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Global stochastic epidemic model

We consider a global stochastic epidemic model [1] which takes into account the complete Inter-

national Air Transport Association (IATA) [2] database, composed of 3100 airports and 17182

weighted edges accounting for the traffic of passengers between pairs of airports. Inside each
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city we assume a standard compartmentalization of the population in which every individual

belongs to a certain compartment; the compartments used allow for a detailed description of a

typical evolution of the actual disease, by including the incubation period and the asymptomatic

course of influenza [7, 8]. Individuals in each city can change compartment by following the

infection dynamics and are also allowed to travel from one city to another by following the

routes of the airline transportation network.

Details of the compartmentalization, in the baseline case and in the intervention scenario,

are shown in the diagrams of Figure 2 of the manuscript.

In each city j the population is given by Nj = Sj(t) + Lj + I t
j(t) + Int

j (t) + Ia
j (t) + Rj(t),

where Sj(t), Lj(t), I t
j(t), Int

j (t), Ia
j (t) and Rj(t) represent at time t the number of susceptible,

latent, symptomatic traveling, symptomatic not traveling, asymptomatic infected and recovered

individuals, respectively. The model in the baseline scenario is described by the following set

of discretized epidemic Langevin equations:
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+
√

µIa
j ∆t ηµa,j(t) + Ωj({Ia}) (S5)

Rj(t + ∆t)−Rj(t) = µ(I t
j + Int

j + Ia
j )∆t−

√
µI t

j∆t ηµt,j(t)−
√

µInt
j ∆t ηµnt,j(t) +

−
√

µIa
j ∆t ηµa,j(t) + Ωj({R}), (S6)

where ηβt,j , ηβnt,j , ηrβ ,j , ηε,j , ηµt,j , ηµnt,j , ηµa,j are statistically independent Gaussian random

variables with zero mean and unit variance and ∆t represents the time step set to 1 day.

The set of Langevin equations are coupled by the stochastic transport operator Ωj which

describes the movements of individuals traveling from one city to another. Following ref.[1], the

transport term is a function of the air traffic flows between two connected cities and represents

the net balance of passengers who left and entered city j.

The number of passengers of category X traveling from a city j to a city ` is an integer

random variable, in that each of the Xj potential travellers has a probability pj` = wj`/Nj to go

from j to `. In each city j the number of passengers ξj` traveling on each connection j → ` at

time t define a set of stochastic variables which follows the multinomial distribution

P ({ξj`}) =
Xj!

(Xj −
∑

` ξj`)!
∏

` ξj`!
(1−

∑
`

pj`)
(Xj−

∑
`
ξj`)

∏
`

p
ξj`

j` , (S7)

where (1 − ∑
` pj`) is the probability of not traveling, and (Xj −

∑
` ξj`) identifies the number

of non traveling individuals of category X . We use standard numerical subroutines to generate

random numbers of travellers following these distributions.

The transport operator in each city j is therefore written as

Ωj({X}) =
∑

`

(ξ`j(X`)− ξj`(Xj)), (S8)

where the mean and variance of the stochastic variables are 〈ξj`(Xj)〉 = pj`Xj and Var(ξj`(Xj)) =

pj`(1− pj`)Xj . Direct flights as well as connecting flights up to two-legs flights can be consid-

ered.

In addition to the previous fluctuations, the transport operator is in general affected by fluc-

tuations coming from the fact that the occupancy rate of the airplanes is not 100%. To take into

account such fluctuations, we assume that on each connection (j, `) the flux of passengers at
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time t is given by a stochastic variable

w̃j` = wj`(α + η(1− α)) (S9)

where α = 0.7 corresponds to the average occupancy rate of order of 70% provided by IATA

and η is a random number drawn uniformly in the interval [−1, 1] at each time step.

