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S1 Text S1: Supporting methods and simulation re-

sults

The results presented in the main text involved a complex synthesis of different data sets

and different methods. Figure S7 illustrates how each dataset was used and how each

analysis method was used to generate each result. The figure also indicates which section

in the supplement contains additional information about each step of the analysis. The

main results are

1. Estimated incidence and prevalence over times

2. Fraction of transmissions attributable to individuals at different stages of infection

and those who are diagnosed/undiagnosed

There are a variety of ways to estimate incidence and prevalence, and we have presented

two. All of these make use of surveillance data and data that is informative about the

stage of infection at diagnosis. The genetic data is not essential to estimating incidence

and prevalence. In contrast, the genetic data is central to estimating the source of trans-

missions, and a more complex analytical pipeline is required to make use of the genetic

data, involving sequence alignment, quality control, phylogenetic estimation and finally,

the fitting of a coalescent model.

S1 Epidemiological model

Estimation of HIV incidence is complicated by the long infectious period and long de-

lay between infection and diagnosis. Diagnosis rates have changed substantially over the

course of the epidemic and may also vary between risk-groups and over the course of
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infection. When estimating HIV incidence, an inherent tradeoff must be recognized be-

tween time-dependent diagnosis rates and the latent unobserved incidence responsible for

generating observed diagnoses. Does an increase in the number of diagnosed cases reflect

increasing incidence or greater testing and diagnosis rates? One approach to disentangling

these effects is based on the presence or absence of various antigens and antibodies that

occur at different times after infection [1,2]. However, these assays are often problematic.

False positive can result for patients diagnosed before or concurrently with AIDS, which

has limited the generalizeability to settings with different rates of AIDS diagnosis [3].

Current antibody assays are limited to a detection window of 162 days post-infection [4],

which also limit the resolution of these tests for determining recent infections.

In locales which lack a centralized HIV surveillance system, transmission system mod-

els, usually formulated with ordinary differential equations (ODEs), are fitted to sero-

prevalence survey data. There are relatively few transmission models which attempt to

integrate clinical data regarding stage of infection for estimation of HIV incidence. We

follow the approach taken in Bezemer et al. [5], which integrates clinical data where it is

available with an explicit HIV transmission model. This model describes incidence and

prevalence over time using a system of ordinary differential equations, but also describes

the natural history of infection as progressing through EHI, 3 chronic stages, and AIDS,

which closely reproduces empirical observations regarding the time from infection to AIDS

(section S2 ). This model tracks both the number of undiagnosed and diagnosed infected

individuals over time. Diagnosis rates vary over time, and also between stages of infection.

Fitting of the model can therefore make use of clinical variables which are informative of

the stage of infection at the time of diagnosis. This model avoids mechanistic assumptions

about how incidence depends on the number or frequency of susceptible individuals. Sim-

ilar to models proposed by Hogan et al. [6], incidence and diagnosis rates are described by
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smoothed cubic B-splines. This model is based on implicit conditions that risk behavior

and sexual network patterns are homogeneous within each stage of infection. The model

is illustrated in figure S6.

The HIV model was derived from two recently published models described below.

In [6], smoothing splines were used to model incidence and diagnosis rates as a function

of time. This has the advantage of not requiring assumptions about unknown mechanisms

regarding contact rates, sexual networks and the number of susceptibles at risk of infection.

This model, however, did not realistically model the natural history of infection or account

for the effects of treatment or differential diagnosis rates. A similar model was developed

in [5], which additionally used a compartmental structure to realistically model the natural

history of infection and the effects of HAART.

The final model, elaborated below, consists of two smoothing splines for incidence and

diagnosis rates, a compartmental model for the natural history of infection, parameters

describing the initial conditions, and several parameters controlling the relative contri-

bution of different stages of infection and diagnosed individuals to total transmissions.

In contrast to most compartmental models, this eschews mechanistic descriptions of the

way incidence scales with the numbers of susceptible individuals. The model does not

contain terms describing the numbers of susceptibles, and does not have parameters de-

scribing contact rates, transmission probabilities, or sexual network structure. The model

was selected for the estimation of incidence, diagnosis rates, and fraction of transmissions

attributable to early infection.

