Mindfulness-Based Programmes for Mental Health Promotion in Adults in Non-clinical Settings: A Systematic Review and Meta-Analysis of Randomised Controlled Trials

Supplementary materials (S1 Appendix)

Contents

Supplementary methods	8
Table 1. Search strategies.	8
Table 2. Pre-piloted extraction forms.	11
Table 3. Definitions to refine primary outcome selection.	12
Supplementary results	13
Secondary outcomes	13
Comparison with passive control groups	13
Comparison with active non-specific control groups	14
Comparison with active specific control groups	14
Risk-of-bias Source-specific Sensitivity Analyses	15
Table 4. Summary of secondary outcome results.	16
Table 5. Conference abstracts for which too much information was missing to assess eligib	oility.
	18

Table 6. Comparison of MBPs with passive control groups: multivariate meta-analysis of
anxiety, depression, distress, and wellbeing outcomes at post-intervention, (post-int), 1-6
months follow-up, (1-6m) and 6+ months follow-up (+6m). Exchangeable between-study
variance-covariance matrices (0.1)
Table 7. Comparison of MBPs with active non-specific control groups: multivariate meta-
analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6
months follow-up, (1-6m) and 6+ months follow-up (+6m). Exchangeable between-study
variance-covariance matrices (0.7).
Table 8. Comparison of MBPs with active specific control groups: multivariate meta-analysis
of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months
follow-up, (1-6m) and 6+ months follow-up (+6m). Exchangeable between-study variance-
covariance matrices (0.1)
Table 9. Comparison of MBPs with passive control groups: multivariate meta-analysis of
cognitive functioning at post-intervention, (Post-int), and 1-6 months follow-up (1-6m). Results
were robust to the outcome-specific correlation sensitivity analysis
Table 10. Comparison of MBPs with active non-specific control groups: multivariate meta-
analysis of cognitive functioning at post-intervention
Table 11. Comparison of MBPs with active specific control groups: univariate meta-analysis of
cognitive functioning at post-intervention
Γable 12. Comparison of MBPs with passive control groups: multivariate meta-analysis of real-
life functioning at post-intervention, (Post-int), 1-6 months follow-up (1-6m), and 6+ months
follow-up (+6m). Exchangeable between-study variance-covariance matrices (0.8)
Table 13. Comparison of MBPs with active non-specific control groups: multivariate meta-
analysis of real-life functioning at post-intervention, (Post-int), and 1-6 months follow-up (1-
6m). Exchangeable between-study variance-covariance matrices (0.1)
Table 14. Comparison of MBPs with active specific control groups: multivariate meta-analysis
of real-life functioning at post-intervention, (Post-int), 1-6 months follow-up (1-6m), and 6+
months follow-up (+6m). Exchangeable between-study variance-covariance matrices (0.9) 27

Table 15. Comparison of MBPs with passive control groups: multivariate meta-analysis of relationship with the self at post-intervention, (Post-int), and 1-6 months follow-up (1-6m) 28
Table 16. Comparison of MBPs with active non-specific control groups: multivariate meta- analysis of relationship with the self at post-intervention, (Post-int), and 1-6 months follow-up
(1-6m). Exchangeable between-study variance-covariance matrices (0.8)
Table 18. Comparison of MBPs with passive control groups: univariate meta-analysis of
psychosomatic symptoms at post-intervention
psychosomatic symptoms at 1-6 months follow-up
Table 20. Comparison of MBPs with active non-specific control groups: multivariate meta- analysis of psychosomatic symptoms at post-intervention, (Post-int), and 1-6 months follow-up (1-6m). Exchangeable between-study variance-covariance matrices (0.5)
Table 21. Comparison of MBPs with active specific control groups: multivariate meta-analysis of psychosomatic symptoms at post-intervention, (post-int), 1-6 months follow-up (1-6m), and 6+ months follow-up (+6m). Exchangeable between-study variance-covariance matrices (0.8).
Table 22. Comparison of MBPs with passive control groups: multivariate meta-analysis of dispositional mindfulness at post-intervention, (post-int), 1-6 months follow-up (1-6m), and 6+ months follow-up (+6m). Exchangeable between-study variance-covariance matrices (0.9) 35
Table 23. Comparison of MBPs with active non-specific control groups: multivariate meta-analysis of dispositional mindfulness at post-intervention, (post-int), and 1-6 months follow-up (1-6m).
Table 24. Comparison of MBPs with active specific control groups: multivariate meta-analysis of dispositional mindfulness at post-intervention, (post-int), 1-6 months follow-up (1-6m), and

6+ months follow-up (+6m). Exchangeable between-study variance-covariance matrices (0.9).
Table 25. Risk of bias assessment for individual studies
Table 26. Potentially eligible trial registry records with no available results
Table 27. Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessment details by confidence domain: risk of bias, non-reporting bias, imprecision, inconsistency, and indirectness
Table 28. Sensitivity analysis of methodological quality removing high-risk-of-bias trials. Comparison of MBPs with passive control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).
Table 29. Sensitivity analysis of methodological quality removing high-risk-of-bias trials. Comparison of MBPs with active non-specific control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).
Table 30. Sensitivity analysis of methodological quality removing high-risk-of-bias trials. Comparison of MBPs with active specific control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m)
Table 31. Sensitivity analysis of methodological quality removing trials at high risk of bias due to deviations from intended interventions. Comparison of MBPs with passive control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m)
Table 32. Sensitivity analysis of within-study correlation assumptions using Riley's method. Comparison of MBPs with passive control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).
Table 33. Sensitivity analysis of within-study correlation assumptions using Riley's method. Comparison of MBPs with active non-specific control groups: multivariate meta-analysis of

anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-
up, (1-6m) and 6+ months follow-up (+6m)
Table 34. Sensitivity analysis of within-study correlation assumptions using Riley's method.
Comparison of MBPs with active specific control groups: multivariate meta-analysis of anxiety,
depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-
6m) and 6+ months follow-up (+6m)
Table 35. Sensitivity analysis of within study correlation assumptions. Univariate meta-analyses
of anxiety, depression, distress and wellbeing outcomes comparing MBPs with passive control
groups51
Table 36. Sensitivity analysis of within study correlation assumptions. Univariate meta-analyses
of anxiety, depression, distress and wellbeing outcomes compared with active non-specific
control groups
Table 37. Sensitivity analysis of within study correlation assumptions. Univariate meta-analyses
of anxiety, depression, distress and wellbeing outcomes comparing MBPs with active specific
control groups56
Table 38. Sensitivity analysis excluding data from samples N<30. Comparison of MBPs with
passive control groups: multivariate meta-analysis of anxiety, depression, distress, and
wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-
up (+6m). The prediction intervals are shown in the second table
Table 39. Sensitivity analysis setting estimate to +1 SE. Comparison of MBPs with passive
control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at
post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).59
Table 40. Sensitivity analysis setting estimate to +1 SE. Comparison of MBPs with active non-
specific control groups: multivariate meta-analysis of anxiety, depression, distress, and
wellbeing at post-intervention (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-
up (+6m)
Table 41. Sensitivity analysis setting estimate to +1 SE. Comparison of MBPs with active
specific control groups: multivariate meta-analysis of anxiety, depression, distress, and

wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-
up (+6m)
Table 42. Sensitivity analysis setting estimate to -1 SE. Comparison of MBPs with passive control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m). The prediction intervals are shown in the second table
Table 43. Sensitivity analysis setting estimate to -1 SE. Comparison of MBPs with active non-
specific control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-
up (+6m). The prediction intervals are shown in the second table
Table 44. Sensitivity analysis setting estimate to -1 SE. Comparison of MBPs with active specific control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).
Table 45 Sensitivity analysis excluding studies with unclear teacher competence. Comparison
of MBPs with passive control groups: multivariate meta-analysis of anxiety, depression,
distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m). The prediction intervals are shown in the second table
Table 46. Sensitivity analysis excluding studies with unclear teacher competence. Comparison
of MBPs with active non-specific control groups: multivariate meta-analysis of anxiety,
depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-
6m) and 6+ months follow-up (+6m)
Table 47. Sensitivity analysis excluding studies with unclear teacher competence. Comparison
of MBPs with active specific control groups: multivariate meta-analysis of anxiety, depression,
distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).
Table 48. Multivariate Meta-regression. Comparison of MBPs with passive control groups,
outcomes at 1-6 months follow-up. USA studies= studies from the USA; selective
MBP=selective intervention; indicated MBP=indicated intervention; Psychoeducation= adding

$Mindfulness-based\ programmes\ for\ mental\ health\ promotion-S1\ Appendix$

psychoeducation component and/or non-meditative psychological exercises; Physical exercise=
adding physical exercise component; Arts= adding arts component
Table 49. Meta-regression. Comparison of MBPs with active specific control groups, outcome
distress at 1-6 months follow-up. Selective MBP=selective intervention; indicated
MBP=indicated intervention; Psychoeducation= adding psychoeducation component and/or
non-meditative psychological exercises; Physical exercise= adding physical exercise
component; Other meditation= adding other types meditation component; Arts= adding arts
component. Psychoeducation and other meditation are omitted because of collinearity 69
Fig 1. Funnel plot for univariate meta-analysis for the depression outcome at 1-6 months post-
intervention for MBPs compared with passive controls
Fig 2. Funnel plot for univariate meta-analysis distress 1-6 months post-intervention compared
with passive controls71
Fig 3. Funnel plot for univariate meta-analysis distress 1-6 months post-intervention compared
with active specific controls

Supplementary methods

Table 1. Search strategies.

Database	Strategy
Allied and Complementary Medicine (AMED) (through OVID)	S1: meditation/ S2: mindful*.mp. S3: meditat*.mp. S4: clinical trials/ or randomized controlled trials/ or double blind method/ or random allocation/ S5: RCT.mp. S6: (random* adj1 allocat*).mp. S7: (random* adj1 assign*).mp. S8: randomis*.mp. S9: randomiz*.mp. S9: randomiz*.mp. S10: 1 or 2 or 3 S11: 4 or 5 or 6 or 7 or 8 or 9 S12: 10 and 11
Applied Social Sciences Index and Abstracts (ASSIA)	S1: ab((mindful* OR meditat*) AND (randomise* OR randomize* OR RCT OR "random allocation" OR "random assignment")) OR ti((mindful* OR meditat*) AND (randomise* OR randomize* OR RCT OR "random allocation" OR "random assignment"))
Cochrane Central Register of Controlled Trials (CENTRAL)	S1: MH "Mindfulness" S2: AB (mindfulness or mindfulness or meditat*) or TI (mindfulness or mindfulness or meditat*) 1 or 2
Cumulative Index to Nursing and Allied Health Literature (CINAHL) (through EBSCO)	S1: (MH "Mindfulness") S2: (MH "Meditation") S4: TI (mindful* OR meditat*) OR AB (mindful* OR meditat*) S5: S1 OR S2 or S3 or S4 S6: MH "Clinical Trials+" S7: PT Clinical trial S8: TX clinic* n1 trial* S9: TX ((singl* n1 blind*) or (singl* n1 mask*)) or TX ((doubl* n1 blind*) or (doubl* n1 mask*)) or TX ((tripl* n1 blind*) or (tripl* n1 mask*)) or TX ((trebl* n1 blind*) or (trebl* n1 mask*)) S10: TX randomi* control* trial* S11: (MH "Random Assignment") S12: TX random* allocat* S13: TX placebo* S14: (MH "Placebos") S15: (MH "Quantitative Studies") S16: TX allocat* random* S17: S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12 OR S13 OR S14 OR S15 OR S16 S18: S5 AND S17
Excerpta Medica Database (EMBASE) (through OVID)	S1 exp meditation/ or exp mindfulness/ S2 (mindfullness or mindfulness or meditat*).ab. or (mindfullness or mindfulness or meditat*).ti. S3 1 or 2 S4 clinical trial/ S5 randomized controlled trial/ S6 controlled clinical trial/ S7 multicenter study/ S8 phase 3 clinical trial/ S9 phase 4 clinical trial/