This system of differential equations can be numerically integrated to obtain the evolution

of the infection dynamics inside each city. A major issue in the integration of the epidemic

equations is the consideration of the discrete nature of the individuals and the preservation of the

symmetry of the noise terms. For this reason we adopt an integration procedure that separates

each variable Xj into its integer part [Xj] and its non-integer remaining part X̃j and we write

the corresponding time evolution for these variables [19, 1]. This procedure is implemented at

all time steps in each urban area j and provides a discrete output which preserves the correct

integration of the equations. In addition, it is worth noticing that the derivation of the Langevin

equations from the master equations describing the evolution of the probabilities associated to

the infection dynamics is valid under the assumption of large population in each compartment

for each city [18, 16, 17]. Therefore for the sake of mathematical rigor, in each compartment

with less than 103 individuals we describe the evolution of the disease by fully considering

discrete binomial or multinomial processes. This condition is checked at all time steps for all

compartments in all urban areas. In particular two different kind of processes in the infection

dynamics have to be considered: the generation of new cases (i.e. the generation of latents

through the contact of susceptible and infectious individuals) and the transition of individuals

from one compartment to another (e.g. from latent to infectious, from infectious to recovered).

For the first class of process it is assumed that each susceptible will become in contact with an

infectious individual with probability βIj(t)/Nj , so that the number of new infections in city j

is extracted from a binomial distribution with probability βIj(t)/Nj and number of trials Sj(t).

Analogously, the number of individuals changing compartment in a transition process (e.g. in

city j: L → I with rate ε) is extracted from a binomial distribution with probability given by

the rate of transition (in the previous example, ε) and number of trials given by the number of
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individuals in the compartment at time t (in the previous example, Lj(t)).

In case of multiple generation of new cases (due e.g. to susceptible individuals coming

into contact with asymptomatic and symptomatic infectious individuals) and transition pro-

cesses from a single compartment to more than one (e.g. latent becoming either symptomatic or

asymptomatic), the binomial is substituted by a multinomial distribution, whose parameters are

given by the probabilities associated to the single processes considered and the population of

the given compartment. As an example, the number of latent becoming either asymptomatic or

symptomatic traveling/non-traveling is extracted from a multinomial distribution based on the

probabilities pL→Ia = paε, pL→It = (1 − pa)ptε and pL→Int = (1 − pa)(1− pt)ε, respectively,

out of the total pool of latent individuals at time t, L(t).

When the assumption of large populations is satisfied, the epidemic evolution is then ob-

tained through the integration of the Langevin equations, as described above. Results are in

agreement with those obtained from a fully discretized version of the model in which all pro-

cesses of the infection dynamics are described through multinomial distributions.

Infectious period under AV treatment

The efficacy of the AV treatment is modeled through a reduction of the infectiousness of treated

individuals and a reduction of the total infectious period [7, 8, 10, 9, 20, 22]. Since the com-

partmentalization considered does not allow to track the time since infection occurred for each

individual, we consider a reduction of x days of the average infectious period. We assume that

infectious individuals are allowed to recover before eventually being detected and administered

an AV dose. Therefore, under AV treatment the transition from infectious individual to infec-

tious under treatment – I t,nt to IAV – is assumed to occur with rate (1 − µ)pAV , while the rate

of transition directly to the recovered compartment is left unchanged. The average period µ−1
AV

spent in the IAV compartment is then obtained by reducing the average total infectious time by
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x∆t:
1

µ + (1− µ)pAV

+
1

µAV

=
1

µ
− x , (S10)

where the first term in the l.h.s. of the equation represents the average time spent by a treated in-

dividual in the I t,nt compartment. From the equation above we obtain the following expression

for the average time spent in the treated compartment:

µ−1
AV = µ−1 − x− 1

µ + (1− µ)pAV

, (S11)

which clearly depends on the distribution rate pAV . Indeed, a large value of pAV refers to a

prompt identification of cases and subsequent drug administration. Plugging into eq. S11 the

values of the parameters considered (µ), we obtain different values of the rate of transition µAV

for different reductions x and rate distributions pAV .

Some values of x and pAV lead to a value of µ−1
AV smaller than 1. Since our time scale is

∆t = 1 day, in those cases we fix µ−1
AV to its smallest possible value, i.e. µ−1

AV = 1, and reduce

the infectiousness β(1 − AV EI) of the treated individuals by an appropriate scaling factor sβ

in order to effectively compensate the longer average period spent under treatment, imposed

by time scale constraints. In this way, it is also possible to study reductions x smaller than 1

day (see in the following the sensitivity analysis on the reduction of the infectious period under

treatment).

