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1 Individual Vaccination Probability and Likelihood

Formulation

The probability that an individual is vaccinated at age x is one minus the probability
that they avoid vaccination during every vaccination activity to which they are exposed.
Assume that there is some portion of the population, ρ, that is accessible to vaccination
activities:

g(x; ρ) = 1−

[
(1− ρ) + ρ

m∏
j=1

Pr(not vaccinated in Vj| accessible)

]
where V1, ..., Vm are all vaccination activities to which the child might have exposed. Let
f(Vj) be the probability of not being vaccinated in activity j given that you are in the
target population for that activity and in the accessible population. Let zij = 1 if person
i is in the target population for campaign j, and zij = 0 otherwise. Hence:

g(xi, ρ) = 1−

[
(1− ρ) + ρ

m∏
j=1

f(Vj)
zij

]
(1)

The probability of not being vaccinated given that you are in the accessible population,
f(Vj) should be some function of the number of doese nominally distributed in campaign
j, vj, and the size of the accessible target population for that activity, ρNj.

If all nominally distributed doses go into a unique vacinee in the target population,
then f(vj, ρNj) = 1 − vj/(ρNj). However, it seems we can assume that all nominally
distributed doses do not result in a unique vaccinee within the target population. If we
consider our doses to be a sequence, k = 0 . . . (vj − 1), it further seems reasonable to
assume that the chances of the first dose in this sequence is more likely to result in a
unique vaccinee than later doses. This effect can be captured by the equation:
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f(vj, ρNj) =

vj−1∏
k=0

(
1− 1

ρNj − k(1− ψ)

)
(2)

where ψ is a discount factor on how much the effective denominator changes on additional
doses. That is, the term −k(1−ψ) denotes how much the effective denominator (i.e., the
number of people competing for doses) decreases because k doses have been given. If a
campaign is perfect, then ψ = 0, and each dose in the sequence decreases the denominator
by exactly 1 (and f(vj, ρNj) = 1− vj/(ρNj)). If a campaign is effectively at random (i.e.,
the fact that doses have been previously distributed does not increase a new person’s
chance of receiving the next dose) then ψ = 1, and the probability of receiving (or
avoiding) a dose remains constant. We would expect most vaccination activities to fall
somewhere in this range. However, while it may be unlikely, we can even imagine a
situation where there are “vaccine hungry” individuals who try to get vaccinated as many
times as possible. In this case ψ > 1, and subsequent doses are even less likely to result
in a unique vaccinee. Because values of ψ less than 0 are nonsensical (no dose can result
in more than 1 vaccinee), we restate ψ in terms of α:

ψ = eα

We will use eα instead of ψ throughout the supplement. Equation 1 now becomes:

g(xi; ρ, α) = 1−

[
(1− ρ) + ρ

m∏
j=1

(
vj−1∏
k=0

(
1− 1

ρNj − k(1− eα)

))zij]
(3)

This equation can be further simplified by finding a closed form solution for the inner
product as detailed in section 2 below.

In a cross sectional survey we observe a set of individuals with ages x = {x1, · · · , xn}
and corresponding vaccination statuses y = {y1, · · · , yn}, where yi = 1 denotes having
ever been vaccinated, and yi = 0 denotes having never been vaccinated. If we assume all
yi are independent events, then the likelihood of observing the cross sectional data given
ρ and α is:

L(ρ, α;x,y) =
n∏
i=1

g(xi; ρ, α)yi(1− g(xi; ρ, α))1−yi (4)
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2 Derivation of Simplified Form for Vaccination Prob-

ability

The probability that person i is vaccinated is:

g(xi; ρ, α) = 1−

[
(1− ρ) + ρ

m∏
j=1

(
vj−1∏
k=0

(
1− 1

ρNj − k(1− eα)

))zij]
(5)

= ρ− ρ
m∏
j=1

(
vj−1∏
k=0

(
1− 1

ρNj − k(1− eα)

))zij

(6)