S10 double blind procedure/ S11 placebo/ S12 exp randomization/ S13 (randomi?ed controlled trial\$ or rct or (random\$ adj2 allocat\$) or single blind\$ or double blind\$ or ((treble or triple) adj blind\$) or placebo\$).tw. S14 Prospective Study.mp. or prospective study/ S15 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 S16 3 and 15 **Education Resources** S1: AB (meditat* OR mindful*) OR TI (meditat* OR mindful*) S2: randomis* OR randomiz* OR RCT OR "random* allocat*" OR "random* assign*" Information Center (ERIC) (through EBSCO) S3: S1 AND S2 Electronic Theses Online S1: Advanced search: mindful (title) AND randomise (any word) Service (EThOS) Medical Literature Analysis S1: Randomized Controlled Trials as Topic/ and Retrieval System Online S2: randomized controlled trial/ (MEDLINE) (through OVID) S3: Random Allocation/ S4: Double Blind Method/ S5: Single Blind Method/ S6: clinical trial/ S7: clinical trial, phase i.pt S8: clinical trial, phase ii.pt S9: clinical trial, phase iii.pt S10: clinical trial, phase iv.pt S11: controlled clinical trial.pt S12: randomized controlled trial.pt S13: multicenter study.pt S14: clinical trial.pt S15: exp Clinical Trials as topic/ S16: or/1-15 S17: (clinical adj trial\$).tw S18: ((singl\$ or doubl\$ or treb\$ or tripl\$) adj (blind\$3 or mask\$3)).tw S19: PLACEBOS/ S20: placebo\$.tw S21: randomly allocated.tw S22: (allocated adj2 random\$).tw S23: or/17-22 S24: 16 or 23 S25: case report.tw S26: letter/ S27: historical article/ S28: or/25-27 S29: 24 not 28 S30: exp meditation/ or exp mindfulness/ S31: (mindfulness or mindfulness or meditat*).ab or (mindfulness or mindfulness or meditat*).ti S32: 30 or 31 S33: 32 and 29 ProQuest S1: ab((mindful* OR meditat*) AND (randomise* OR randomize* OR RCT OR "random allocation" OR "random assignment")) OR ti((mindful* OR meditat*) AND (randomise* OR randomize* OR RCT OR "random allocation" OR "random assignment")) S1: DE "Meditation" OR DE "Mindfulness" PsycINFO (through EBSCO) S2: AB (mindfullness OR mindfulness OR meditat* OR mindful*) OR TI (mindfullness OR mindfulness OR meditat* OR mindful*) S4: AB ((randomized controlled trial) OR (Random Allocation) OR (Double Blind Method) OR (Single Blind Method) OR (clinical trial) OR (clinical trial, phase i.pt) OR

(clinical trial, phase ii.pt) OR (clinical trial, phase iii.pt) OR (clinical trial, phase iv.pt) OR (controlled clinical trial.pt) OR (randomized controlled trial.pt) OR (multicenter study.pt) OR (clinical trial.pt) OR ((clinical adj trial\$).tw) OR (((singl\$ or doubl\$ or treb\$ or tripl\$) adj (blind\$3 or mask\$3)).tw) OR PLACEBOS OR (placebo\$.tw) OR (randomly allocated.tw) OR ((allocated adj2 random\$).tw)) OR TI ((randomized controlled trial) OR (Random Allocation) OR (Double Blind Method) OR (Single Blind Method) OR (clinical trial) OR (clinical trial, phase ii.pt) OR (clinical trial, phase iii.pt) OR (clinical trial, phase iii.pt) OR (clinical trial, phase iii.pt) OR (randomized controlled trial.pt) OR (multicenter study.pt) OR (clinical trial.pt) OR ((clinical adj trial\$).tw) OR (((singl\$ or doubl\$ or treb\$ or tripl\$) adj (blind\$3 or mask\$3)).tw) OR PLACEBOS OR (placebo\$.tw) OR (randomly allocated.tw) OR ((allocated adj2 random\$).tw))

S5: S3 AND S4

Scopus S1: (mindful* OR meditat*) AND (randomise* OR randomize* OR RCT OR "random

allocation" OR "random assignment")

Web of Science S1: advanced search: TS=((mindful* OR meditat*) AND (randomise* OR randomize*

OR RCT OR "random allocation" OR "random assignment"))

World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) S1: mindful or meditat

$Mindfulness-based\ programmes\ for\ mental\ health\ promotion-S1\ Appendix$

Table 2. Pre-piloted extraction forms.

Form Tab	Information collected
Study Identification	Sponsorship sources, conflicts of interest, country, study setting, corresponding authors, institution, emails, date recruitment started, and year first published.
Methods	Study design, conceptualisation of mindfulness, incentives for participants, number of participants (total randomised and per arm), and power calculation.
Population	Inclusion and exclusion criteria, type of participant, group differences, baseline characteristics
Interventions	Intervention name, mention of intervention manual, whether it was an adaptation of another intervention (rationale), intensity, mindfulness components (type, frequency and duration), non-mindfulness components (type, frequency and duration), home practice length and type, group size, any individual tailoring, any booster sessions or support after the end of the programme, adherence to intervention manual, intervention setting, teacher competence, teacher characteristics, response to intervention (attendance, satisfaction, reasons for missing sessions), and whether participants paid to do the course.
Outcomes	Outcome measure used, time points, group sizes, effect measures available and extracted effect sizes.

$Mindfulness-based\ programmes\ for\ mental\ health\ promotion-S1\ Appendix$

Table 3. Definitions to refine primary outcome selection.

Primary outcome	Requirement
Distress	has to measure more than one negative emotion
Wellbeing	has to be more than one positive emotion
Anxiety	has to include physical symptoms and functioning impairment.
Depression	has to include general anhedonia, worthlessness, physical symptoms and functioning

Supplementary results

Secondary outcomes

Table 4 contains a summary of secondary outcome results, which are summarised below. The systematic review search date for the secondary outcomes was January 2020.

Comparison with passive control groups

At post-intervention (measured within one month of completing the intervention), in comparison with passive control groups, on average MBPs improved anxiety, depression, psychological distress, and mental wellbeing, (Table 6). The prediction intervals indicated that post-intervention anxiety will be reduced following MBPs in more than 95% of the scenarios, but improvement is not homogeneous for the rest of the outcome domains. There was no evidence that improvements following MBPs in depression, distress or wellbeing remained six or more months post-intervention (no studies for anxiety). However, only one study measured depression, four distress and three wellbeing at six or more months post-intervention, so results need to be interpreted with caution.

There is evidence for a modest and heterogeneous improvement in cognitive functioning following MBPs compared to passive controls shortly after intervention completion, with no significant differences at one-to-six-months follow-up (Table 9). MBPs improved real-life functioning at post-intervention in comparison with passive controls (small effect, Table 12). Effects may last for up to six months, with no reliable evidence on longer effects. MBPs improved the relationship with the self for up to at least six months (Table 15, no data on longer-term outcomes), and dispositional mindfulness for longer (Table 22). MBPs reduced psychosomatic symptoms shortly

after course completion (Table 18), but no evidence supported effects persisting for any longer (Table 19). None of these effects was generalisable across settings.

Comparison with active non-specific control groups

In comparison with active non-specific control groups at post-intervention, results supported improvements following MBPs in anxiety, depression, distress and wellbeing. However, reliability is low due to a mix of few studies contributing data, borderline p values, and prediction intervals that included adverse scenarios (Table 7). No studies measured these outcomes six or more months after the interventions. We found no evidence for improvements following MBPs in cognitive function (only three studies measuring this, Table 10), real-life functioning (only four studies measuring it, Table 13), psychosomatic outcomes (only 2 studies measuring it, Table 20), or dispositional mindfulness (Table 23). MBPs improved the relationship with the self for up to at least six months (Table 16, no data on longer-term outcomes). However, this effect is not generalisable to all implementation settings.

Comparison with active specific control groups

Compared with active specific control groups, findings supported a modest superiority of MBPs in improving depression and wellbeing, but not distress and anxiety, at post-intervention (Table 8). Prediction intervals included null or unfavourable effects. Very few studies measured these outcomes six or more months after the intervention, with no significant differences between groups. We found no evidence for improvement in cognitive functioning (Table 11), real-life functioning (Table 14), relationship with the self (Table 17), psychosomatic symptoms (Table 21), or dispositional mindfulness (Table 24).

Risk-of-bias Source-specific Sensitivity Analyses

Source-specific sensitivity analyses could be conducted for risk-of-bias sources of randomisation, deviations from intended interventions, and missing outcome data; there was not enough risk variance for the other sources to meaningfully remove higher-risk trials. Source-specific analyses gave similar results to the overall-risk sensitivity analyses, except that in the comparison with passive controls the effects of MBPs on depression, distress and wellbeing remained significant and with narrower prediction intervals after removing trials at high risk of bias due to deviations from the intended interventions (a bias that tended to dilute intervention effects due to contamination between arms, Table 31).

Table 4. Summary of secondary outcome results.

Control group	Outcome domain	Time point	n of trials	SMD (95%CI) p	95%PI	Missed trials*
Passive	Anxiety	P-int	19	-0.70 (-0.85, -0.54), <0.001	-1.29, -0.10	0
	Depression	P-int	37	-0.45 (-0.57, -0.33), <0.001	-1.04, 0.14	1 (3%)
	Depression	6+m	1	-0.19 (-0.78, 0.40), 0.53	-1.02, 0.64	0
	Distress	P-int	61	-0.45 (-0.54, -0.36), <0.001	-1.03, 0.14	4 (6%)
	Distress	6+m	4	-0.16 (-0.48, 0.15), 0.31	-0.82, 0.50	0
	Wellbeing	P-int	25	0.34 (0.21 0.48), < 0.001	-0.25, 0.94	3 (11%)
	Wellbeing	6+m	3	0.25 (-0.10, 0.60), 0.17	-0.43, 0.93	1 (25%)
	Cog. Func.	P-int	13	0.25 (0.06, 0.44), 0.009	-0.32, 0.83	1 (7%)
	Cog. Func.	1-6m	2	0.03 (-0.52, 0.58), 0.91	-1.04, 1.10	1 (33%)
	Real Func.	P-int	25	0.27 (0.12, 0.43), < 0.001	-0.38, 0.93	1 (4%)
	Real Func.	1-6m	14	0.23 (0.05, 0.40), 0.013	-0.44, 0.89	1 (7%)
	Real Func.	6+m	1	0.09 (-0.56, 0.74), 0.79	-0.85, 1.02	1 (50%)
	Rel. Self	P-int	20	0.77 (0.47, 1.07), <0.001	-0.60, 2.13	2 (10%)
	Rel. Self	1-6m	8	0.71 (0.41, 1.02), <0.001	-0.38, 1.80	0
	Psychosom.	P-int	14	-0.41 (-0.58, -0.24), <0.001	-0.94, 0.12	1 (7%)
	Psychosom.	1-6m	7	-0.25 (-0.65, 0.16), 0.19	-1.27, 0.78	1 (13%)
	Mindfulness	P-int	50	0.54 (0.41, 0.67), < 0.001	-0.35, 1.42	5 (9%)
	Mindfulness	1-6m	18	0.56 (0.40, 0.72), < 0.001	-0.33, 1.45	2 (10%)
	Mindfulness	6+m	2	0.52 (0.24. 0.80), < 0.001	-0.40, 1.44	1 (33%)
Active	Anxiety	P-int	4	-0.55 (-0.95, -0.15), 0.007	-1.69, 0.58	1 (20%)
non- specific	Depression	P-int	7	-0.43 (-0.77, -0.08), 0.016	-1.53, 0.68	0
•	Distress	P-int	9	-0.38 (-0.70, -0.06), 0.021	-1.48, 0.72	1 (10%)
	Wellbeing	P-int	1	3.00 (1.70, 4.30), < 0.001	1.18, 4.83	0
	Cog. Func.	P-int	3	0.08 (-0.66, 0.81), 0.84	-8.82, 8.98	0
	Real Func.	P-int	3	0.04 (-0.75, 0.83), 0.92	-3.18, 3.26	0
	Real Func.	1-6m	2	0.12 (-0.87, 1.12), 0.81	-3.36, 3.60	0
	Rel. Self	P-int	3	0.80 (0.26, 1.34), 0.004	-1.49, 3.09	0
	Rel. Self	1-6m	3	0.73 (0.18, 1.28), 0.010	-1.58, 3.03	0
	Psychosom.	P-int	2	-0.36 (-0.74, 0.03), 0.067	NA	0
	Psychosom.	1-6m	1	-0.29 (-0.89, 0.30), 0.34	NA	0
	Mindfulness	P-int	7	0.21 (-0.02, 0.44), 0.068	-0.42, 0.85	0
	Mindfulness	1-6m	6	0.28 (-0.06, 0.61), 0.11	-0.44, 0.99	0
Active	Anxiety	P-int	7	-0.12 (-0.27, 0.04), 0.14	-0.45, 0.21	1 (13%)
specific	Depression	P-int	17	-0.24 (-0.36, -0.13), <0.001	-0.55, 0.07	0
	Depression	6+m	3	-0.05 (-0.33, 0.24), 0.75	-0.46, 0.37	0
	Distress	P-int	24	-0.07 (-0.18, 0.03), 0.15	-0.38, 0.23	5 (17%)

