Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies
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PROTOCOL S3

BAYESIAN MODEL FITTING & PARAMETER VALUES
3 Bayesian Model Fitting and Parameter Values

For model fitting we used the equilibrium solution to fit the compartmental model to the prevalence of parasitemia (by microscopy and/or PCR) and clinical disease incidence by age across transmission settings, assuming that these data can be approximated by a non-seasonal equilibrium. Model fitting was undertaken conditional on the EIR in the location and thus was not used to estimate vector parameters directly. EIR estimates from each location were used to construct informative priors for this parameter for each location. Bayesian Markov chain Monte Carlo (MCMC) methods were used for model fitting. 

The four functional forms for infection-blocking immunity and clinical immunity, including the option of no immunity, (see Protocol S1) were considered in model fitting with the best model structure chosen as that with the largest posterior probability. Blood-stage anti-parasite immunity was assumed to be acquired only with age as it was not possible to distinguish exposure-driven parasite immunity from exposure-driven infection-blocking immunity from these data.
In order to reduce the number of parameters being fitted, the parameters which were reasonably precisely known from published sources were kept fixed.   Rates of loss of immunity were also fixed, as there is no information about these in the data we have. As we are interested in this paper primarily in infection (parasitemia) and not clinical disease, immunity against infection has the greatest impact on our results. Hence in a sensitivity analysis we explored how results change with different values of the parameter dB (see Protocol S5). We also fixed the parameters for the duration of patent infection with and without immunity during model fitting to overcome identifiability issues. 

Table S3.1 lists the parameters considered in the fitting, their prior and fitted posterior distributions and associated source references.

Table S3.1. Human Model Parameters and Prior Distributions

	Parameter Description
	Symbol
	Prior Distribution, with median and 95% interval if not fixed
	Posterior Estimate and 95% Credible Interval, or fixed value
	Units
	References

	Age and Heterogeneity
	 
	 
	 
	
	 

	Age-dependent biting parameter
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	Fixed  
	2920
	days
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[1, 2]

 

	Age-dependent biting parameter
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	 Fixed 
	0.85
	-
	

	Variance of log of heterogeneity in biting rates
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	Log-normal 1.62 (1.00, 2.61)
	1.27 (1.12,  1.44)
	-
	 [3]

	Human Infectious Periods
	
	 
	
	
	 

	Latent period
	dE
	Fixed 
	12
	days
	 [4]

	Patent infection with no immunity (including disease)
	dI
	Fixed 
	200
	days
	 
 ADDIN EN.CITE 

[4, 5]


	Sub-patent infection
	dU
	Weibull 67 (30, 100)
	168 (156, 181) 
	days
	 
 ADDIN EN.CITE 

[5]


	Prophylaxis with SP following treatment
	dP
	Fixed 
	25
	days
	[6]

	Clinical disease with treatment1
	dT
	Fixed
	5
	days
	 
 ADDIN EN.CITE 

[7]


	Clinical disease without treatment2 
	dD
	Fixed
	5
	days
	[8]

	Infection Immunity
	
	
	
	
	 

	Decay parameter
	dB
	Fixed
	10
	years
	 -

	Scale parameter (see section 3.1.2)
	aB
	Gamma 8.39 (1.21, 27.9)
	11.24 (10.66, 11.84)
	years
	 -

	Shape parameter
	B
	Gamma 1.68 (0.24, 5.57)
	4.93 (4.36, 5.57)
	-
	 -

	Duration in state where immunity doesn’t increase following an initial exposure 
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1685 (1.02, 1.7E16)
	69.5 (57.3, 84.3)
	days
	 -

	Clinical Immunity
	
	 
	
	
	 

	Immunity level of newborn relative to mother
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	Fixed
	0.5
	-
	-

	Decay parameter for maternal immunity
	dM
	Fixed
	255.5
	days
	[9]

	Decay parameter for acquired clinical immunity
	dC
	Fixed
	30
	years
	[10]

	Scale parameter (see section 3.1.2)
	aC
	Gamma 8.39 (1.21, 27.9)
	6.54 (6.28, 6.84)
	years
	 -

	Shape parameter
	C
	Gamma 1.68 (0.24, 5.57)
	4.13 (3.43,  4.93)
	-
	 -

	Parasite clearance immunity
	
	 
	
	
	 

	Duration of patent infection with maximum immunity
	dMIN
	 Fixed
	160
	days
	 Based on fitting to data from Garki project (see below)

	Decay parameter
	dA
	Fixed
	10
	years
	 -

	Scale parameter
	IA0
	Fixed
	4732.5
	-
	 -

	Shape parameter
	A
	Fixed
	5
	-
	 -

	Treatment
	
	
	