= ρ

(
1−

m∏
j=1

(
vj−1∏
k=0

(
1− 1

ρNj − k(1− eα)

))zij)
(7)

Let the portion of this equation that depends on vj and ρNj be designated f(vj, ρNj):

f(vj, ρNj) =

vj−1∏
k=0

(
1− 1

ρNj − k(1− eα)

)
(8)

Dropping the subscripts and taking ρNj = N for convienence, note that:

f(v,N) =
v−1∏
k=0

(
1− 1

N − k(1− eα)

)

=
v−1∏
k=0

N − k(1− eα)− 1

N − k(1− eα)

=
v−1∏
k=0

1− k
N

(1− eα)− 1
N

1− k
N

(1− eα)

Let q = v/N and a = (1− eα):

3



f(v,N) = f(qN,N)

=

qN−1∏
k=0

1− k
N
a− 1

N

1− k
N
a

=

(
qN−2∏
k=0

1− k
N
a− 1

N

1− k
N
a

)(
1− qN−1

N
a− 1

N

1− qN−1
N

a

)

=

(
qN−2∏
k=0

1− k
N
a− 1

N

1− k
N
a

)(
1− qa+ a

N
− 1

N

1− qa+ a
N

)

=

qN∏
k=1

1− qa+ ka
N
− 1

N

1− qa+ ka
N

Hence:

log f(qN,N) =

qN∑
k=1

log

(
1− qa+

ka

N
− 1

N

)
−

qN∑
k=1

log

(
1− qa+

ka

N

)

=
N

a

[
a

N

qN∑
k=1

log

(
1− qa+

ka

N
− 1

N

)
− a

N

qN∑
k=1

log

(
1− qa+

ka

N

)]

Hence, by the rectangular quadrature formula:

4



log f(qN,N) ≈ N

a

[∫ 1− 1
N

1−qa+ a
N
− 1
N

log xdx−
∫ 1

1−qa+ a
N

log xdx

]
=
N

a

[
[x log x− x]

1− 1
N

1−qa+ a
N
− 1
N

− [x log x− x]11−qa+ a
N

]
=
N

a

[(
1− 1

N

)
log

(
1− 1

N

)
−
(

1− 1

N

)
−
(

1− qa+
a

N
− 1

N

)
log

(
1− qa+

a

N
− 1

N

)
+

(
1− qa+

a

N
− 1

N

)
−1 log 1 + 1 +

(
1− qa+

a

N

)
log
(

1− qa+
a

N

)
−
(

1− qa+
a

N

)]
=
N

a

[(
1− 1

N

)
log

(
1− 1

N

)
+

−
(

1− qa+
a

N
− 1

N

)
log

(
1− qa+

a

N
− 1

N

)
+
(

1− qa+
a

N

)
log
(

1− qa+
a

N

)]
=
N

a
log

(
1− 1

N

)
− 1

a
log

(
1− 1

N

)
− N

a
log

(
1− qa+

a

N
− 1

N

)
+Nq log

(
1− qa+

a

N
− 1

N

)
− log

(
1− qa+

a

N
− 1

N

)
+

1

a
log

(
1− qa+

a

N
− 1

N

)
+
N

a
log
(

1− qa+
a

N

)
−Nq log

(
1− qa+

a

N

)
+ log

(
1− qa+

a

N

)
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Therefore (see limit calculations below):

lim
N→∞

log f(qN,N) =
1

a
lim
N→∞

N log

(
1− 1

N

)
−
(

1

a
− q
)

lim
N→∞

N log

(
1− qa+

a

N
− 1

N

)
+

1

a
log (1− qa)

+

(
1

a
− q
)

lim
N→∞

N log
(

1− qa+
a

N

)
= −1

a
−
(

1

a
− q
)
a− 1

1− qa
+

1

a
log (1− qa) +

(
1

a
− q
)

a

1− qa

=
1

a
log (1− qa)