Distress	6+m	4	-0.03 (-0.27, 0.22), 0.84	-0.41, 0.36	0
Wellbeing	P-int	10	0.17 (0.03, 0.31), 0.015	-0.15, 0.49	3 (23%)
Wellbeing	6+m	1	-0.00 (-0.36, 0.36), 0.99	-0.48, 0.47	1 (50%)
Cog. Func.	P-int	7	-0.03 (-0.29, 0.24), 0.80	-0.47, 0.41	0
Real Func.	P-int	6	0.03 (-0.17, 0.23), 0.76	-0.21, 0.27	1 (14%)
Real Func.	1-6m	4	0.01 (-0.21, 0.23), 0.93	-0.26, 0.28	1 (20%)
Real Func.	6+m	3	0.02 (-0.18, 0.23), 0.82	-0.22, 0.27	0
Rel. Self	P-int	6	0.13 (-0.15, 0.41), 0.37	-0.53, 0.78	3 (33%)
Rel. Self	1-6m	1	0.40 (-0.12, 0.92), 0.13	-0.47, 1.27	1 (50%)
Rel. Self	6+m	1	0 .00 (-0.90, 0.90), 1.00	-1.30, 1.30	1 (50%)
Psychosom.	P-int	7	-0.18 (-0.38, 0.02), 0.068	-0.72, 0.36	1 (13%)
Psychosom.	1-6m	4	-0.13 (-0.36, 0.09), 0.25	-0.70, 0.43	2 (33%)
Psychosom.	6+m	2	-0.15 (-0.42, 0.13), 0.29	-0.74, 0.45	0
Mindfulness	P-int	19	0.14 (-0.02, 0.29), 0.09	-0.49, 0.76	2 (10%)
Mindfulness	1-6m	7	0.12 (-0.07, 0.31), 0.20	-0.52, 0.76	1 (13%)
Mindfulness	6+m	3	0.15 (-0.09, 0.40), 0.21	-0.51, 0.81	1 (25%)

^{*} Number of trials with non-reported data for the corresponding outcome. Abbreviations: 1-6m=1 to 6 months post-intervention follow up, 6+ months= more than 6 months post intervention follow up, CI= confidence interval for overall mean, Cog. Func = Cognitive functioning, n=number, P-int=post-intervention, PI= prediction interval for new study, Psychosom = Psychosomatic outcomes, Real func = Real life functioning, Rel. Self = Relationship with self, SMD=standardised mean difference.

Table 5. Conference abstracts for which too much information was missing to assess eligibility.

- 1 Siwik, C., Phillips, K., Salmon, P., Litvan, I., Filoteo, V., Rebholz, W., ... & van der Gryp, K. (2018, April). An MBSR intervention for parkinson's disease patients and caregiving partners: Effects on distress, social support, cortisol, and inflammation. In Psychosomatic Medicine (Vol. 80, No. 3, pp. A128-A128). Two Commerce SQ, 2001 Market St, Philadelphia, PA 19103 USA: Lippincott Williams & Wilkins.
- 2 Greven, C.; Bogels, S.; Dammers, J.; Buitelaar, J.; Speckens, A. Mindfulness for children with ADHD and Mindful Parenting (MindChamp): a randomised controlled trial. Journal of Neural Transmission Nov 2019;126(11):1568-1569 2019 Nov
- 3 Orosa Duarte, A.; Mediavilla, R.; Lopez Herrero, V.; Garde Gonzalez, J.; Rodriguez Vega, B.; Munoz San Jose, A.; Palao Tarrero, A.; Bravo Ortiz, M. F.; Bayon Perez, C. Mindfulness-based intervention through a smartphone application versus mindfulness-based stress reduction (MBSR) program in healthcare students: a randomised controlled trial. European Psychiatry Apr 2019;56():S569-S569 2019 Apr
- 4 Exploring effects of aerobic exercise and mindfulness training on cognitive function in older adults at risk of dementia: The active minds study. Circulation 2018;138(Supplement 1): Netherlands Lippincott Williams and Wilkins 2018
- Wang, Z. Y.; Jin, Z. The Effects of mindfulness-based cognitive therapy (MBCT) on anxiety and depression among professional women: Increased EEG gamma and alpha brainwave amplitude. Basic and Clinical Pharmacology and Toxicology 2018;123(Supplement 3):103 Netherlands Blackwell Publishing Ltd 2018
- 6 Kiseleva, N.; Kiselev, S. Mindfulness training can reduce prenatal maternal stress. Journal of the Neurological Sciences 2019;405(Supplement):32 Netherlands Elsevier B.V. 2019
- 7 Kiselev, S.; Volik, I. Influence of mindfulness training on stress reduction during pregnancy. European Psychiatry 2018;48(Supplement 1):S257-S258 Netherlands Elsevier Masson SAS 2018

Table 6. Comparison of MBPs with passive control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing outcomes at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m). Exchangeable between-study variance-covariance matrices (0.1).

	Coef.	oef. Std. Err.	Z	P> z	[95% Conf. Interval]	
Overall mean						
Post-int anxiety	694	.081	-8.54	0.000	854	535
1-6m anxiety	563	.120	-4.68	0.000	799	327
Post-int depression	450	.061	-7.32	0.000	571	330
1-6m depression	533	.096	-5.53	0.000	722	344
+6m depression	190	.301	-0.63	0.526	780	.399
Post-int distress	446	.046	-9.62	0.000	537	355
1-6m distress	447	.068	-6.54	0.000	581	313
+6m distress	163	.162	-1.01	0.314	480	.154
Post-int wellbeing	.343	.069	4.94	0.000	.206	.479
1-6m wellbeing	.325	.110	2.94	0.003	.108	.542
+6m wellbeing	.248	.179	1.39	0.165	102	.599

Table 7. Comparison of MBPs with active non-specific control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m). Exchangeable between-study variance-covariance matrices (0.7).

	Coef.	Std. Err.	Z	P> z	=	Conf. erval]
Overall mean						
Post-int anxiety	552	.204	-2.70	0.007	953	151
1-6m anxiety	474	.201	-2.35	0.019	869	079
Post-int depression	426	.176	-2.42	0.016	772	080
1-6m depression	454	.180	-2.52	0.012	808	101
Post-int distress	378	.164	-2.30	0.021	700	056
1-6m distress	137	.188	-0.73	0.465	506	.231
Post-int wellbeing	3.006	.663	4.53	0.000	1.705	4.306
1-6m wellbeing	1.403	.537	2.61	0.009	.350	2.456

Table 8. Comparison of MBPs with active specific control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m). Exchangeable between-study variance-covariance matrices (0.1).

	Coef.	Std. Err.	Z	P> z	=	% Conf. terval]
Overall mean	-		<u>.</u>			
Post-int anxiety	116	.079	-1.46	0.143	272	.039
1-6m anxiety	.072	.140	0.51	0.607	203	.348
Post-int depression	241	.059	-4.06	0.000	358	125
1-6m depression	165	.078	-2.10	0.036	319	010
+6m depression	045	.143	-0.32	0.752	326	.235
Post-int distress	074	.051	-1.45	0.146	175	.026
1-6m distress	008	.073	-0.12	0.904	151	.134
+6m distress	026	.126	-0.21	0.836	274	.222
Post-int wellbeing	.169	.069	2.43	0.015	.032	.306
1-6m wellbeing	.028	.108	0.26	0.791	183	.240
+6m wellbeing	001	.183	-0.01	0.992	362	.358

Table 9. Comparison of MBPs with passive control groups: multivariate meta-analysis of cognitive functioning at post-intervention, (Post-int), and 1-6 months follow-up (1-6m). Results were robust to the outcome-specific correlation sensitivity analysis.

Multivariate meta-analysis
Variance-covariance matrix = unstructured
Method = reml
Restricted log likelihood = -5.8048477

Number of dimensions = 2 Number of observations = 13

	Coef.	Coef. Std. Err.		P> z	=	[95% Conf. Interval]	
Overall mean					· •		
Post-int	.250	.095	2.61	0.009	.062	.438	
1-6m	.030	.281	0.11	0.914	520	.581	

Table 10. Comparison of MBPs with active non-specific control groups: multivariate meta-analysis of cognitive functioning at post-intervention.

Multivariate meta-analysis
Variance-covariance matrix = unstructured
Method = reml Nu
Restricted log likelihood = -2.5910786 Nu

Number of dimensions = 1 Number of observations = 3

	Coef.	Std. Err	. Z	P> z	-	Conf. erval]
Overall mean Post-int	.075	.376	0.20	0.842	663	.813

Table 11. Comparison of MBPs with active specific control groups: univariate meta-analysis of cognitive functioning at post-intervention.

Meta-analysis summar Random-effects model Method: REML SE adjustment: Trunc	-	Hetero	I2 (%) =	= 7 = 0.0178 = 30.97 = 1.45			
-	Effect Size	[95% Conf.	Interval]	% Weight			
Lebares 2019 Ma 2019 MacCoon 2012 Malinowski 2017 Oken 2010	-0.297 0.174 0.169 0.256 -0.772 -0.007 0.000	-0.477 -0.153 -0.266 -1.387 -0.160	0.824 0.491 0.779 -0.158 0.147	6.87 19.64 9.91 7.58 36.75			
·	-0.028	-0.292	0.236				
95% prediction interval for theta: [-0.469, 0.413]							
Test of theta = 0: to Test of homogeneity:	Prob > t Prob > Q						

Table 12. Comparison of MBPs with passive control groups: multivariate meta-analysis of real-life functioning at post-intervention, (Post-int), 1-6 months follow-up (1-6m), and 6+ months follow-up (+6m). Exchangeable between-study variance-covariance matrices (0.8).

Multivariate meta-analysis
Variance-covariance matrix = proportional .2*I(3)+.8*J(3,3,1)
Method = reml
Restricted log likelihood = -18.124991
Number of observations = 29

	Coef.	Std. Err.	Z	P> z	Inte	Conf. erval]
Overall mean		,				
Post-int	.272	.078	3.49	0.000	.119	.425
1-6m	.225	.091	2.47	0.013	.046	.404
+6m	.089	.333	0.27	0.789	563	.741

Table 13. Comparison of MBPs with active non-specific control groups: multivariate meta-analysis of real-life functioning at post-intervention, (Post-int), and 1-6 months follow-up (1-6m). Exchangeable between-study variance-covariance matrices (0.1).