Estimate of the reproductive ratio with AV treatment

While it is possible to give an analytic expression of the reproductive rate for the compartmen-

talization adopted in the baseline case as provided in the manuscript, the same task becomes

more difficult when AV intervention is considered because of the time delays due to the inter-

play of travel and AV use. In the following we provide a rough estimate of the reproductive rate

under the assumption that AV intervention is put in place since the start of the pandemic (quite
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unrealistic), with no additional delays. In this case, the effective R0,AV would be:

R0,AV =
β

µ

{
rβpa + (1− pa)

µ

µ + (1− µ)pAV

+

+ (1− pa)
(1− µ)pAV

µ + (1− µ)pAV

[
µ

µ + (1− µ)pAV

+ sβ(1− AV EI)
µ

µAV

] }
(S12)

where the r.h.s. of the equation represents the contributions of (i) asymptomatic individuals, (ii)

symptomatic non-treated individuals and (iii) symptomatic treated individuals, respectively. In

order to have a quantitative estimate of the value of R0,AV with respect to the reproductive rate

R0 in absence of AV, we can compute the ratio:

R0,AV

R0

=

rβpa + (1− pa)

{
µ

µ+(1−µ)pAV
+ (1−µ)pAV

µ+(1−µ)pAV

[
µ

µ+(1−µ)pAV
+ sβ(1− AV EI)

µ
µAV

] }
rβpa + (1− pa)

.

(S13)

For a distribution rate of pAV = 0.7/day and assuming a reduction of the infectious period

x = 1 day, the value of the ratio is R0,AV /R0 ' 0.77, so that for R0 = 1.5 the estimate for the

effective R0,AV gives a value ' 1.15, i.e. slightly larger than 1. However, this estimation does

not take into account the fact that at initial stages of the original outbreak and of all secondary

outbreaks the reproductive rate is not lowered by the use of AV treatment since the intervention

takes place with a characteristic delay. The interplay of the travel and of the delays with which

intervention strategies are put in place allow therefore the virus to spread out of the source, even

in case of a high distribution rate of AV doses – pAV = 0.7 – and reproductive rates R0 ' 1.5.

Initial conditions and geographical subdivision

At the beginning of the simulation, the entire population is considered to be susceptible. The

population vulnerability to an H5N1-like pandemic is indeed expected to be universal, since the

human immune system will have no pre-existing immunity to a new virus [11]. We simulate the

start of the pandemic influenza on several different initial dates, in order to assess the impact of

seasonal patterns on the global spread. Numerical simulations start with a single symptomatic
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infected individual in a given initially infected city. A sensitivity analysis of the model with

respect to initial conditions has been performed by specifying different origins of the pandemic

outbreak, in order to assess the impact of seasonality and traffic flows on the spatio-temporal

pattern of the global spread. Rural cities as well as big metropolitan areas have been considered

as the initially infected center.

Though the integration procedure of the equations reported in the previous section allows

for a detailed description of the pandemic evolution at the city level, we focused on 6 different

regions of the world in order to have a global view of what could happen in different zones and

hemispheres. We considered the following 6 regions: North America, Western Europe, Central

America, South East Asia, Lower South America, Oceania. Table S1 reports the list of countries

belonging to each region considered.

 

N America W Europe C America SE Asia LS America Oceania 
United States Denmark Belgium Mexico Colombia Indonesia Argentina Australia 
Canada United Kingdom Greece Honduras Peru Myanmar Chile New Zealand 
 Spain Portugal Belize Venezuela Malaysia Uruguay  
 Switzerland Ireland Guatemala French Guyana Philippines   
 Norway Gibraltar Costa Rica Bolivia Thailand   
 Iceland Austria Nicaragua Ecuador Cambodia   
 Germany Malta Panama Suriname Vietnam   
 France Finland El Salvador Brazil Singapore   
 Sweden Luxembourg   Lao People’s DR   
 Italy Monaco   Hong Kong   
 Netherlands       

Table S1: List of countries included in each region considered. Three different colors are

used to represent the three different climate zones each region belongs to; from left to right:

Northern hemisphere, Tropical climate zone, Southern hemisphere.