Incidence of infection λ(t) is modeled with a 3rd degree smoothing spline [7]. This has

previously [6] been suggested as an appropriate model for HIV epidemics. The smoothing

parameter for the spline was fixed at 0.2. Various number of control points between 7-36

for the spline function were tried and log likelihoods were compared after Nelder-Mead
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optimization from 6000 random starting conditions. All results presented in the main

text were based on a spline with 13 evenly spaced control points between 1975 and 2011

which was found to give good results. Splines were implemented using the smooth.spline

function in R 2.15.1.

Following the model developed in [5], chronic HIV infection progresses through several

stages of equal average duration. We find that three stages of chronic infection acurately

reproduces the duration of chronic infection (see section S2 ). The rate of progression

from stage i to i+1 is γ = 1/2.1 years−1. This model yields a Gamma-distributed interval

from the duration of chronic infection. Additionally, we include an early HIV infection

(EHI) period before the first stage, which lasts 1 year on average (γ0 = 1/365 day−1).

The EHI stage will sometimes be referred to as stage zero, and variables relating to this

stage will appear with subscript 0. The final stage of infection is AIDS, which will be

synonymous with stage 4.

Infected individuals are diagnosed at a rate µ(t) which varies over time. This rate

is modeled with a 3rd degree smoothing spline with eight evenly spaced control points.

µ(t) is the same for stages 0 through 3. The AIDS diagnosis rate µAIDS(t) is a piecewise-

constant function chosen to reproduce the observed timeseries of HIV/AIDS diagnoses.

Since the diagnosis rates change over time, the time interval from infection to diagnosis

does not have a simple form.

I0 and J0 will respectively denote the number of undiagnosed and diagnosed infected

individuals with EHI. Ii and Ji will respectively denote the number of undiagnosed and

diagnosed infected individuals in stages i = 1 through i = 4 (AIDS).

The surveillance data was very complete with respect to deaths in diagnosed individ-

uals and surveillance data also indicate if the deceased had been diagnosed with AIDS

prior to death. The health department does annual death matching with the state vital
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records department and periodic matching with the ‘Social Security Death Master File’

and the ‘National Death Index’ to obtain deaths on persons who have moved out of the

state after diagnosis. We calculated empirical death rates for each year of surveillance

data using the available death dates and the known number of diagnosed AIDS cases.

We assume that natural mortality (non-AIDS related) in undiagnosed individuals with-

out AIDS is the same as for diagnosed individuals without AIDS. Natural mortality in

infected individuals, that is, deaths not associated with HIV/AIDS, occurs at a rate m(t).

Mortality from undiagnosed AIDS cases occurs at the rate γAIDS(t), and mortality from

diagnosed AIDS cases occurs at the rate γDAIDS(t). All of these mortality rates are piece-

wise constant functions with respect to time and are parameterized from surveillance data

to reproduce the observed timeseries of non-AIDS and AIDS deaths. Mortality data was

incomplete for 2009-11, so we used the estimated natural mortality rate in 2008 for those

years.

The model for prevalence of infection over time comprises a system of 10 ODEs which
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describe the time course for the I and J state variables:

d

dt
I0 = λ(t)− (γ0 + µ(t) +m(t))I0,

d

dt
J0 = µ(t)I0 − (γ0(1− τr(t)) +m(t))J0,

d

dt
I1 = γ0I0 − (γ + µ(t) +m(t))I1,

d

dt
J1 = γ0J0 + µ(t)I1 − (γ(1− τr(t)) +m(t))J1,

d

dt
Ii = γIi−1 − (γ + µ(t) +m(t))Ii for 2 ≤ i ≤ 3, (S1)

d

dt
Ji = γ(1− τr(t))Ji−1 + µ(t)Ii − (γ(1− τr(t)) +m(t))Ji for 2 ≤ i ≤ 3,

d

dt
I4 = γI3 − (γAIDS(t) + µAIDS(t))I4,

d

dt
J4 = γ(1− τr(t))J3 + µAIDS(t)I4 − γDAIDS(t)J4.

This system of equations is also depicted in figure S6.