	Coef.	Std. Err.	Z	P> z	_	Conf.	
Overall mean		-,					
Post-int	.038	.404	0.10	0.924	753	.831	
1-6m	.122	.507	0.24	0.810	871	1.11	

Table 14. Comparison of MBPs with active specific control groups: multivariate meta-analysis of real-life functioning at post-intervention, (Post-int), 1-6 months follow-up (1-6m), and 6+ months follow-up (+6m). Exchangeable between-study variance-covariance matrices (0.9).

Multivariate meta-analysis
Variance-covariance matrix = proportional .1*I(3)+.9*J(3,3,1)
Method = reml
Restricted log likelihood = .19744653
Number of observations = 9

	Coef.	Std. Err.	Z	P> z	-	Conf. erval]
Overall mean						
Post-int	.030	.100	0.30	0.764	166	.227
1-6m	.008	.113	0.08	0.939	214	.231
+6m	.024	.103	0.23	0.815	177	.226

Table 15. Comparison of MBPs with passive control groups: multivariate meta-analysis of relationship with the self at post-intervention, (Post-int), and 1-6 months follow-up (1-6m).

Multivariate meta-analysis Variance-covariance matrix = unstructured Method = reml Restricted log likelihood = -20.512327

Number of dimensions = 2 Number of observations = 21

	Coef.	Std. Err.	Z	P> z	Int	% Conf. cerval]
Overall mean		",				
Post-int	.765	.153	5.00	0.000	.465	1.065
1-6m	.714	.153	4.66	0.000	.413	1.015

Table 16. Comparison of MBPs with active non-specific control groups: multivariate meta-analysis of relationship with the self at post-intervention, (Post-int), and 1-6 months follow-up (1-6m). Exchangeable between-study variance-covariance matrices (0.8).

Multivariate meta-analysis
Variance-covariance matrix = proportional .2*I(2)+.8*J(2,2,1)
Method = reml Number of dimensions =
Restricted log likelihood = -3.6406978 Number of observations =

	Coef.	Std. Err.	Z	P> z	-	% Conf. cerval]
Overall mean						
Post-int	.801	.277	2.89	0.004	.258	1.344
1-6m	.729	.281	2.59	0.010	.176	1.281

Table 17. Comparison of MBPs with active specific control groups: multivariate meta-analysis of relationship with the self at post-intervention, (Post-int), 1-6 months follow-up (1-6m), and 6+ months follow-up (+6m). Exchangeable between-study variance-covariance matrices (0.5).

	Coef.	Std. Err.	Z	P> z	=	Conf. erval]	
Overall mean		00					
Post-int	.129	.143	0.90	0.366	151	.411	
1-6m	.398	.265	1.50	0.134	122	.919	
+6m	0.00	.460	0.00	1.000	902	.902	

Table 18. Comparison of MBPs with passive control groups: univariate meta-analysis of psychosomatic symptoms at post-intervention.

= 0.0522 = 61.93 = 2.63						
% Weight						
7.59 9.56 6.81 6.84 8.04 7.44 7.76 6.02 6.19 6.62 9.81 3.29 6.84 7.19						
95% prediction interval for theta: $[-0.936, 0.119]$ Test of theta = 0: $t(13) = -5.12$						

Table 19. Comparison of MBPs with passive control groups: univariate meta-analysis of psychosomatic symptoms at 1-6 months follow-up.

Meta-analysis summa Random-effects mode		of studies geneity:	= 7	
Method: REML			tau2 =	0.1332
SE adjustment: Trun	cated Knapp-Hartur	ng	I2 (%) =	79.31
			H2 =	4.83
Study	Effect Size	[95% Conf.	Interval]	% Weight
+				
Barrett 2012	-0.026	-0.414	0.363	14.53
Barrett 2018	-0.010	-0.246	0.226	16.96
Carmody 2011	-0.233	-0.674	0.207	13.64
Christopher 2018	-0.223	-0.785	0.339	11.63
Hwang 2019	-0.293	-0.693	0.107	14.33
Moynihan 2013	0.098	-0.180	0.375	16.35
	-1.239		-0.735	12.57
•	-0.245		0.155	
95% prediction inte	rval for theta: [-	-1.273, 0.783	 3]	
Test of theta = 0: Test of homogeneity			Prob > t Prob > Q	

Table 20. Comparison of MBPs with active non-specific control groups: multivariate meta-analysis of psychosomatic symptoms at post-intervention, (Post-int), and 1-6 months follow-up (1-6m). Exchangeable between-study variance-covariance matrices (0.5).

	Coef.	Std. Err.	Z	P> z	-	Conf.	
Overall mean							
Post-int	358	.195	-1.83	0.067	742	.024	
1-6m	291	.302	-0.96	0.336	884	.302	

Table 21. Comparison of MBPs with active specific control groups: multivariate meta-analysis of psychosomatic symptoms at post-intervention, (post-int), 1-6 months follow-up (1-6m), and 6+ months follow-up (+6m). Exchangeable between-study variance-covariance matrices (0.8).

Multivariate meta-analysis
Variance-covariance matrix = proportional .2*I(3)+.8*J(3,3,1)
Method = reml
Restricted log likelihood = -1.3820193
Number of observations = 7

	Coef.	Std. Err.	Z	P> z	-	Conf. erval]
Overall mean						
Post-int	181	.099	-1.82	0.068	376	.013
1-6m	133	.116	-1.15	0.250	360	.093
+6m	146	.139	-1.05	0.292	420	.126

Table 22. Comparison of MBPs with passive control groups: multivariate meta-analysis of dispositional mindfulness at post-intervention, (post-int), 1-6 months follow-up (1-6m), and 6+ months follow-up (+6m). Exchangeable between-study variance-covariance matrices (0.9).

	Coef.	Std. Err.	Z	P> z	Int	% Conf. erval]
Overall mean						
Post-int	.538	.068	7.91	0.000	.405	.672
1-6m	.559	.080	6.95	0.000	.401	.716
+6m	.518	.141	3.67	0.000	.241	.795

Table 23. Comparison of MBPs with active non-specific control groups: multivariate meta-analysis of dispositional mindfulness at post-intervention, (post-int), and 1-6 months follow-up (1-6m).

Multivariate meta-analysis
Variance-covariance matrix = unstructured
Method = reml
Restricted log likelihood = -4.2903167

Number of dimensions = 2 Number of observations = 8

	Coef.	Std. Er	r. z	P> z	Int	Conf. erval]
Overall mean						
Post-int	.212	.116	1.83	0.068	015	.440
1-6m	.274	.171	1.60	0.110	062	.611

Table 24. Comparison of MBPs with active specific control groups: multivariate meta-analysis of dispositional mindfulness at post-intervention, (post-int), 1-6 months follow-up (1-6m), and 6+ months follow-up (+6m). Exchangeable between-study variance-covariance matrices (0.9).

	Coef.	Std. Err.	Z	P> z	-	Conf. erval]	
Overall mean							
Post-int	.135	.080	1.67	0.094	023	.293	
1-6m	.122	.096	1.27	0.204	066	.312	
+6m	.153	.123	1.25	0.212	087	.395	

Table 25. Risk of bias assessment for individual studies.

Study	D1	D2	D3	D4	D5
Aeamla-Or 2015	Low	Low	Low	High	Some
Agee 2009	Some	High	High	High	High
Allen 2012	Some	High	High	Some	Some
Amutio 2015	Some	High	High	High	Some
Anclair 2018	Some	High	Some	High	Some
Anderson 2007	Some	High	High	Some for test, high for self-report	Some
Armstrong 2016	Low	Some	High	High	Some
Arredondo 2017	Some	High	High	High	Some
Astin 1997	Some	High	High	High	Some
Asuero 2014	Some	High	High	High	Some
Auseron 2018	Low	Some	High	High	High
Barrett 2012	Low	High	Low	High	Some
Barrett 2018	Low	Some	Low	High	Low
Beattie 2017	Low	Some	High	High	Low
Behbahani 2018	Some	High	High	High	Some
Benn 2012	Some	High	High	High	Some
Berghmans 2010	Some	High	High	High	Some
Black 2015	Low	Some	Some	High	Some
Brown 2016	Some	Some	Low	High	Some
Carmody 2011	Low	High	High	High	Some
Carson 2004*	Some for D1, Low for D2	high	high	high	some
Cerna 2019	Low	High	High	High	Some
Christopher 2018	Some	High	Some	High	Some
Cohen-Katz 2004	Some	High	High	High	Some
Corsica 2014	Some	High	High	High	Some
Cousin 2016	Some	High	High	High	Some
DamiãoNeto 2019	Some	Some	High	High	Some
Davidson 2003	Some	High	High	High	Some
Delgado 2010	Some	High	High	High	Some
Delgado-Pastor 2015	Some	High	High	High	Some
Desbordes 2012	Some	High	High	High	Some
DeVibe 2013	Low	High	High	High	Some
Duncan 2017	Low	Low	Low	Low for test, high for self-report	Some
Dvorakova 2017	Some	High	Low	High	Some
Dykens 2014	Some	High	Some	High	High
Dziok 2010	Some	High	High	High	Some
Esch 2017	Low	High	Low	Low for test, high for self-report	Some
Ferraioli 2013	Some	High	High	High	Some
Fiocco 2018	Some	Some	High	High	Some
Flook 2013	Some	High	High	High	Some
Frisvold 2009	Some	Some	Low	High	Some
Galante 2018	Low	Some	Low	Low for test, high for self-report	Low

C-ll 2014	C	TT! -1.	TT! -1.	II: _l.	C
Gallego 2014	Some	High	High	High	Some
Gambrel 2015*	Some for D1, Low for D2	high	high	high	some
Glannandrea 2018	Some	High	High	High	Some
Glass 2019	Some	High	High	High	Some
Grandpierre 2013	Some	High	High	High	Some
Greenberg 2010	Some	High	High	Some	Some
Greeson 2014	Some	High	Some	High	Some
Guardino 2014	Some	Some	High -	High	Some
Haarig 2016	Some	High	Low	High	Some
Hou 2013	Low	High	High	High	Some
Huang 2015	Low	High	Low	High	Some
Hunt 2018	Some	High	High	High	Some
Hwang 2019*	Low for D1, Some for D2	some	some	high	some
Ireland 2017	Some	High	Some	High	Some
Isbel 2019	Some	High	High	Some for test, high for self-report	Some
Jain 2007	Some	High	High	High	Some
James 2018	Low	Some	High	High	Some
Josefsson 2014	Some	High	High	Some for test, high for self-report	Some
Kang 2009	Low	High	High	High	Some
Kaviani 2008	Some	High	Low	High	Some
Kingston 2007	Low	Some	High	High	Some
Kirk 2016	Some	High	High	High	Some
Klatt 2009	Some	High	High	High	Some
Klatt 2017	Some	High	Some	High	Some
Kor 2019	Low	Some	Low	High	Low
Krick 2019	Some	Some	Low	High	Some
Kuhlmann 2016	Low	High	High	High	Low
Lacerda 2018	Some	High	High	High	Some
Lara-Cinisomo 2019	Some	High	Low	High	Some
Lebares 2019	Some	High	Low	Low for test, high for self-report	Some
Lee 2010	Some	High	High	High	Some
Li 2018	Some	High	High	High	Some
Lin 2019	Some	High	High	High	Some
Liu 2013	Some	High	High	High	Some
Liu 2015	Some	High	High	High	Some
Lo 2017	Some	High	Low	High	Some
Lonnberg 2020	Low	Some	Low	High	Some
Lopez-Maya 2019	Low	Some	Some	High	Some
Lynch 2018	Some	High	High	High	Some
Ma 2019	Some	Some	Low	Low for test, high for self-report	Some
MacCoon 2012	Low	Some	Some	Low for test, high for self-report	High
Malarkey 2013	Some	Some	High	High	Some
Malinowski 2017	Some	Some	High	Some for test, high for self-report	Some
Manotas 2014	Some	High	High	High	Some
Mailutas 2014	Some	mgn	High	men	Some