All other countries included in the model are listed hereafter in no particular order: French

Polynesia, Egypt, Algeria, South Africa, United Arab Emirates, Russian Federation, China,

Yemen, Iran, Cote D’Ivoire, Ethiopia, Saud Arabia, Nigeria, Ghana, Turkey, Jordan, Maurita-

nia, Solomon Islands Morocco, Japan, Papua New Guinea, India, Paraguay, Marshall Islands,

Cook Islands, Niger, Libya, Kazakhstan, Syrian Arab Rep., Madagascar, Antigua & Barbuda,
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Mozambique, Western Samoa, Tanzania, Romania, Erythrea, Turkmenistan, Bahamas, Kenya,

Aruba, Vanuatu, Cuba, Mongolia, Anguilla, Uzbekistan, Bahrain, Azerbaijan, Botswana, So-

malia, Bermuda, Nepal, Yugoslavia, Lebanon, Cameroon, Central African Rep., Barbados, Pak-

istan, Gambia, Burundi, Mali, Malawi, Gabon, New Caledonia, Bosnia-Herzegovina, Demo-

cratic Rep. of Congo, Bulgaria, Neth. Antilles, Burkina Faso, Puerto Rico, St. Vincent Grena-

dine, Czech Rep., Dominican Rep., Equatorial Guinea, Slovakia, Hungary, Zimbabwe, Geor-

gia, Cape Verde Islands, Croatia, Brunei, Poland, Bangladesh, Congo, Angola, Haiti, French

Guyana, Republic of Korea, Guinea, Sri Lanka, Taiwan, Greenland, Benin, Grenada, Senegal,

Ukraine, Cayman Islands, Dominica, Tunisia, Sudan, Qatar, Guadeloupe, Tajikistan, Mayotte,

Uganda, Cyprus, British Virgin Islands, Namibia, Israel, Tonga, Armenia, Martinique, Sierra

Leone, Korea Dem. People’s Rep., Kyrgyzstan, St. Pierre & Miquelon, Tuvalu, Wallis &

Futuna Is., Maldives, Turks & Caicos Is., Guyana, Gibraltar, Guam, Comoros, Fiji, Nauru, Dji-

bouti, Johnston Island, Zambia, Afghanistan, Rwanda, Oman, Jamaica, Moldova, Caroline Is.,

Lithuania, Kuwait, Togo, Slovenia, Macau, Belarus, Liberia, Mauritius, Lesotho, Swaziland,

Chad, St. Kitts & Nevis, Norfolk Island, American Samoa, Macedonia, Guinea Bissau, Bhutan,

Sao Tome & Principe, Trinidad & Tobago, Seychelles, Latvia, Northern Mariana Islands, Palau

Island, Reunion, El Salvador, St. Lucia, US Virgin Islands, Albania, Estonia, Kiribati, Christ-

mas Island.

Seasonality

In order to take into account the high influenza incidence during winter period and low incidence

during summer season, we include seasonality in the infection transmission of the model. We

follow the approach described in refs. [13, 14, 15] by using a transmission parameter β which

varies in time and depends on the geographic zone. The world is divided into three different

climate zones - Northern hemisphere, Tropical zone and Southern hemisphere - as outlined by

the Tropic of Cancer and the Tropic of Capricorn (see Figure S1).

To each city, we assign a scaling factor for the transmission parameter which depends both
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Figure S1: Subdivision of the world into three climate zones – Northern hemisphere, Trop-
ical zone, Southern hemisphere – as outlined by the Tropic of Cancer and the Tropic of
Capricorn.

on the time of the year and on the climate zone to which the city belongs to (see Table S2); its

value models the seasonal variations of influenza. Following [15], we assume an enhancement

of 10% of the transmission parameter β during the influenza season (November-February in the

Northern hemisphere and May-August in the Southern hemisphere) and a reduction to as low

as 10% during the non-influenza season (June-July in the Northern hemisphere and December-

January in the Southern hemisphere). A linear interpolation between the two values is assumed

to compute the scaling factor value for the remaining months. For all cities in the tropical

climate zone, we assign a scaling factor equal to 1.