	
	

	Proportion treated
	fT
	Varied between transmission sites
	Range 0.05 to 1 depending on transmission site
	-
	-

	Infectivity

	Probability of human infection from an infectious bite with no immunity
	bMAX
	Beta 0.5 (0.09, 0.91)
	0.89 (0.78, 0.98)
	-
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[11-14]


	Probability of human infection from an infectious bite with full immunity
	bMIN
	Beta 0.18 (0.03, 0.48)
	0.005 (0.002, 0.008)
	-
	 -

	Onward infectivity to mosquitoes (see section 3.1.3):
	
	
	
	
	 

	  from treated state (with non-gametocytocidal drug)
	cT
	0.10 (0.05, 0.17)
	0.12
	-
	 See below

	from untreated disease
	cD
	0.30 (0.16, 0.46)
	0.40
	-
	 See below

	from patent infection
	cA
	0.10 (0.05, 0.17)
	0.12
	-
	 See below

	from sub-patent infection
	cU
	0.005 (0.002, 0.009)
	0.02
	-
	 See below

	Delay from emergence of blood-stage parasites to onward infectivity
	tl
	Fixed
	12.5
	days
	[15]


1. Most clinical trials show clearance of parasites by ~3 days. The value of 5 days was chosen to reflect imperfect adherence outside trial condition.

2. Note that this does not include the additional period of asymptomatic parasitaemia that follows an untreated infection.

3.1 Notes on parameters

3.1.1 Duration of stages of infection

Using the notation set out in Protocol S1, the rate of leaving the prophylactic state after treatment is given by 
[image: image7.wmf]1

P

PT

r

dd

=

-

whilst the recovery rate from asymptomatic infection with no immunity is 
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were rejected in the MCMC sampling. The parameter wA, which determines how much 
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 increases with maximum anti-parasite immunity, is given by  
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3.1.2 Rate of acquisition of Immunity

For model fitting, we parameterized the immunity functions in terms of aB and aC rather than IB0 and IC0 to reduce the dependency among the parameters. IB0 and IC0 are calculated as follows:
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3.1.3 Infectivity to mosquitoes

The parameters cD, cT, cA and cU were assigned the prior distributions given in Table S3.1,  informed by the relationship between asexual parasite density and subsequent infectivity estimated in  [15]. The estimates were then updated by fitting the whole transmission cycle simultaneously to mosquito biting rate and human parasite prevalence data from the Garki project [16] and to data from four studies in which mosquitoes were fed on volunteers from malaria-endemic areas 
 ADDIN EN.CITE 

[17-20]
. However, for the settings considered in this paper for which we had data on mosquito biting rates (those in Cameroon, Democratic Republic of Congo, Mozambique and Uganda), the EIRs implied by the model did not match the recorded values at those sites. So the four infectivity parameters were then rescaled, while keeping the relative infectivity of the different states constant, to fit the recorded EIRs. Further fitting of the whole transmission cycle in multiple settings with data on both mosquito biting rates and human parasite prevalence will be needed to properly validate the model.
3.2 Summary of Parasite Prevalence and Clinical Incidence Data used for Model Fitting

3.2.1 Parasite Prevalence Data

For model fitting we used age-stratified data on the prevalence of parasitemia as determined by microscopy and/or PCR. Using a previously published comprehensive literature review as a starting point 
 ADDIN EN.CITE 

[21, 22]
, we limited our fitting to data sources where:

a) The data were a random sample of individuals within the age-groups specified;

b) Sample sizes for prevalence estimates were reported;

c) Concurrent EIR estimates were available for use as prior distributions;

Table S3.2 summarises the data and sources used in model fitting.

Table S3.2. Summary of Parasite Prevalence Data used for Model Fitting

	Country
	Site
	EIR
	Age-standardized parasite prevalence in under 15s by microscopy
	Age-stratification (groups)
	Microscopy (M) / PCR (P)
	Source References

	Burkina Faso
	Karangasso
	263
	0.596
	0-4, 5-9, 10-14
	M
	[23]

	Burkina Faso
	Tago
	82
	0.471
	6 months – 15
	M
	[24]

	Cameroon
	Ebolakounou
	17.7
	0.615
	0-5, 6-10,11-15, 16+
	M
	[25]

	Cameroon
	Etoa
	511
	0.555
	0-6 months, 6 months-1, 1-5, 5-9, 10-15, 16+
	M
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[26]


	Cameroon
	Koundou
	176
	0.69
	0-5, 6-10, 11-15,16+
	M
	[25]

	Cameroon
	Mutengene, Molyko, Likok, Vasingi
	161
	Not full age range
	2-9
	M
	[27]