Moody 2013	Some	High	High	High	Some
Moritz 2006	Low	High	High	High	Some
Moynihan 2013*	High for D1, Low for D2	high	some	high	some
Mrazek 2013	Some	High	High	High	Some
Neece 2014*				_	
Norouzi 2020	Low for D1, Low for D2	high	some	high	some
	Some	Some	Low	High	Some
Nyklicek 2008	Some	High	High	High	Some
ODonnell 2017 Oken 2010	Some Some	High	Some	High Low for test, high for self-report	Some
		High	High		Some
Pan 2018	Low	High	Low	High	Some
Park 2016	Some	High	High	High	Some
Perez-Blasco 2013	Some	High	Some	High	Some
Perez-Blasco 2016	Some	High	Low	High	Some
Phang 2015	Low	High	Low	High	Some
Pipe 2009	Some	Some	Low	High	Some
Plummer 2018	Some	High	High	High	Some
Pots 2014	Low	High	Low	High	Some
Prakash 2015	Some	Some	Low	Low for test, high for self-report	Some
Richards 2012	Some	High	High	High	Some
Richards 2013	Some	High	Some	High	Some
Robins 2012	Some	High	High	High	Some
Roeser 2013	Some	High	High	Some for test, high for self-report	Some
Sampl 2017	Some	High	High -	Low for test, high for self-report	Some
Schellekens 2017	Low	High	Low	High	Low
Schroeder 2018	Some	High	High	Low for test, high for self-report	Some
Sevinc 2018*	Low for D1, Low for D2	some	low	high	some
Shapiro 1998	Some	High	High	High	Some
Shapiro 2005	Some	High	High	High	Some
Shapiro 2019	Some	High	High	High	Some
Shearer 2016	Some	High	High	High	Some
Smart 2017	Some	High	High	High	Some
Ştefan 2018	Some	High	High	High	Some
Steinberg 2016	Some	High	Low	High	Some
Strub 2013	Some	High	Low	High	Some
Thomas 2016	Some	High	Some	High	Some
VanBerkel 2014	Some	High	Some	Low for test, high for self-report	Some
VanDam 2014	Some	High	High	High	Some
vanDijk 2017*	Low for D1, Low for D2	some	low	high	some
Verweij 2018	Some	High	Low	High	Some
Vieten 2008	Some	High	Low	High	Some
Vinesett 2017	Some	Some	High	High	Some
Wang 2012	Some	High	Low	High	Some
Whitebird 2013	Some	High	Low	High	Some
Williams 2001	Some	High	High	High	Some
				·	

Wilson 2012	Some	High	High	High	Some
Wong 2018	Low	Some	Some	High	Some
Woolhouse 2014	Low	High	Some	High	Some
Xu 2015	Some	High	High	High	Some
Yazdanimehr 2016	Some	High	High	High	Some
Zhang 2018	Some	High	High	High	Some

The RoB2 tool measures potential bias across five sources (called 'domains' in the tool): (D1) randomisation, (D2) deviations from intended interventions, (D3) missing outcome data, (D4) measurement of the outcome, and (D5) selection of the reported result. * Cluster RCTs, which were assessed with their specific sub-set of questions [58]. Abbreviations: high: high risk; low: low risk, some: some concerns.

Table 26. Potentially eligible trial registry records with no available results

Title	Identification details	Recruitment target	Control group type	Likelihood of having measured primary outcomes
MBSR Improves Memory and Attention Due to a Stress Reduction as Opposed to Specific Memory Training	NCT02672761	140	Passive & active	Unlikely
Effects of Mindfulness Training on Emotion Regulation and Social Cognition, a Psychophysiological and Neuroimaging Randomized Controlled Study.	NCT03035669	60	Active	Unlikely
The Mindfulness Intervention and Repeated Acute Stress (MIRAS) Study	NCT02894229	150	Passive & active	Unlikely
Promoting Mental Well-being of Pregnant Women with Mindfulness-Based Childbirth and Parenting (MBCP) in Hong Kong	ChiCTR-TRC- 13004070	178	Active	Time point not specified
Mindfulness-based Training in the Workplace - evaluating the cost effectiveness and impact on emotional wellbeing	ISRCTN03386834	60	Passive	Likely
The Effects of Well-being Interventions on Affect, Attention, Sleep, Social Stress and Pain Regulation	NCT01057368	161	Passive & active	Time point and outcomes not specified

Table 27. Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessment details by confidence domain: risk of bias, non-reporting bias, imprecision, inconsistency, and indirectness.

Control group	Review outcome	Time point	RoB	Non-rep bias	Impreci sion	Inconsist ency	Indirect ness	GRADE confidence
PC	Anxiety	1-6m	Serious	Not serious	Not serious	Not serious	Not serious	Moderate
PC	Depression	1-6m	Serious	Not serious	Serious	Not serious	Not serious	Low
PC	Distress	1-6m	Serious	Not serious	Not serious	Serious	Not serious	Low
PC	Wellbeing	1-6m	Serious	Serious	Not serious	Serious	Not serious	Very low
NC	Anxiety	1-6m	Serious	Serious	Not serious	Serious	Not serious	Very low
NC	Depression	1-6m	Serious	Not serious	Not serious	Serious	Not serious	Low
NC	Distress	1-6m	Serious	Serious	Serious	Serious	Not serious	Very low
NC	Wellbeing	1-6m	Serious	Not serious	Not serious	Serious	Serious	Very Low
AC	Anxiety	1-6m	Serious	Not serious	Serious	Serious	Not serious	Very low
AC	Depression	1-6m	Serious	Not serious	Not serious	Serious	Not serious	Low
AC	Distress	1-6m	Serious	Serious	Serious	Serious	Not serious	Very low
AC	Wellbeing	1-6m	Serious	Serious	Serious	Serious	Not serious	Very low

Abbreviations: RoB=Risk of bias, 1-6m= 1 to 6 months post-intervention, non-rep: non-reporting, PC=passive controls, NC=active non-specific controls, AC=active specific controls.

Table 28. Sensitivity analysis of methodological quality removing high-risk-of-bias trials. Comparison of MBPs with passive control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).

Multivariate meta-analysis Variance-covariance matrix = proportional .9*I(11)+.1*J(11,11,1) Method = reml Number of dimensions = 11 Restricted log likelihood = -52.49954 Number of observations = 29

	Coef.	Std. Err.	Z	P> z	-	05% Conf. nterval]	
Overall mean			-				
Post-int anxiety	589	.114	-5.15	0.000	813	364	
1-6m anxiety	218	.179	-1.22	0.224	569	.133	
Post-int depression	267	.086	-3.10	0.002	436	097	
1-6m depression	244	.126	-1.93	0.054	492	.003	
+6m depression	144	.272	-0.53	0.596	677	.389	
Post-int distress	381	.069	-5.49	0.000	518	245	
1-6m distress	295	.092	-3.19	0.001	476	114	
+6m distress	178	.162	-1.10	0.271	496	.139	
Post-int wellbeing	.354	.102	3.48	0.001	.154	.554	
1-6m wellbeing	.269	.143	2.07	0.038	.015	.577	
+6m wellbeing	.261	.163	1.60	0.109	057	.581	

Table 29. Sensitivity analysis of methodological quality removing high-risk-of-bias trials. Comparison of MBPs with active non-specific control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).

	Coef. Std. z Err.		Z	P> z	[95% Conf. Interval]	
Overall mean						
Post-int anxiety	675	.266	-2.54	0.011	-1.197	153
1-6m anxiety	553	.262	-2.11	0.035	-1.068	038
Post-int depression	435	.216	-2.01	0.044	860	010
1-6m depression	463	.224	-2.07	0.039	904	023
Post-int distress	398	.199	-2.00	0.046	790	007
1-6m distress	096	.233	-0.41	0.680	555	.361
Post-int wellbeing	3.278	.705	4.65	0.000	1.897	4.660
1-6m wellbeing	1.546	.573	2.70	0.007	.422	2.669

Table 30. Sensitivity analysis of methodological quality removing high-risk-of-bias trials. Comparison of MBPs with active specific control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).

Multivariate meta-analysis Variance-covariance matrix = proportional .9*I(11)+.1*J(11,11,1) Method = reml Number of dimensions = 11 Restricted log likelihood = -14.333741 Number of observations = 17

	Coef.	Std. Err.	Z	P> z	[95% Conf. Interval]	
Overall mean						
Post-int anxiety	066	.154	-0.43	0.666	370	.236
1-6m anxiety	.377	.206	1.83	0.068	027	.782
Post-int depression	303	.076	-3.95	0.000	453	153
1-6m depression	212	.087	-2.44	0.015	382	041
+6m depression	032	.146	-0.22	0.826	319	.255
Post-int distress	168	.068	-2.47	0.014	302	034
1-6m distress	048	.085	-0.56	0.573	216	.119
+6m distress	.045	.144	0.32	0.751	237	.329
Post-int wellbeing	.086	.105	0.82	0.411	120	.293
1-6m wellbeing	.032	.128	0.25	0.799	219	.285
+6m wellbeing	011	.185	-0.06	0.949	376	.352

Table 31. Sensitivity analysis of methodological quality removing trials at high risk of bias due to deviations from intended interventions. Comparison of MBPs with passive control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).

Multivariate meta-analysis
Variance-covariance matrix = proportional .9*I(11)+.1*J(11,11,1)
Method = reml
Restricted log likelihood = -3.302925
Number of observations = 8

	Coef.	Std. Err.	Z	P> z	-	Conf. erval]
Overall mean						
Post-int anxiety	403	.184	-2.19	0.029	765	042
1-6m anxiety	.089	.134	0.67	0.506	174	.352
Post-int depression	262	.110	-2.37	0.018	479	045
1-6m depression	310	.112	-2.77	0.006	529	090
+6m depression	222	.161	-1.37	0.170	539	.095
Post-int distress	407	.068	-5.96	0.000	541	273
1-6m distress	394	.081	-4.81	0.000	554	233
+6m distress	213	.102	-2.09	0.036	414	013
Post-int wellbeing	.227	.101	2.25	0.025	.029	.426
1-6m wellbeing	.317	.100	3.15	0.002	.119	.515
+6m wellbeing	.258	.104	2.48	0.013	.054	.462

Table 32. Sensitivity analysis of within-study correlation assumptions using Riley's method. Comparison of MBPs with passive control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).

	Coef.	Std.	Z	P> z	ΓQ59	Conf.	
	COEI.	Err.	۷	E > Z	=	ervall	
		EII.			TILLE	ervarj	
Overall mean							
Post-int anxiety	708	.101	-6.96	0.000	907	508	
1-6m anxiety	685	.150	-4.55	0.000	981	390	
Post-int depression	465	.074	-6.18	0.000	610	320	
1-6m depression	580	.117	-4.96	0.000	810	351	
+6m depression	089	.371	-0.24	0.810	816	.638	
Post-int distress	447	.055	-8.10	0.000	555	338	
1-6m distress	454	.081	-5.56	0.000	614	294	
+6m distress	125	.195	-0.64	0.522	509	.258	
Post-int wellbeing	.366	.083	4.39	0.000	.203	.530	
1-6m wellbeing	.268	.133	2.00	0.045	.005	.530	
+6m wellbeing	.200	.217	0.92	0.355	225	.626	

Table 33. Sensitivity analysis of within-study correlation assumptions using Riley's method. Comparison of MBPs with active non-specific control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).