The 6 regions considered for the analysis of the results belong to the 3 climate zones in-

troduced: North America and Western Europe to the Northern hemisphere, Central America

and South East Asia to the Tropical climate zone, Lower South America and Oceania to the

Southern hemisphere.
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Month Northern Hemisphere Southern Hemisphere

January 1.1 0.10

February 1.1 0.35

March 0.85 0.6

April 0.6 0.85

May 0.35 1.1

June 0.10 1.1

July 0.10 1.1

August 0.35 1.1

September 0.6 0.85

October 0.85 0.6

November 1.1 0.35

December 1.1 0.10

Table S2: Seasonal scaling factors for the transmissibility β.

Epidemic evolution at the country and city level

The stochastic epidemic model introduced allows us to monitor the evolution of the pandemic in

3100 urban area belonging to 220 countries. While the manuscript shows agglomerated results

for 6 different regions of the world, here we provide the corresponding time evolution of the

pandemic at finer resolution scales - the country and city level.

Figures S2 and S3 characterize the time evolution of the disease spread in the baseline

scenario by reporting the prevalence profiles of some countries and cities, respectively, chosen

as illustrative examples. Results refer to a pandemic starting in Hanoi at the beginning of

October. The virus propagates much faster for higher levels of infectiousness: while it would

take almost one year and a half to spread globally around the world if R0 = 1.5 (top panel of

each figure), the larger value of infectiousness (R0 = 2.3, bottom panels) would halve that time,

with all countries and cities experiencing the first wave within 8-9 months.
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Figure S2: Epidemic evolution in the baseline scenario at the country level. Here we assume
a pandemic starting in Hanoi in October, with R0 = 1.5 (top panel) and R0 = 2.3 (bottom
panel). Countries are shown in both panels with the same color; not all countries reported for
R0 = 1.5 are shown in the bottom panel for sake of visualization.

Stochastic noise

In Figure S4 we report the same results shown in Figure 9 of the manuscript along with the

stochastic noise associated to the average profiles. Here R0 = 1.9 and the start of the pandemic

is in Hanoi in October. Baseline and different intervention strategies are shown. Together

with the average values - thick line corresponding to the baseline and symbols to different

intervention scenarios - we also provide the 95% confidence interval, represented by the shaded

areas. It is clear that when control strategies are in place the stochastic variability of a simulated

influenza epidemic is relatively high, due to an effective reduction of the transmissibility.
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Figure S3: Epidemic evolution in the baseline scenario at the city level. Here we assume a
pandemic starting in Hanoi at the beginning of October, with R0 = 1.5 (top panel) and R0 = 2.3
(bottom panel). Cities are shown in both panels with the same color; not all cities reported for
R0 = 1.5 are shown in the bottom panel for sake of visualization.

Sensitivity analysis

In the following we show the results obtained from the sensitivity analysis with respect to dif-

ferent factors characterizing the global spread of the pandemic as illustrated in the manuscript.

More precisely, we study the effect of different temporal and geographical settings for the start

of the pandemic in both the baseline and the intervention scenario; we also examine the role

that the AV protocol assumed, the value of the reproductive ratio and the time delay of the

intervention have on the outcoming results.
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Figure S4: Prevalence profiles for the baseline and the implemented intervention strategies
with R0 = 1.7 and pAV = 0.5/day. The average profiles are shown toghether with the 95%
CI, represented by the shaded areas.