The parameters τ and r(t) describe stage progression for those who are diagnosed and

treated. The parameter r(t) ∈ (0, 1) reflects the estimated fraction of infected individuals

for whom HAART is available provided clinical criteria for treatment are met. It is

estimated independantly from the other parameters as described in section S2 .1. This

fraction varies over time and is zero prior to 1995; it increases monotonically and plateaus

in 2000. It is necessary to distinguish between the set of patients for whom HAART

is potentially available and those who are effectively treated and have suppressed viral

loads. Therefore, we introduce the extra parameter τ ∈ (0, 1), which is time invariant, and

controls how quickly treated individuals progress through infection. Diagnosed patients

progress to the next stage of infection at a reduced rate modified by the factor (1−τr(t)).

The product τr(t) may be interpreted as the probability that HAART is available at time

t and that viral loads are effectively suppressed. r(t) is derived below.
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S1 .1 Transmission & population genetic model

There are three necessary inputs into the population genetic model described in [8].

• Number of infected over time (eqns S1 )

• Number of transmissions from each compartment to each compartment over time.

This is called the ‘birth’ matrix F (t).

• Number of transitions from each compartment to each compartment over time. This

is called the ‘migration’ matrix G(t).

Here we show how the latter two are calculated from the model.

Firstly, the migration matrix is deduced directly from the stage-progression and diag-

nosis terms in equations S1. For example, for undiagnosed chronic individuals in stage i,

we have

Gi,i+1(t) = γIi.

And, if we order the 5 diagnosed stages after the 5 undiagnosed stages in the matrix, then

the term

Gi,i+5(t) = µ(t)Ii

captures the effects of diagnosis.

To construct F (t), we must model the transmission rate from each compartment. Sev-

eral parameters describe the relative contribution of infected individuals in different stages

of infection and diagnosed/undiagnosed individuals to the total number of transmissions.

These parameters are not identifiable from the timeseries data alone [5], and so by design,

these parameters do not enter directly into the model for prevalence of infection over time.

But these parameters are used in the population genetic model, and as shown in the main

text, these parameters are identifiable from genetic data.
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Given an incidence rate at some time, λ(t), these parameters describe how many

transmissions occur from each stage of infection and by diagnosis status. The equations

developed here depend on, but do not contribute to, the equations that describe incidence

and prevalence over time in the last section.

Transmissions attributable to undiagnosed infected individuals in stage i are pro-

portional to the number infected in stage i and a weight βi, which models differential

contributions to the total number of transmissions from each stage. These weights are

relative to undiagnosed EHI, which has β0 = 1. The number of transmissions from an

undiagnosed individual in stage i at time t will be proportional to the following weight:

νIi (t) = βiIi(t). (S2)

δ ∈ (0, 1) is a time-invariant parameter which describes the relative infectiousness of

diagnosed individuals upon learning that they are infected. It reflects changed behavior

in response to diagnosis, such as serosorting and condom use.

The number of transmissions from a diagnosed individual in stage i at time t will be

proportional to the following weight:

νJi (t) = βiδJi. (S3)

βi and δ are free parameters which are estimated as described in Text S2. We fix β0 = 1,

so that all other transmission rates are relative to undiagnosed EHI.

Once the rate of transmissions has been calculated from each compartment, the meth-

ods in [8] can be directly applied to calculate the likelihood of a genealogy given the

solution of the compartmental model. We denote the transmsision rate of hosts in stage k

and diagnosis status X to be FkX(t). This will be given by the product of total incidence
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rate λ(t) and the normalized weights ν.

FkX(t) = λ(t)
νXk (t)∑5

i=0 ν
I
i (t) + νJi (t)

. (S4)

As described above, this model has 6 free parameters ( βi for i ∈ (0, 4) and δ). We

consider several simplifications. We combine chronic stages by defining the parameter

βc := β1 = β2 = β3. The symbol βa will be a synonym for β4. We then consider several

model variants:

• Free parameters: δ, βc, βa

• Free parameters: βc, βa. Fixed: δ = 1.

• Free parameters: βc, δ. Fixed: βa = βc.

• Free parameters: βc. Fixed: δ = βa = 1.

• Free parameters: δ. Fixed: βc = βa = 1.