Multivariate meta-analysis
Variance-covariance matrix = proportional .3*I(8)+.7*J(8,8,1)
Method = reml
Restricted log likelihood = -24.812373
Number of observations = 11

	Coef.	Std. Err.	Z	P> z	=	Conf. erval]
Overall mean						
Post-int anxiety	587	.222	-2.64	0.008	-1.023	151
1-6m anxiety	422	.217	-1.94	0.053	849	.004
Post-int depression	445	.191	-2.33	0.020	820	071
1-6m depression	436	.192	-2.27	0.023	813	059
Post-int distress	390	.177	-2.20	0.028	739	042
1-6m distress	111	.200	-0.56	0.578	504	.281
Post-int wellbeing	4.824	.429	11.24	0.000	3.983	5.666
1-6m wellbeing	2.212	.370	5.98	0.000	1.487	2.938

Table 34. Sensitivity analysis of within-study correlation assumptions using Riley's method. Comparison of MBPs with active specific control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).

	Coef.	Std. Err.	Z	P> z	[95% C Interv	
Overall mean						
Post-int anxiety	133	.090	-1.48	0.139	310	.043
1-6m anxiety	020	.181	-0.11	0.909	377	.335
Post-int depression	289	.060	-4.75	0.000	408	169
1-6m depression	210	.078	-2.70	0.007	364	057
+6m depression	042	.145	-0.29	0.771	327	.242
Post-int distress	092	.051	-1.79	0.073	193	.008
1-6m distress	056	.072	-0.78	0.434	198	.085
+6m distress	093	.126	-0.74	0.462	340	.154
Post-int wellbeing	.110	.070	1.57	0.116	027	.249
1-6m wellbeing	021	.113	-0.19	0.850	243	.200
+6m wellbeing	028	.165	-0.17	0.864	351	.295

Table 35. Sensitivity analysis of within study correlation assumptions. Univariate meta-analyses of anxiety, depression, distress and wellbeing outcomes comparing MBPs with passive control groups.

Anxiety

Meta-analysis summar Random-effects model	-		of studies = geneity:	8
Method: REML			tau2 =	0.5671
SE adjustment: Trunc	ated Knapp-Hartun	α	I2 (%) =	
		5	, ,	20.47
			112	20.17
Study I	Effect Size	 [95% Conf.	 Intervall %	Weight
Carmody 2011	-0.487	-0.789	-0.184	13.35
Christopher 2018	0.190	-0.262	0.642	12.72
	-1.008	-1.682	-0.335	11.51
Kaviani 2008	-2.427	-3.286	-1.567	10.39
Kor 2019	0.020	-0.092	0.132	13.83
Sampl 2017	-0.827	-1.117	-0.537	13.39
VanDam 2014	-1.153	-1.700	-0.607	12.23
Yazdanimehr 2016	-1.474	-1.952	-0.997	12.59
theta	-0.844	-1.525	-0.162	
95% prediction inter	val for theta: [-	2.817, 1.129	9]	
Test of theta = 0: t	(7) = -2.93		Prob > t =	0.0221
Test of homogeneity:		8.83	Prob > 0 =	
, y y y y	2 (· /			

Depression

<u>= = = = = = = = = = = = = = = = = = = </u>				
Meta-analysis summa Random-effects mode Method: REML SE adjustment: Trun	-		I2 (%) =	= 14 = 0.6351 = 93.22 = 14.76
Study	Effect Size	[95% Conf.	Interval]	% Weight
Aeamla-Or 2015 Barrett 2018 Benn 2012 Carmody 2011 Christopher 2018 Dziok 2010 Haarig 2016 Kaviani 2008 Kor 2019 Moynihan 2013 Roeser 2013 VanDam 2014 Vieten 2008 Yazdanimehr 2016	0.296 -0.949 -0.843 -1.984	-0.814 -0.672 -0.167 -1.890 -1.473 -2.794 -1.040 -0.277 -1.530	0.760 -0.008 -0.212 -1.174 -0.102 0.277 -0.707	6.29 7.32 7.74
theta	-0.649	-1.143	-0.155	

95% prediction interval for theta: [-2.455, 1.158]

Distress

Ç	Study	Effect Size	[95% Conf.	<pre>Interval]</pre>	% Weight
Aeamla-Or	2015	-0.337	-0.660	-0.015	4.55
Arredondo	2017	-1.474	-2.254	-0.693	1.98
Barrett	2012	-0.106	-0.476	0.265	4.19
Barrett	2018	-0.021	-0.257	0.215	5.20
Behbahani	2018	-0.713	-1.233	-0.192	3.19
Benn	2012	-0.672	-1.241	-0.102	2.91
Carmody	2011	-0.512	-0.848	-0.175	4.45
Carson	2004	-0.741	-1.147	-0.336	3.94
Christopher	2018	-0.085	-0.597	0.427	3.24
Davidson	2003	0.000	-0.627	0.627	2.61
Galante	2018	-0.419	-0.581	-0.257	5.68
Huang	2015	-0.449	-0.755	-0.143	4.67
Hwang	2019	-0.454	-0.830	-0.078	4.15
Kor	2019	-0.838	-1.438	-0.238	2.75
	2019	-0.557	-0.950	-0.165	4.04
Moritz	2006	-0.385	-0.738	-0.033	4.33
Moynihan	2013	0.000	-0.277	0.277	4.89
Phang	2015	-0.247	-0.674	0.180	3.79
Plummer	2018	-0.397	-0.756	-0.038	4.28
Sampl	2017	-0.860	-1.213	-0.507	4.32
Schellekens	2017	0.197	-0.451	0.844	2.52
Schroeder		-0.922	-1.648	-0.197	2.19
VanDam	2014	-0.613	-1.291	0.065	2.38
Vieten	2008	0.580	-0.150	1.309	2.17
Wilson	2012	-1.022	-1.468	-0.577	3.67
Yazdanimehr	2016	-1.040	-1.502	-0.578	3.55
vanDijk	2017	-0.412	-0.760	-0.064	4.36
t	theta	-0.446	-0.597	-0.295	

95% prediction interval for theta: [-1.028, 0.136]

Wellbeing

Meta-analysis summary Random-effects model Method: REML SE adjustment: Trunca		Hetero	I2 (%)	= 9 = 0.0267 = 53.18 = 2.14
Study	Effect Size	[95% Conf.	Interval]	% Weight
Barrett 2012	0.190	-0.163 -0.217	0.543	10.59

Study	Effect Size	[95% Conf.	Interval]	% Weight
Barrett 2012	0.190	-0.163	0.543	10.59
Barrett 2018	0.019	-0.217	0.254	15.20
Benn 2012	0.319	-0.228	0.865	5.99
Davidson 2003	0.000	-0.627	0.627	4.84
Galante 2018	0.286	0.130	0.443	18.94
Lin 2019	0.655	0.267	1.042	9.52
Moynihan 2013	0.079	-0.167	0.325	14.75
Wilson 2012	0.592	0.171	1.014	8.57
vanDijk 2017	0.512	0.189	0.835	11.60
	+			
theta	0.280	0.098	0.463	

95% prediction interval for theta: [-0.149, 0.710]

Table 36. Sensitivity analysis of within study correlation assumptions. Univariate meta-analyses of anxiety, depression, distress and wellbeing outcomes compared with active non-specific control groups.

Anxiety

-			= 4
		tau2	= 0.6123
ncated Knapp-Hart	ung	I2 (%)	= 93.16
	-	Н2	= 14.61
	[95% Conf.	Interval]	% Weight
	-0.889	0.217	23.99
•			
-0.649	-1.956	0.658	
erval for theta:	[-4.452, 3.15	4]	
	33.69	Prob > t Prob > Q	= 0.2122 = 0.0000
	Effect Size -0.336 -0.257 -0.156 -1.900 -0.649	Heteron Hetero	Heterogeneity: tau2 12 (%) H2 Effect Size

Depression

Meta-analysis summa Random-effects mode Method: REML SE adjustment: Trum	-	Hetero	of studies = geneity: tau2 = I2 (%) = H2 =	0.3364
Study	 Effect Size	 [95% Conf.	Interval]	Weight
Duncan 2017 Frisvold 2009 Hou 2013 James 2018 Norouzi 2020	-0.011 -0.804 -0.508 -0.418 -0.125 -1.738	-1.434 -0.702 -0.764 -0.538		14.61 18.56 17.49 16.88
	-0.599	-1.252	0.054	
95% prediction inte	erval for theta: [-2	2.357, 1.15	9]	
Test of theta = 0: Test of homogeneity	t(5) = -2.36 y: Q = chi2(5) = 39	.23	Prob > t = Prob > Q =	

Distress

Meta-analysis summary Random-effects model	7		of studies geneity:	= 6
Method: REML			tau2 :	= 0.0000
SE adjustment: Trunca	ated Knapp-Hartun	ıg	I2 (%) :	= 0.00
			Н2 :	= 1.00
Study	Effect Size		Interval]	% Weight
·	-0.058		0.553	10.75
Frisvold 2009	0.003	-0.579	0.584	11.88
Guardino 2014	-0.306	-0.958	0.346	9.44
Hou 2013	-0.241	-0.567	0.084	37.92
James 2018	-0.322	-0.795	0.152	17.94
•	-0.724		-0.148	12.07
theta	-0.271		-0.009	
95% prediction interv	val for theta: [-	0.555, 0.012	2]	
	(5) 0 66			0 0 4 5 0

Wellbeing: only one study available.

Table 37. Sensitivity analysis of within study correlation assumptions. Univariate meta-analyses of anxiety, depression, distress and wellbeing outcomes comparing MBPs with active specific control groups.

Anxiety

Meta-analysis summa Random-effects mode Method: REML SE adjustment: Trur	1		of studies = geneity: tau2 = I2 (%) = H2 =	0.00
	Effect Size			Weight
Dykens 2014		-0.598	0.227	60.92
theta	-0.063	-2.152	2.026	
95% prediction inte	erval for theta: [· ,	.]	
Test of theta = 0: Test of homogeneity	t(1) = -0.39 c: Q = chi2(1) = 0.86		Prob > t = Prob > Q =	
Depression				
Meta-analysis summa Random-effects mode Method: REML SE adjustment: Trur	-		of studies = geneity: tau2 = I2 (%) = H2 =	0.0336
Study	Effect Size	[95% Conf.	Interval] %	Weight
Barrett 2018 Beattie 2017 Dykens 2014 Lonnberg 2020 Ma 2019 ODonnell 2017 Pan 2018 Vinesett 2017 Whitebird 2013	-0.025 -0.035 -0.179 -0.774 -0.901 -0.396 0.265 -0.296	-0.012 -0.853 -0.446 -0.438 -1.319 -1.751 -0.684 -0.930 -0.607	0.016 0.803 0.377 0.080 -0.228 -0.051 -0.108 1.460 0.016	2.09
theta	-0.225	-0.441	-0.010	
95% prediction inte	erval for theta: [-0	.712, 0.26	 1]	
Test of theta = 0: Test of homogeneity	t(8) = -2.42 v: Q = chi2(8) = 24.8	88	Prob > t = Prob > Q =	