Baseline

Here we focus on the baseline scenario and present the effects of seasonality and of the trans-

portation network in determining the global spread of the pandemic.
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Initial seed and starting date

Figures S5 and S6 show the results for the baseline scenario for a pandemic starting in 2 different

locations - Pleiku (Vietnam) and Chicago (US) - during 2 different seasons - October and April.
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Figure S5: Baseline scenario for a pandemic starting in Pleiku (Vietnam) in October or in
April

We studied simulations in which the initially infected location is a small city in a rural area

of Vietnam - Pleiku, i.e. the airport in Vietnam corresponding to the smallest urban area - since

the pandemic might originate in a rural zone where population is living in close contact with

poultry. Results of Fig. S5 show that no major differences are observed with respect to the

case Hanoi is the starting location, except for a delay of the sporadic activity in the Northern

hemisphere for R0 = 1.5 and initial condition October. This is due to the lower connectivity

of Pleiku with respect to Hanoi (smaller by a factor ∼ 1/10) and in particular to the fact that
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from Pleiku only national flights depart. For the virus to spread from Pleiku out of the country,

two-leg flights are needed, while Hanoi is directly connected to several different airports of the

world.
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Figure S6: Baseline scenario for a pandemic starting in the US (Chicago) in October or
April.

Fig. S6 shows the results of the simulations assuming Chicago as the starting city. The

very low probability of having a global outbreak for a starting date in April underlines the

effect of the seasonality, in agreement with what observed for Bucharest. However, differences

from the Bucharest case (Figure 4 of the manuscript) point again to the role of the airline

transportation network expressed in terms of the connectivity and traffic of the initially infected

city. Chicago is ranked among the 10 airports in the United States with highest traffic; the

number of passengers traveling on average through Chicago every day is more than one order

of magnitude larger than the traffic going through Bucharest for the same period. This results on
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average in a larger epidemic which produces higher numbers of cases in several regions which

are better connected to Chicago than to Bucharest.

Intervention with AV therapeutic treatment: maximal coverage

This section reports the study of the sensitivity analysis of the time delays assumed in the model

in case an intervention with maximal coverage is considered.

Time delay of the intervention

The model assumes that the pandemic alert is given after 20 cases are detected in at least one

country. The intervention then starts with a characteristic delay in the seeded country - where

cases have been detected - and in the other countries which are then reached by the virus. Here

we investigate the effect of changes in the delays of intervention, considering delays of 1, 2 and

4 weeks both for the seeded country and for the seconday outbreaks. The AV protocol assumes

a distribution rate pAV = 0.7/day.

Analogously to the results obtained for the effect of the AV protocol, also in this case we

observe an increase in the global attack rates after one year, with probability distributions for

the number of infected countries almost unchanged. However, the increase observed is smaller

than the one obtained by changing the distribution rate pAV . Figures S7 and S8 show that a large

delay in the intervention could be overcome with a prompt detection of symptomatic individuals

and a high rate distribution of doses.

Intervention with AV therapeutic treatment: limited AV supplies

This section will analyze the effect of several different factors characterizing the intervention

strategy through the use of limited AV supplies in the general scenario.
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Figure S7: Effect of different time delays of intervention in the initially infected country.
The AV protocol assumed is pAV = 0.7/day.

Starting date

If the pandemic originates in Hanoi in April, no striking differences are observed with respect

to the case discussed in the manuscript, where the starting date is October. As Figure S9 shows,

we still observe a strong reduction of the number of cases per 1000 persons and a delay in the
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Figure S8: Effect of different time delays of intervention in the countries experiencing
secondary outbreaks. The AV protocol assumed is pAV = 0.7/day.

prevalence profile when the intervention is in place with respect to the baseline curve.

Initial seed

Results obtained for a pandemic seeded in Bucharest in October (Figure S10) are in agree-

ment with the findings presented in the manuscript. In particular, it is possible to show that
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Figure S9: Intervention scenario for a pandemic with R0 = 1.7 starting in Hanoi in April.
AV drugs are administered with rate pAV = 0.5/day.

cooperative strategies are extremely effective also in those regions where the application of an

uncooperative strategy results in a delay of 2-4 weeks at most, with almost no reduction in the

number of cases (see e.g. Central America, South East Asia and Lower South America). The

attack rates are reduced by more than one order of magnitude also in the regions which provide

part of their resources for global sharing.

Redistribution of shared AV resources

Here we analyze a different method of redistribution of the shared AV resources provided by the

prepared countries. Instead of being used upon need, AV stockpiles are preemptively distributed

to each of the unprepared country proportionally to its population.