	Cameroon
	Simbok
	566
	0.605
	0-6 months, 6 months-1, 1-5, 5-9, 10-15, 16+
	M
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[26]


	Gambia
	Bwiam
	0.92
	Not full age range
	1-4
	M
	[28]

	Gambia
	Dasilami a
	1.21
	Not full age range
	1-4
	M
	[28]

	Gambia 
	Jahally
	4.17
	Not full age range
	1-4
	M
	[28]

	Gambia
	Kerewan
	0.44
	Not full age range
	1-4
	M
	[28]

	Gambia
	Kulari
	7.75
	Not full age range
	1-4
	M
	[28]

	Gambia
	Salikene
	1.94
	Not full age range
	1-4
	M
	[28]

	Gambia
	SareAlpha
	11.15
	Not full age range
	1-4
	M
	[28]

	Gambia
	Saruja
	5
	Not full age range
	1-4
	M
	[28]

	Gambia
	Sibanor
	3.24
	Not full age range
	1-4
	M
	[28]

	Gambia
	Sutukoba
	0.99
	Not full age range
	1-4
	M
	[28]

	Ghana
	Kassena Nankana District
	418
	0.583
	0-6 months, 6 months-2, 2-3, 3-4, 4-5, 5-10, 10-15, 15-20, 20-30, 30-40, 40-50, 50-60, 60+
	M
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[29, 30]


	Ghana
	Kassena Nankana District
	300
	0.86
	0-1, 1-3, 3-5, 1-10, 10-20, 20-40, 40-60, 60+
	M, P
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[31]


	Kenya
	Kilifi Town
	1.5
	Not full age range
	1 to 4
	M
	[32]

	Kenya
	Kisumu
	260
	0.91
	0-1, 1-6, 6-15, 15-40, 40+
	M, P
	[33]

	Kenya
	Mumias
	46.7
	0.513
	0-1, 1-4, 5-9, 10-15
	M
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[34]


	Kenya
	Saradidi
	237
	Not full age range
	6 months – 6 
	M
	[11]

	Kenya
	Sokoke
	8
	Not full age range
	1-4
	M
	[32]

	Mozambique


	Manhica
	15
	0.258
	0-2, 2-4, 4-6, 6-8, 8-10, 10-20, 20-40, 40-60, 60+
	M, P
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[35]


	Mozambique
	Matola
	53
	Wider age range
	All
	M
	[36]

	Senegal
	Diohine / Kotiokh / Ngayokheme
	11.6 / 26.5 / 8
	Not full age range
	0-9
	M
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[37, 38]


	Tanzania
	Kilimanjaro region (high altitude)
	0.142
	0.030
	1-45 (individual-level)
	M
	[40]

	Tanzania
	Kilimanjaro region (medium altitude)
	4.1
	0.100
	1-45 (individual-level)
	M
	[40]

	Tanzania
	Kilimanjaro region (low altitude)
	48
	0.270
	1-45 (individual-level)
	M
	[40]

	Tanzania
	Near Muheza
	380
	Not full age range
	1-6
	M
	[41]

	Tanzania
	Tanga region (high altitude)
	0.178
	0.169
	1-45 (individual-level)
	M
	[40]

	Tanzania
	Tanga region (medium altitude)
	3.89
	0.284
	1-45 (individual-level)
	M
	[40]

	Tanzania
	Tanga region (low altitude)
	163
	0.619
	1-45 (individual-level)
	M
	[40]


3.2.2 Clinical Incidence Data

The model was simultaneously fitted to the clinical incidence data reported from longitudinal studies in Dielmo and Ndiop [42]. 

3.2.3 Model Fits
The best fitting model was one in which infection-blocking immunity is acquired with exposure but limited to new infections (Model 3 in Protocol S1, Section 1.1.4) and in which clinical immunity is acquired with exposure. Parasite prevalence as measured using PCR, which we assume captures all of the sub-patent infections as well as patent infections and clinical disease, is substantially higher across all age-groups in the studies considered.  Parasite prevalence as measured using PCR, which we assume captures all of the sub-patent infections as well as patent infections and clinical disease, is substantially higher across all age-groups in the studies considered.  Figure S3.1, Figure S3.2 and FigureS3.3 show the fits of the best fitting model structure to the parasite prevalence by age as measured using microscopy, PCR and clinical incidence data respectively. Note that the model is able to capture the age-peak-shift with decreasing transmission intensity and the decline in both clinical incidence and parasite rates at older age-groups. Parasite prevalence as measured using PCR, which we assume captures all of the sub-patent infections as well as patent infections and clinical disease, is substantially higher across all age-groups in the studies considered. 