Distress

Meta-analysis summary Random-effects model Method: REML			of studies = geneity:	
	ncated Knapp-Hartung		tau2 = I2 (%) =	
SE adjustment: Iful	icated Knapp-Hartung	İ	12 (%) = H2 =	
			112. —	10.50
Study	Effect Size	[95% Conf.	<pre>Interval] %</pre>	Weight
Barrett 2012	0.111	0.074	0.149	23.76
Barrett 2018		-0.014	0.014	24.57
Beattie 2017		-0.787	1.081	0.96
Corsica 2014		-0.709	0.709	1.62
Dykens 2014		-0.425		4.26
Lonnberg 2020	-0.064	-0.359	0.231	7.14
Ma 2019		-0.590	0.512	2.58
Moritz 2006	0.117	0.083	0.150	23.97
Vinesett 2017	0.073	-1.114	1.261	0.61
Whitebird 2013		-0.875	-0.014	3.96
Wong 2018	-0.269		0.044	6.56
theta	0.015			
95% prediction inte	erval for theta: [-0	0.228, 0.25	7]	
Test of theta = 0:	t(10) = 0.31		Prob > t =	
Test of homogeneity	Q = chi2(10) = 70	10	Prob > Q =	0.0000
				0.0000
Mallhaina				3.3333
Wellbeing				0.0000
	aru.		of studios -	
Meta-analysis summa		Number	of studies =	
Meta-analysis summa Random-effects mode		Number	geneity:	4
Meta-analysis summa Random-effects mode Method: REML	el	Number Hetero	geneity: tau2 =	4
Meta-analysis summa Random-effects mode Method: REML		Number Hetero	geneity: tau2 = I2 (%) =	4 0.0005 47.36
Meta-analysis summa Random-effects mode Method: REML	el	Number Hetero	geneity: tau2 = I2 (%) =	4
Meta-analysis summa Random-effects mode Method: REML SE adjustment: Trur	el ncated Knapp-Hartung	Number Hetero	geneity: tau2 = I2 (%) = H2 =	4 0.0005 47.36 1.90
Meta-analysis summa Random-effects mode Method: REML SE adjustment: Trur	el	Number Hetero	geneity: tau2 = I2 (%) = H2 = Interval] %	4 0.0005 47.36 1.90 Weight
Meta-analysis summa Random-effects mode Method: REML SE adjustment: Trur	el ncated Knapp-Hartung Effect Size	Number Hetero	geneity: tau2 = I2 (%) = H2 = Interval] %	4 0.0005 47.36 1.90 Weight
Meta-analysis summa Random-effects mode Method: REML SE adjustment: Trur	el ncated Knapp-Hartung Effect Size 0.045	Number Hetero	geneity: tau2 = I2 (%) = H2 = Interval] %	4 0.0005 47.36 1.90 Weight 39.59
Meta-analysis summa Random-effects mode Method: REML SE adjustment: Trur Study Barrett 2012 Barrett 2018	el ncated Knapp-Hartung Effect Size 0.045 0.005 -0.007	Number Hetero	geneity: tau2 = I2 (%) = H2 = Interval] % 0.081 0.020 0.405	4 0.0005 47.36 1.90 Weight 39.59
Meta-analysis summa Random-effects mode Method: REML SE adjustment: Trur Study Barrett 2012 Barrett 2018 Dykens 2014 Vinesett 2017	Effect Size 0.045 0.005 -0.007 -0.137	Number Hetero	geneity: tau2 = I2 (%) = H2 = Interval] % 0.081 0.020 0.405 1.052	4 0.0005 47.36 1.90 Weight 39.59 59.52 0.79 0.10
Meta-analysis summa Random-effects mode Method: REML SE adjustment: Trur Study Barrett 2012 Barrett 2018 Dykens 2014	Effect Size 0.045 0.005 -0.007 -0.137	Number Hetero	geneity: tau2 = I2 (%) = H2 = Interval] % 0.081 0.020 0.405 1.052	4 0.0005 47.36 1.90 Weight 39.59 59.52 0.79 0.10
Meta-analysis summa Random-effects mode Method: REML SE adjustment: Trur Study Barrett 2012 Barrett 2018 Dykens 2014 Vinesett 2017 theta	Effect Size 0.045 0.005 -0.007 -0.137	Number Hetero	geneity: tau2 = I2 (%) = H2 = Interval] % 0.081 0.020 0.405 1.052 0.081	4 0.0005 47.36 1.90 Weight 39.59 59.52 0.79 0.10
Meta-analysis summa Random-effects mode Method: REML SE adjustment: Trur Study Barrett 2012 Barrett 2018 Dykens 2014 Vinesett 2017 theta	Effect Size 0.045 0.005 -0.007 -0.137	Number Hetero	geneity: tau2 = I2 (%) = H2 = Interval] % 0.081 0.020 0.405 1.052 0.081	4 0.0005 47.36 1.90 Weight 39.59 59.52 0.79 0.10
Meta-analysis summa Random-effects mode Method: REML SE adjustment: Trur Study Barrett 2012 Barrett 2018 Dykens 2014 Vinesett 2017 theta	Effect Size 0.045 0.005 -0.007 -0.137 0.021 erval for theta: [-0	Number Hetero	geneity: tau2 = I2 (%) = H2 = Interval] % 0.081 0.020 0.405 1.052 0.081	4 0.0005 47.36 1.90 Weight 39.59 59.52 0.79 0.10

Table 38. Sensitivity analysis excluding data from samples N<30. Comparison of MBPs with passive control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m). The prediction intervals are shown in the second table.

	Coef.	Std. Err.	Z	P> z	=	Conf. erval]
Overall mean						
Post-int anxiety	484	.085	-5.86	0.000	652	317
1-6m anxiety	503	.114	-4.39	0.000	728	278
Post-int depression	431	.068	-6.32	0.000	564	297
1-6m depression	436	.094	-4.60	0.000	622	250
+6m depression	247	.178	-1.39	0.166	597	.102
Post-int distress	442	.043	-10.21	0.000	527	357
1-6m distress	399	.055	-7.20	0.000	508	290
+6m distress	231	.110	-2.10	0.036	447	015
Post-int wellbeing	.321	.058	5.51	0.000	.207	.436
1-6m wellbeing	.353	.081	4.35	0.000	.194	.513
+6m wellbeing	.280	.110	2.53	0.011	.063	.498

Outcome	Estimate	95% Confidence Int.		95% Pred	diction Int.
Post-int anxiety	484	652	317	846	123
1-6m anxiety	503	728	278	897	109
Post-int depression	431	564	297	776	085
1-6m depression	436	622	250	806	065
+6m depression	247	597	.102	730	.235
Post-int distress	442	527	357	770	114
1-6m distress	399	508	290	735	063
+6m distress	231	447	015	619	.156
Post-int wellbeing	.321	.207	.436	016	.659
1-6m wellbeing	.353	.194	.513	003	.710
+6 wellbeing	.280	.063	.498	108	.670

Table 39. Sensitivity analysis setting estimate to +1 SE. Comparison of MBPs with passive control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).

Multivariate meta-analysis Variance-covariance matrix = proportional .9*I(11)+.1*J(11,11,1) Method = reml Number of dimensions = 11 Restricted log likelihood = -127.22526 Number of observations = 78

	Coef.	Std.	Z	P> z	[95%	Conf.			
		Err.			Inte	ervall			
						01.01			
Overall mean									
Post-int anxiety	700	.085	-8.21	0.000	867	533			
1-6m anxiety	569	.126	-4.49	0.000	817	321			
Post-int depression	437	.064	-6.81	0.000	563	311			
1-6m depression	525	.101	-5.20	0.000	723	327			
+6m depression	177	.319	-0.56	0.578	803	.448			
Post-int distress	431	.048	-8.88	0.000	526	336			
1-6m distress	430	.071	-6.01	0.000	571	290			
+6m distress	153	.170	-0.90	0.368	488	.181			
Post-int wellbeing	.356	.073	4.87	0.000	.212	.499			
1-6m wellbeing	.349	.116	3.00	0.000	.121	.578			
+6m wellbeing	.252	.189	1.33	0.183	118	.623			

Table 40. Sensitivity analysis setting estimate to +1 SE. Comparison of MBPs with active non-specific control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).

```
Multivariate meta-analysis  
Variance-covariance matrix = proportional .3*I(8)+.7*J(8,8,1)  
Method = reml  
Restricted log likelihood = -23.852515  
Number of observations = 11
```

	Coef. Std. z Err.		P> z	[95% Conf. Interval]		
Overall mean			# ##			
Post-int anxiety	542	.208	-2.61	0.009	950	134
1-6m anxiety	462	.205	-2.25	0.024	865	060
Post-int depression	409	.179	-2.28	0.022	761	058
1-6m depression	443	.183	-2.41	0.016	803	083
Post-int distress	362	.167	-2.17	0.030	690	035
1-6m distress	124	.191	-0.65	0.514	500	.250
Post-int wellbeing	3.04	.666	4.57	0.000	1.737	4.350
1-6m wellbeing	1.43	.541	2.64	0.008	.370	2.491

Table 41. Sensitivity analysis setting estimate to +1 SE. Comparison of MBPs with active specific control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).

	Coef.	Std. Err.	Z	P> z	[95% C Inter	
Overall mean						
Post-int anxiety	099	.078	-1.27	0.204	252	.054
1-6m anxiety	.078	.138	0.57	0.568	191	.349
Post-int depression	235	.058	-4.02	0.000	350	120
1-6m depression	161	.077	-2.08	0.037	313	009
+6m depression	.043	.141	0.31	0.759	233	.320
Post-int distress	066	.050	-1.32	0.187	165	.032
1-6m distress	.003	.071	0.04	0.965	137	.143
+6m distress	052	.125	-0.42	0.677	297	.192
Post-int wellbeing	.168	.068	2.46	0.014	.033	.302
1-6m wellbeing	.028	.106	0.27	0.788	179	.236
+6m wellbeing	.001	.180	0.01	0.991	351	.355

Table 42. Sensitivity analysis setting estimate to -1 SE. Comparison of MBPs with passive control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m). The prediction intervals are shown in the second table

		Coef.	Std. Err.	Z	P> z		Conf. rval]
Overall mean							
Post-int anxiety		691	.080	-8.62		849	534
1-6m anxiety		567	.118	-4.78	0.000	799	334
Post-int depression		464	.060	-7.64	0.000	584	345
1-6m depression		545	.095	-5.72	0.000	732	358
+6m depression		199	.295	-0.67	0.500	779	.380
Post-int distress		461	.045	-10.07	0.000	551	371
1-6m distress		465	.067	-6.88	0.000	597	332
+6m distress		169	.159	-1.06	0.287	482	.142
Post-int wellbeing		.332	.068	4.85	0.000	.197	.466
1-6m wellbeing		.298	.108	2.74	0.006	.085	.512
+6m wellbeing		.243	.176	1.38	0.167	101	.588
utcome	Estimate			Int.	95% Pred	iction Int.	
ost-int anxiety	691	849		534	-1.278	104	
-6m anxiety	567	799		334	-1.179	.045	
ost-int depression	464	584		345	-1.042	.112	
-6m depression	545	732		358	-1.141	.050	
6m depression	199	779		380	-1.015	.616	
ost-int distress	461	551		371	-1.033	.110	
-6m distress	465	597		332	-1.045	.115	
6m distress	169	482		142	818	.478	
ost-int wellbeing	.332	.197		466	249	.913	
-6m wellbeing	.298	.085		512	306	.903	
6m wellbeing	.243	101		588	421	.908	

Table 43. Sensitivity analysis setting estimate to -1 SE. Comparison of MBPs with active non-specific control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m). The prediction intervals are shown in the second table.

Multivariate meta-analysis
Variance-covariance matrix = proportional .3*I(8)+.7*J(8,8,1)
Method = reml
Restricted log likelihood = -23.23405
Number of observations = 11

	Coef.	Std. Err.	Z	P> z	-	Conf. erval]
Overall mean						
Post-int anxiety	564	.202	-2.79	0.005	960	167
1-6m anxiety	486	.199	-2.44	0.015	876	095
Post-int depression	443	.174	-2.55	0.011	785	102
1-6m depression	466	.178	-2.62	0.009	815	117
Post-int distress	394	.162	-2.43	0.015	712	076
1-6m distress	150	.186	-0.81	0.419	515	.214
Post-int wellbeing	2.978	.660	4.51	0.000	1.682	4.273
1-6m wellbeing	1.382	.534	2.58	0.010	.334	2.429

Outcome	Estimate	95% Confidence Int.		95% Predic	ction Int.
Post-int anxiety	564	960	167	-1.679	.551
1-6m anxiety	486	876	095	-1.598	.626
Post-int depression	443	785	102	-1.534	.646
1-6m depression	466	815	117	-1.560	.627
Post-int distress	394	712	076	-1.475	.686
1-6m distress	150	515	.214	-1.251	.950
Post-int wellbeing	2.978	1.682	4.273	1.169	4.786
1-6m wellbeing	1.382	.334	2.429	198	2.962

Table 44. Sensitivity analysis setting estimate to -1 SE. Comparison of MBPs with active specific control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).

