI

(i)
init/2

18: Calculate RMR
(i)
init from BW

(i)
init, H

(i)
init, AGE

(i)
init, Sex(i) using (21).

19: Calculate F
(i)
init from BW

(i)
init, H

(i)
init, AGE

(i)
init, Sex(i) using (22).

20: L
(i)
init ← BW

(i)
init −

(
F

(i)
init + 3.7 ·Ginit + ECFinit

)
21: K(i) ← RMR

(i)
init · PAL

(i) − γLL(i)
init − γFF

(i)
init − δBW

(i)
init as in (19)

22: δ(i) ← RMR
(i)
init

(
(1− βTEF ) · PAL(i) − 1

)
/BW

(i)
init

23: Runge Kutta 4 do

24: Calculate AT (i) from (20) using RMR
(i)
init, ∆TEI(i) and PAL(i).

25: Calculate ECF (i) from (15) using CI(i), CI
(i)
b and ∆NA

(i)
diet.

26: Calculate G(i) using CI(i), CI(i) as in (16)

27: Calculate F (i) and L(i) as in (17) using AT (i),K(i), TEI(i), G(i), PAL(i),∆TEI(i).

28: end Runge Kutta 4

29: BW (i)(t)← ECF (i)(t) + 3.7 ·G(i)(t) + F (i)(t) + L(i)(t)

30: BW
(i)
F ← BW (i)(365 ·Years)

31: BMI
(i)
F ← BW

(i)
F /(H

(i)
init)

2

32: ∆BW (i) ← BW
(i)
init −BW

(i)
F

33: end for

34: ∆BWOverall =
∑n

i=1 wi ·∆BW (i)

35: for cat in [Males, Females, SES low, SES middle, SES high, Age 20-39, Age 40-59, Age 60+ ] do

36: ∆BW cat =
∑n

i=1 wi ·∆BW (i) · Icat

37: end for

38: end procedure
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4 Sensitivity analysis

4.1 Different scenarios

The increasing and constant percent change scenarios from sections 2.3.2 and 2.3.3 were implemented as a
sensitivity analysis. These resulted in different functional forms for ∆TEI(t) as different formulas for the
reduction were used in (13); the remaining part of the estimation process (section 3) was the same.

4.2 Model under compensation assumptions

As different combinations of compensation and regulations result in different values of energy reduction
(λ × 100%, following the notation of section 2.3) at year 10, we created a consumption-percent change
matrix Λ whose entries correspond to the overall reduction associated to both, the % compensation and
the % added sugar reduction (Table F). The rows of the matrix stand for % added sugar reduction whilst
the columns for % compensation (both in multiples of 10). Hence for a reduction of 10% (1 × 10%) and
compensation of 30% (3 × 10%) the entry Λ1+1,3+1 of the matrix equals 1 ×

(
10 − 3

)
% = 7%. In general,

each entry of the matrix corresponds to a λ× 100% reduction es given by Λi+1,j+1 = i×
(
10− j

)
%. Table

F shows the reductions Λi+1,j+1 × 100% modelled for the sensitivity analysis.

% Compensation

0 10 20 30 40 50 60 70 80 90 100

%
A
d
d
e
d

su
g
a
r
re

d
u
c
ti
o
n 0 0 0 0 0 0 0 0 0 0 0 0

10 10 9 8 7 6 5 4 3 2 1 0
20 20 18 16 14 12 10 8 6 4 2 0
30 30 27 24 21 18 15 12 9 6 3 0
40 40 36 32 28 24 20 16 12 8 4 0
50 50 45 40 35 30 25 20 15 10 5 0
60 60 54 48 42 36 30 24 18 12 6 0
70 70 63 56 49 42 35 28 21 14 7 0
80 80 72 64 56 48 40 32 24 16 8 0
90 90 81 72 63 54 45 36 27 18 9 0

100 100 90 80 70 60 50 40 30 20 10 0

Table F: Matrix Λ with percent reductions. For i× 10% added sugar reduction and j × 10%
compensation the entry Λi+1,j+1 ((i+ 1)-th row, (j+ 1)-th column) denotes the corresponding
% added sugar diminishment.

Each entry λ ≡ Λi,j of the matrix was applied to the main scenario (7) to obtain the k-th year reduction.
The reductions resulting from (7) were then plugged into (13) and the weight change model (section 3) was
applied. There results were associated to a weight reduction matrix W whose entries Wi+1,j+1 correspond
to weight (kg) reduced after added sugar reduction to i × 10% accounting for j × 10% compensation. We
represented the matrix graphically with the ggplot2 package [20] using cell-shading as seen in figure 1 in
the main article.
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