Therefore:

lim
N→∞

f(qN,N) = (1− qa)1/a

= (1− q(1− eα))1/(1−e
α)

Note that the above expression is undefined when α = 0. However:

lim
a→0

log(1− qa)

a
= lim

a→0

1

1− qa
(−q) = −q

Therefore, for large N :

f(v,N) ≈

{
e−v/N if α = 0(
1− v

N
(1− eα)

)1/(1−eα)
otherwise

(9)

And:

g(xi; ρ, α) ≈


ρ
[
1−

∏m
j=1

(
e−vj/ρNj

)zij] if α = 0

ρ

[
1−

∏m
j=1

((
1− vj

ρNj
(1− eα)

)1/(1−eα))zij]
otherwise

(10)

Note that this convergence appears to occur very quickly. Empirically, it appears that
this value is accurate to three decimal places for N > 100 in sample scenarios.
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LIMITS USING L’HOSPITAL RULE

lim
N→∞

N log

(
1− 1

N

)
= lim

x→0

(log (1− x))′

x′
= lim

x→0

1

1− x
(−1) = −1

lim
N→∞

N log

(
1− qa+

a

N
− 1

N

)
= lim

x→0

(log (1− qa+ ax− x))′

x′
= lim

x→0

1

1− qa+ ax− x
(a− 1)

=
a− 1

1− qa

lim
N→∞

N log
(

1− qa+
a

N

)
= lim

x→0

(
log
(
1− qa+ a

N

))′
x′

= lim
x→0

1(
1− qa+ a

N

)(a)

=
a

1− qa

3 Individual Campaign Coverage

Denote the actual coverage of a campaign j to be cj. Note that cj is the probability of a
person covered only by campaign (or pseudo-campaign) j being vaccinated. Hence:

cj =

 ρ
[
1− e−vj/ρNj

]
if α = 0

ρ

[
1−

(
1− vj

ρNj
(1− eα)

)1/(1−eα)]
otherwise

(11)

4 Routine Vaccination

Routine vaccination differs from campaigns in that children are vaccinated over a much
larger time scale than is true of campaigns. However, routine vaccination can be modeled
within our framework as a special type or vaccination activity.

Consider R years of routine vaccination activitiy, 1...R. Denote the event of a member
of the accessible population having the “opportunity” for vaccination during year j of
routine vaccination as Oj and assume that each individual only has one routine vaccination
opportunity. Further, assume that if the routine vaccination opportunity occurs during
a given year then the probability of avoiding vaccination during that opportunity follows
the same general form for activities:

Pr(not vaccinated by routine|Oj) = f(vj, ρNj)

If we let Pr(Ō) be the probability of having not yet had the opportunity for routine
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vaccination, then:

Pr(not vaccinated by routine) = Pr(Ō) +
R∑
j=1

f(vj, ρNj) Pr(Oj)

If we assume that each child has a probability FR(x) be the probability of having had
your routine vaccination probability by age x. The the probability that person i is not
vaccinated in a routine campaign is:

fR(xi,v,N ) = (1− FR(xi)) +
R∑
j=1

f(vj, ρNj) (FR(xij + lj)− FR(xij)) (12)

where xij is person i’s age at the beginning of routine vaccination year j and lj is the
length of vaccination year j (12 months for all years except for the year the data was
collected). In other words, routine vaccination becomes a pseudo-campaign representing
the weighted sum of the coverage in all of the years of routine vaccination, where the
weights represent the probability that routine vaccination happened in that year:

fR(xi,v,N ) = w∗i +
R∑
j=1

wijf(vj, ρNj) (13)

wij = FR(xij + lj)− FR(xij) (14)

w∗i = 1− FR(xi) (15)

And the probability for vaccination for a given individual becomes:

g(xi; ρ, α) = ρ

[
1− fR(xi,vR,NR)

m∏
j=1

f(vj, ρNj)

]
(16)

where m now represents the number of proper campaigns vR and NR are the number of
doses distributed during routine vaccination activities.
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