	Coef.	Std. Err.	Z	P> z	[95% C Interv	
Overall mean						
Post-int anxiety	135	.084	-1.61	0.107	300	.029
1-6m anxiety	.064	.148	0.44	0.663	227	.356
Post-int depression	250	.062	-4.02	0.000	372	128
1-6m depression	172	.082	-2.10	0.036	334	011
+6m depression	137	.149	-0.92	0.360	431	.156
Post-int distress	084	.053	-1.58	0.115	189	.020
1-6m distress	023	.076	-0.31	0.759	172	.125
+6m distress	001	.132	-0.01	0.991	260	.257
Post-int wellbeing	.168	.073	2.30	0.021	.025	.312
1-6m wellbeing	.028	.113	0.25	0.805	194	.250
+6m wellbeing	007	.194	-0.04	0.970	387	.372

Table 45 Sensitivity analysis excluding studies with unclear teacher competence. Comparison of MBPs with passive control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m). The prediction intervals are shown in the second table.

		Coef.	Std.	Z	P> z	[95%	Conf.
			Err.			Inte	erval]
0							
Overall mean		646	110	F 0.6	0 000	0.60	420
Post-int anxiety		646	.110	-5.86	0.000	863	430
1-6m anxiety		814	.182	-4.46	0.000	-1.172	456
Post-int depression		472	.076	-6.15	0.000	622	321
1-6m depression		485	.120	-4.02	0.000	722	249
+6m depression		177	.300	-0.59	0.555	766	.411
Post-int distress		415	.055	-7.54	0.000	523	307
1-6m distress		383	.080	-4.74	0.000	541	224
+6m distress		151	.161	-0.93	0.351	468	.166
Post-int wellbeing		.371	.074	4.96	0.000	.224	.517
1-6m wellbeing		.322	.110	2.92	0.004	.105	.539
+6m wellbeing		.254	.178	1.43	0.154	095	.604
		. 0.5			0.50 D	1	
Outcome	Estima			ence Int.		ediction 1	
Post-int anxiety	64			430	-1.266		
1-6m anxiety	81		.72	456	-1.498		
Post-int depression	47			321	-1.070		
1-6m depression	48		722	249	-1.112		
+6m depression	17		766	.411	-1.013		
Post-int distress	41	55	523	307	-1.004	.17	73
1-6m distress	383		541	224	983		
+6m distress	15	14	168	.166	814	.51	L2
Post-int wellbeing	.37	1.2	224	.517	226	.96	58
1-6m wellbeing	.32	2.1	.05	.539	296	.94	12

-.095

.604

-.425

.934

.254

+6m wellbeing

Table 46. Sensitivity analysis excluding studies with unclear teacher competence. Comparison of MBPs with active non-specific control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).

Multivariate meta-analysis
Variance-covariance matrix = proportional .3*I(8)+.7*J(8,8,1)
Method = reml
Restricted log likelihood = -23.080973
Number of observations = 10

	Coef.	Std. Err.	Z	P> z		Conf. erval]
Overall mean						
Post-int anxiety	542	.211	-2.56	0.011	957	126
1-6m anxiety	462	.207	-2.22	0.026	869	054
Post-int depression	414	.183	-2.26	0.024	773	054
1-6m depression	443	.186	-2.38	0.017	808	077
Post-int distress	357	.176	-2.03	0.042	703	012
1-6m distress	123	.194	-0.64	0.525	505	.257
Post-int wellbeing	3.046	.671	4.54	0.000	1.731	4.362
1-6m wellbeing	1.432	.543	2.64	0.008	.367	2.497

Outcome	Estimate	95% Confidence Int.		95% Predi	iction Int.
Post-int axiety	542	957	126	-1.725	.641
1-6m anxiety	462	869	054	-1.641	.717
Post-int depression	414	773	054	-1.571	.743
1-6m depression	443	808	077	-1.603	.717
Post-int distress	357	703	012	-1.509	.793
1-6m distress	123	505	.257	-1.291	1.043
Post-int wellbeing	3.046	1.731	4.362	1.161	4.932
1-6m wellbeing	1.432	.367	2.497	220	3.085

Table 47. Sensitivity analysis excluding studies with unclear teacher competence. Comparison of MBPs with active specific control groups: multivariate meta-analysis of anxiety, depression, distress, and wellbeing at post-intervention, (post-int), 1-6 months follow-up, (1-6m) and 6+ months follow-up (+6m).

	Coef.	Std. Err.	Z	P> z	[95% C Interv	
Overall mean						
Post-int anxiety	058	.101	-0.58	0.562	257	.139
1-6m anxiety	.388	.195	1.99	0.047	.005	.770
Post-int depression	267	.066	-4.01	0.000	398	136
1-6m depression	207	.084	-2.45	0.014	373	041
+6m depression	055	.138	-0.40	0.687	326	.215
Post-int distress	129	.057	-2.24	0.025	241	016
1-6m distress	038	.081	-0.47	0.638	197	.121
+6m distress	034	.122	-0.28	0.776	275	.205
Post-int wellbeing	.159	.081	1.94	0.052	001	.319
1-6m wellbeing	.004	.138	0.03	0.975	267	.276
+6m wellbeing	009	.175	-0.05	0.959	353	.335

Table 48. Multivariate Meta-regression. Comparison of MBPs with passive control groups, outcomes at 1-6 months follow-up. USA studies= studies from the USA; selective MBP=selective intervention; indicated MBP=indicated intervention; Psychoeducation= adding psychoeducation component and/or non-meditative psychological exercises; Physical exercise= adding physical exercise component; Arts= adding arts component.

Multivariate meta-analysis Variance-covariance matrix = proportional .9*I(4)+.1*J(4,4,1) Method = reml						
	Coef.	Std. Err.	Z	P> z	[95% Cor	nf. Interval]
1-6m anxiety Selective MBP Indicated MBP USA studies Contact hours Physical exercisecons	601 -1.123 1.099 .020 716 910	.360 .418 .500 .031 .476 .525	-1.67 -2.68 2.20 0.65 -1.50 -1.73	0.095 0.007 0.028 0.514 0.133 0.083	-1.307 -1.943 .119 041 -1.651 -1.940	.103 303 2.080 .083 .218 .118
1-6m depression Selective MBP Indicated MBP USA studies Contact hours Psychoeducation Physical exercise cons	-1.070 841 1.084 .045 550 961 -1.027	.338 .343 .282 .018 .383 .403 .415	-3.16 -2.45 3.84 2.48 -1.44 -2.38 -2.48	0.000	-1.734 -1.515 .530 .009 -1.302 -1.752 -1.841	406 167 1.637 .081 .201 169
1-6m distress Selective MBP Indicated MBP USA studies Contact hours Psychoeducation Physical exercise Artscons	063 .099 .244 .001 368 .115 744	.167 .299 .230 .016 .248 .224 .525	-0.38 0.33 1.06 0.09 -1.49 0.51 -1.42 -1.71	0.703 0.740 0.291 0.928 0.137 0.607 0.157 0.088	392 487 208 031 855 323 -1.774 -1.148	.264 .685 .696 .034 .117 .554 .286
1-6m wellbeing Selective MBP USA studies Contact hours Psychoeducation Physical exercise Arts cons	.156 397 006 .355 .247 .689	.371 .813 .079 1.307 .553 1.156	0.42 -0.49 -0.08 0.27 0.45 0.60	0.673 0.626 0.939 0.786 0.655 0.551	571 -1.991 1621 -2.207 837 -1.577 -1.488	.883 1.197 .149 2.918 1.331 2.956 2.185

Table 49. Meta-regression. Comparison of MBPs with active specific control groups, outcome distress at 1-6 months follow-up. Selective MBP=selective intervention; indicated MBP=indicated intervention; Psychoeducation= adding psychoeducation component and/or non-meditative psychological exercises; Physical exercise= adding physical exercise component; Other meditation= adding other types meditation component; Arts= adding arts component. Psychoeducation and other meditation are omitted because of collinearity.

Random-effects Method: REML	meta-regression				<pre>Number of obs = 11 Residual heterogeneity:</pre>		
SE adjustment:	Truncated	l Knapp-Hartu	ng		t I2 R-squared Model F(6,4)	au2 = 1.5e-07 (%) = 0.00 H2 = 1.00 (%) = 100.00	
_meta_es	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]	
Selective MBP	.168	.041	4.10	0.015	.054	.283	
Indicated MBP	153	.264	-0.58	0.592	886	.579	
USA studies	.057	.156	0.37	0.732	375	.490	
Contact hours	023	.014	-1.62	0.181	062	.016	
Psychoeducati	0	(omitted)					
Physical exer	.510	.198	2.57	0.062	040	1.061	
Other meditat	0	(omitted)					
Other/unclear	.502	.247	2.03	0.112	183	1.188	
_cons	.010	.204	0.05	0.961	558	.579	
Test of residual homogeneity: Q res = chi2(4) = 1.30 Prob > Q res = 0.8616							

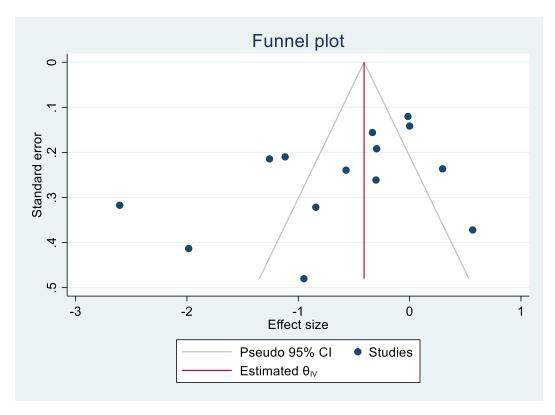


Fig 1. Funnel plot for univariate meta-analysis for the depression outcome at 1-6 months post-intervention for MBPs compared with passive controls.

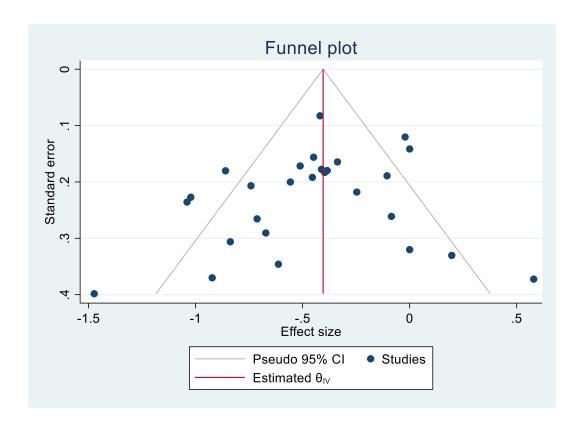


Fig 2. Funnel plot for univariate meta-analysis distress 1-6 months post-intervention compared with passive controls.

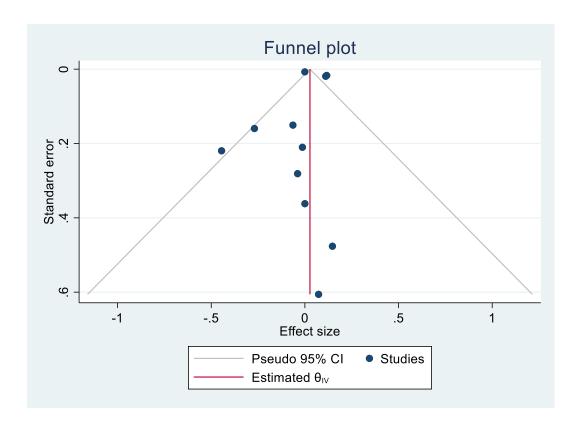


Fig 3. Funnel plot for univariate meta-analysis distress 1-6 months post-intervention compared with active specific controls.