Figure S3.1. Model Fits to Parasite Prevalence Data. The fits are shown for the settings by decreasing reported EIR from highest in the top left to lowest in the bottom right, reading across rows. The x-axis is age (in years) and the y-axis is parasite prevalence (as proportion) measured by microscopy. Red lines show the model fit and the blue points and lines represent the measured parasite prevalence and associated 95% confidence intervals. The measured parasite prevalence is plotted at the mid-point of the age-group for which it was reported.
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Figure S3.2. Model Fits to Parasite Prevalence Data measured by PCR. The fits are shown for the settings by decreasing reported EIR from highest on the left to lowest on the right, reading across rows. 95% confidence intervals are shown for reported parasite prevalence as measured by both microscopy and PCR. The measured parasite prevalence is plotted at the mid-point of the age-group for which it was reported.
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Figure S3.3. Model Fits to Clinical Incidence Data. Left-hand graph: Dielmo, Senegal, EIR=200. Right-hand graph: Ndiop, Senegal, EIR=20. The x-axis is age (in years) and the y-axis is incidence of clinical malaria per year. The measured clinical incidence is plotted at the mid-point of the age-group for which it was reported.
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3.2.4 Fitted relationship between EIR and parasite prevalence in children
In determining the likely success of combined intervention programs in a given setting it is important to capture correctly the relationship between the force of infection, as determined by the EIR, and parasite prevalence across age groups, particularly if recommendations are made on the basis of parasite prevalence as an indicator of the intensity of transmission. Here we examine this relationship with reference to a previous study that characterized this using similar data. Our fitted model is shown in Figure 1B in the main text.

We used a subset of the data points used by Smith et al. (2005) [21] supplemented by a number of additional data points. Figure S3.4 shows that our subset of data captures the pattern and ranges originally reported in [21]. Thus the different modeled relationships do not reflect differences in data used for fitting.

Figure S3.4. Data points used for fitting showing EIR against parasite prevalence in under 15 years. Blue points are those used in our fitting and [21]; red are those used only in our fitting; and pink are those used only in [21].
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However, a number of data points reported by [21] considered more narrow age-groups and as such were not representative of the 0-15 yr age-range. As a number of these were from younger age-groups, this inflates the prevalence at low EIRs. By correctly accounting for the different age groups in a fully age-structured model, we predict a different relationship compared to the original study in which parasite prevalence at low EIRs is substantially less.

Figure S3.5. Relationship between EIR and parasite prevalence in under 15 year olds. Solid blue line: fitted relationship as in Figure 1B of the main text; solid pink line: relationship fitted in [21]; circles: parasite prevalence estimates which are representative of the 0-15 year age range.
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However, it should be noted that substantial measurement error in EIRs is likely at these levels. This is accounted for in our model fitting by using the measured EIR as a prior distribution. 
Figure S3.6
 shows the relationship between the measured EIR and the posterior estimate of the EIR across the settings. There is a close correlation between the estimates. 

Figure S3.6. Posterior estimate of the EIR plotted against the measured EIR in the 34 settings.
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Finally, Figure S3.7 shows the fitted relationship between EIR and parasite prevalence in children under 15 years where the sample is representative of this age-group. Here we plot the posterior EIR estimates, which are our revised estimate of the true EIR in these settings.

Figure S3.7. Relationship between posterior estimate of the EIR and parasite prevalence. Solid line: fitted model; Circles: data points using posterior estimate of the EIR rather than measured EIR.
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3.3 Vector Parameters

Parameters for Anopheles vectors were not fitted apart from the emergence rate over calendar time for the six settings as detailed in Protocol S4. A detailed literature review was undertaken to specify biologically realistic parameters for each of the three vector species considered. This is summarized in Table S3.3. It is assumed that the entomological parameters are the same for each species across different geographical locations. However, care should be taken when comparing the parameter estimates as they may vary between different vector populations, for example between the different forms of An. gambiae s.s. [43] (though see [44]) or depending on the number of alternative blood hosts [45]. Parameters such as the EIP within the mosquito are known to vary with climate [46], but for simplicity values are kept constant between locations and over time. Model predictions assume that none of the vector parameters change over the duration of the control intervention, other than those such as the death rate which are affected by anti-vector interventions.

Table S3.3. Summary of Parameters for the Vector Component of the Transmission Model. Superscript 
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is used to differentiate between vector species. Where possible, point estimates were taken from studies which investigated all three vector species to reduce study variability.
	Definition
	Model

parameter
	Best estimate

with observed range / alternative values where available
	References

	
	
	An. funestus
	An. arabiensis
	An. gambiae s.s.
	