These models were independantly fitted to the data and compared by AIC.

S1 .2 Migration

A phylogeny estimated from HIV sequences from a given risk group defined by risk behav-

ior and location is influenced by the epidemic both within and outside of the risk group.

Lineages may both be imported and exported from the risk group. An ancestral lineage

from the distant past is much more likely to represent an infected host outside of the risk

group. For this reason, and since the model is specific to a single risk group, we include

background HIV sequences from the LANL HIV database in order to determine which

portion of the phylogenetic tree likely represents the epidemic in Detroit MSM.
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We model immigration and emigration of lineages using a source/sink modification of

the HIV model depicted in figure S8. Hosts emigrate to the sink population at a constant

per capita rate ξ. We set the immigration from the source population to the risk group

occurs at the same aggregate rate, so that the number of infected in the risk group remains

unchanged and no direct modifications to the equations S1 are necessary. Once a lineage

exits the Detroit MSM risk group, we assume there is zero probability that it will return

or that it’s descendants will return.

In the population genetic model, the following modification is required to account for

migration. Let index k correspond to the source population. Then,

• Gk,i(t) = ξIi(t) if i corresponds to an undiagnosed category or Gk,i(t) = ξJi(t) if i

corresponds to a diagnosed category.

• Letting Yk(t) denote the size of the source population, we use Yk(t) = 400×
∑

i Ii+Ji.

The factor of 400 was chosen so that Yk ≈ 1.2× 106 in the present day.

• Fk(t) = 400λ(t) describes the number of transmissions within the source population.

The parameter ξ is a free parameter that is estimated from the genetic data as described

below.

S2 Natural history

Data from the Multicenter AIDS Cohort Study (MACS) [9] was used to parametrize mod-

els of chronic infection. We analyzed 190 patients with known dates of seroconversion and

AIDS before the availability of HAART. EHI durations were drawn from an exponential

distribution (mean one year) which gave many replicates of chronic infection intervals

consistant with the MACS data. An Erlang distribution was fitted to these simulated

S-11



intervals. The shape parameter was selected by maximum likelihood (fitdistr in R). The

compartmental model with three chronic stages of duration 2.1 years was selected to

reproduce this distribution.

The distribution of the duration of chronic infection is shown in figure S9. The duration

of AIDS in the model varies over time and depends on the empirical mortality rates from

the surveillance data.

S2 .1 Availability of HAART

This section discusses the derivation of r(t), the availability of HAART given clinical

requirements for treatment are satisfied. This should not be interpreted as the proportion

of individuals treated and with suppressed viral loads at time t; that is described by the

product τr(t). HAART became available around 1995 and its availability to diagnosed

individuals increased steadily over the next 5 years. To model the increasing availability of

HAART, we used data collected in Michigan from the Medical Monitoring Project (MMP)

[10]. MMP provided information on 162 individuals currently in treatment in Michigan,

including the date of first positive HIV test and the date of first antiretroviral usage. Data

from MMP is illustrated in figure S10. In 1995, there were 23 people previously diagnosed

and 7 in treatment (30% ). In 2000, there were 66 people previously diagnosed and 51 of

which were in treatment (77% ).

The time from diagnosis to treatment was assumed to be Weibull distributed. This

interval was modeled using a parametric survival regression (survreg in R) adjusting for

the year of diagnosis and assuming right-censoring at the time of the MMP survey. It was

assumed that availability of HAART plateaued in year 2000.

FHAART
s (∆t) will denote the fraction of diagnosed infected individuals on HAART ∆t

years after diagnosis among those individuals diagnosed at time s. This fraction is given
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by the CDF of the Weibull distribution with parameters from the survival regression

model. Supposing that HAART availability does not increase for infected cohorts beyond

s = 2000, we calculate the availability of HAART in year t by averaging the fraction

on HAART for those diagnosed up to 7 years in the past relative to the the fraction on

HAART for the infected cohort in 2000. r(t) = 0 for t < 1995. For t ≥ 1995, we have

r(t) =
1

7

∫ t

s=(t−7)

FHAART
s (t− s)
FHAART
2000 (t− s)

ds if t ≥ 1995.

The estimated r(t) is illustrated in figure S10.
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