Figure S11 shows that this solution is less effective with respect to the distribution of shared

resources from a unique global stockpile for the country use when in need. Indeed, while some

20



Supporting information Colizza et al.

0.000

0.002

0.004

0.006

0.008

90

1

0.04

0.000

0.005

0.010

0.015

0.020

458

458

3

0.00

0.01

0.02

0.03

483

480

1

0.000

0.004

0.008

0.012

201

28

0.3

0.000

0.004

0.008

0.012

0.016

460

377

7

0.00

0.01

0.02

0.03

0.04

483

152

12

N America C America LS America

OceaniaSE AsiaW Europe

p
re

va
le

n
ce

Nov Jan
Mar

May

per 1000 

Mar
Nov Mar

May
May

Jul Jan Jan
Sep Jul

JulSep
Sep

Starts in Bucharest in October 

cases 

W Europe

per 1000 per 1000 

cases 

per 1000 

Nov

per 1000 per 1000 per 1000 

cases 

cases cases cases 

Nov
Nov

Nov

baseline
uncooperative strategy
cooperative strategy  II

R0 = 1.7,  pAV = 0.5

Figure S10: Intervention scenario for a pandemic with R0 = 1.7 starting in Bucharest in
October. AV drugs are administered with rate pAV = 0.5/day.

of the more affected countries might run out of AV doses, some others might not use the whole

amount received, at least during the first year. This creates a lack of resources in some regions

(see e.g. SE Asia), which could be better optimized by a redistribution according to the actual

need of each country.

Reduction of the infectious period during AV treatment

Results presented in the manuscript assume that the reduction of the average infectious period

induced by the AV treatment is of 1 day. Here we study the impact of the efficacy of AV drugs

as measured by its reduction of the infectious period. Following the details of the infectious

period distribution as outlined in a previous section, we assume a reduction of x = 0.5 days.

While the global attack rates are larger than the ones obtained with x = 1 day, as expected,

cooperative strategies are still more efficient than the uncooperative one in reducing the number
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Figure S11: Intervention scenario for a pandemic with R0 = 1.7 starting in Hanoi in
October. AV resources are assumed to be preemptively distributed in each country pro-
portionally to the country population.

of cases.

AV protocol and reproductive rate

Figures S13 and S14 display the effect of the AV protocol adopted on the containment of the

disease, for different values of the reproductive rate. Results shown stress the crucial importance

of the type of protocol to be adopted in order to better mitigate the disease impact. For R0 = 1.9

the situation observed in the Northern hemisphere (North America and Western Europe) is al-

most unchanged, while other regions would experience the epidemic peak during the first year

if pAV = 0.5/day instead of delaying it to the second year as shown for pAV = 0.7/day. The

global attack rates are therefore dramatically affected by the change of distribution rate. In

addition, some of the prepeared countries, such as those in Oceania which are taking advan-

tage of a large stockpile (10% of the population in the uncooperative strategy and 8% in the
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Figure S12: Intervention scenario for a pandemic with R0 = 1.7 starting in Hanoi in
October. AV drugs are assumed to reduce the infectious period of 0.5 days.

cooperative strategy II), are not able to consistently reduce the attack rate as in the case when

pAV = 0.7/day, due to the high traffic air connections with South East Asia which is expe-

riencing a large outbreak. This clearly shows that, given the same amount of AV doses along

with the same distribution of resources, it is preferable to treat the largest possible percentage

of ill individuals in the unit time. Since we are dealing with finite and limited resources, one

could actually expect that a better protocol would be to distribute a lower percentage of doses,

in order to keep the available supplies for as long as possible. Results show that this is not

the case. Indeed, if the intervention assumes pAV = 0.5/day instead of a higher rate value, an

explosion of cases will occur in some regions so that the resources will not last longer and the

observed attack rate will be higher. Finally, if the reproductive rate is higher, the most important

advantage of the ccoperative strategies is in the delay of the epidemic peak. Indeed, in this case

many regions would experience the peak within the first 12 months, so that the global attack

rates are not strikingly reduced as observed for a lower R0, but the vaccine development would
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still benefit of an additional delay of 1-2 months with respect to the uncooperative strategy.
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Figure S13: Effect of different values of the reproductive ratio on the intervention strate-
gies, when a distribution rate of pAV = 0.5/day is assumed.