	Mean life expectancy (days)
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1/

m


	 8.9

(5.6-10.2)
	7.6i
(4.1-16.1)
	7.6

(4.5-16.1)
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[47-53]


	Mean duration between two consecutive blood meals (days)ii 
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	3
	3 
	3
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[36, 54]
ii

	Mean time spent foraging for a blood meal (days)
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	0.68
	0.68
	0.68
	[55]

	Proportion of blood meals taken on humans prior to intervention (Human Blood Index)
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	0.94

(0.73-0.96)
	0.71

(0.66-0.83)
	0.92

(0.86-1.0)
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[56-60]


	Endophily (proportion of mosquitoes resting indoors after feeding with no intervention)
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	0.86

(0.86,1.0)
	0.16

(0.16,0.49)
	0.86

(0.49,0.86)
	
 ADDIN EN.CITE 

[60-62]


	Proportion of bites taken on humans whilst they are indoors iii 
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F


	0.98
	0.96
	0.97
	
 ADDIN EN.CITE 

[63, 64]
 iii

	Proportion of bites taken on humans whilst they are in bed iii
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F


	0.90
	0.90
	0.89
	
 ADDIN EN.CITE 

[63, 64]
 iii

	Extrinsic incubation period (days)
	
[image: image31.wmf]M

t


	10 
	10
	10
	[65]


i) Best estimates all taken from Tanzania for comparability (averaged over different seasons). Assumed to be constant for between An. gambiae s.s. and An. arabiensis.
ii) Values ranging from 2 to 3 were given by [3] but assumed by original authors.
iii) Were estimated using human behavior from Killeen et al. (2006) [64] and the vector biting patterns from Githeko et al. (1996) [63]. Though these studies were undertaken in different geographical locations, Githeko et al. (1996) [63] was the only study to have biting information for each of the three vector species under investigation. Biting rates and proportion of humans in bed were measured per hour. It is assumed all human hosts are indoors 1 hour before getting into bed and ½ hour after getting out of bed.

3.4 Intervention Parameters

3.4.1 LLINs and IRS

The assumed parameters for the LLIN/IRS interventions are summarized in Table S3.4 below with alternative estimates from the literature given in brackets. It is assumed that the parameters remain constant for the duration of the control program.

Table S3.4. Parameters for the effectiveness of LLINs and IRS
	Definition
	Model

parameter
	Best estimate with alternative estimates where available in brackets
	References

	
	
	An. funestus
	An. arabiensis
	An. gambiae s.s.
	

	Cycle repeating probability for LLINs
	
[image: image32.wmf]0

N

r


	0.56 (0.69)
	0.48 (0.23)
	0.56 (0.52)
	
 ADDIN EN.CITE 

[66-68]


	Successful feeding with LLINs
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s


	0.03 (0.14)
	0.39 (0.33)
	0.03 (0.16)
	
 ADDIN EN.CITE 

[66-68]


	Insecticide mortality probability for LLINs
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d


	0.41 (0.17)
	0.13 (0.44)
	0.41 (0.32)
	
 ADDIN EN.CITE 

[66-68]


	Baseline repeating action for LLINs iv 
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r


	0.24
	0.10
	0.24
	
 ADDIN EN.CITE 

[66, 67]


	Cycle repeating probability for IRS with DDT
	
[image: image36.wmf]0

S

r


	0.63
	0.60
	0.60
	[69]

	Cycle repeating probability for lambdacyhalothrin v
	
[image: image37.wmf]0

S

r


	0.207
	[70]

	Half-life of LLIN efficacy
	Log(2)/
[image: image38.wmf]N

g


	2.64 years
	[71]

	Half-life of IRS DDT efficacy 
	Log(2)/
[image: image39.wmf]S

g


	0.5 years 
	[72]

	Half-life of IRS lambdacyhalothrin efficacy
	Log(2)/
[image: image40.wmf]S

g


	0.13 years
	[70]


iv) Based on untreated net with 6 holes.

v) Assumed same value for all mosquito species.

3.4.2 ACT for MDA/MSAT

ACT used in MDA or MSAT is assumed to fully cure existing infections (i.e. we assume no resistance). We assume that the relative infectiousness of an individual after receiving ACT is reduced by a factor 
[image: image41.wmf]T

V

 compared to their pre-treatment infectious state. This value was assumed to be 0.154 based on previous modeling work informed by ACT trial data 
 ADDIN EN.CITE 

[73, 74]
. The period of prophylaxis is assumed to be 25 days, based on the assumption that an artemisinin would be combined with a partner drug with a longer prophylactic time, such as SP.
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