Time delay of the intervention

Figure S15 and S16 show the effect of the time delay in the application of the intervention

strategy since the start of the pandemic. We performed numerical simulations assuming the
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Figure S14: Effect of different values of the reproductive ratio on the intervention strate-
gies, when a distribution rate of pAV = 0.7/day is assumed.

uncooperative strategy and the cooperative strategy II, with a protocol of pAV = 0.5/day; the

delays considered are 7, 14 and 28 days, corresponding to 1, 2 and 4 weeks respectively. Inter-

vention delays both in the seeded country - after the detection of 20 infectious individuals - and

in the secondary outbreaks are considered. As expected, larger values of the intervention delay

correspond to larger and faster evolutions of the influenza pandemic throughout the world, with

enhanced differences detectable in particular in the unprepared regions when the uncooperative
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strategy is considered. Cooperative strategies are still more efficient with respect to the uncoop-

erative one, providing an option that should be taken into account if the time delay for the onset

of intervention is particularly large.
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Figure S15: Effect of different time delays of intervention in the initially infected country.
Here we consider a pandemic with R0 = 1.7 starting in Hanoi in October with an assumed AV
protocol of pAV = 0.5/day. From top to bottom, results for a delay of 7, 14 and 28 days are
shown.
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Figure S16: Effect of different time delays of intervention in the countries experiencing
secondary outbreaks. Here we consider a pandemic with R0 = 1.7 starting in Hanoi in Octo-
ber with an assumed AV protocol of pAV = 0.5/day. From top to bottom, results for a delay of
7, 14 and 28 days are shown.

Travel limitations

While the enforcement of travel restrictions to and from infected areas is considered not appli-

cable in most situations [11], it is reasonable to imagine that the air traffic volume in case of a

pandemic will be reduced either due to the voluntary choice of individuals or for the applica-

tions of non-medical intervention measures. In Figure S17 we show what would happen in case
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the number of passengers on each connection is reduced by 20% or 50%.
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Figure S17: Travel limitations as a non-medical intervention measure for a pandemic with
R0 = 1.9 starting in Hanoi in October

Although the traffic limitations imply a considerable reduction of air travel, the two inter-

vention measures do not appear to be efficient neither in reducing the epidemic impact, nor in

delaying the prevalence peak, in agreement with the results of refs. [20, 21]. The reduction in

the air traffic is not able to contain the pandemic at the source. Indeed, as the outbreak occurs in

the seeded country a larger number of cases is generated, so that the expected number of people

traveling out of the country becomes considerably large though the probabilty of traveling has

been drastically reduced. As soon as some infectious individuals travel from the source of the

infection to another country, they will seed other regions with the infection, thus starting multi-

ple outbreaks in different geographic zones (see the map reported in Figure 6 of the manuscript

as an example). At that stage, the travel limitations are no longer able to considerably slow

down the pandemic evolution.
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Supporting Videos

Videos S1 and S2 represents the average simulated baseline scenarios corresponding to R0 =

1.7 and R0 = 2.3, respectively. The pandemic starts in Hanoi (Vietnam) in October. The color

code represents the average number of cases per 1000 in each country on a logarithmic scale,

from 10−2 (green) to 1000 (red). The videos show a time period of two years (video S1) and

14 months (video S2) since the start of the pandemic. Every snapshot represents the situation

at the beginning of each month.

Video S3 reports the results obtained for the first 12 months spread of a pandemic with

R0 = 1.7 in case the uncooperative strategy is applied, where only few countries have AV

stockpiles available for 10% of their population. Initial conditions are the same as in videos S1

and S2.

Video S4 represents the cooperative scenario II described in the main text, where 1/5 of

prepared countries’ stockpiles is globally redistributed. Initial conditions and infectiousness of

the virus are the same as in the previous videos. The video shows the evolution during the first

12 months from the start of the pandemic.
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