As detailed in S1 Table we scored all measures of child development and the quality of the home environment with item level data available using either a 2-parameter Item Response Theory (IRT) model or a Graded Response Model (GRM). We used IRT when item level data was binary and GRM when it was ordered but discrete.

In the 2-parameter IRT model, whether or not a child \(m \) correctly answers item \(i \) is a function of the difficulty of that item \((\alpha_i) \), its discrimination parameter \((\beta_i) \) and the child's underlying ability in that domain \((\theta_m) \) which is assumed to follow a standard normal distribution with zero mean and unit variance. Specifically:

\[
x_{im} = 1 \text{ if } x_{im} > 0
\]
\[
x_{im} = 0 \text{ otherwise}
\]
\[
x_{im} = \alpha_i + \beta_i \theta_m + \epsilon_{im}
\]

where \(x_{im} = 1 \) denotes child \(m \) answering item \(i \) correctly. \(\epsilon_{im} \) is assumed to follow a type-I extreme value distribution and conditional on \(\theta_m \) all the \(\epsilon_{im} \) are independent. Therefore, the probability of child \(m \) answering item \(i \) correctly is:

\[
\Pr(x_{im} = 1 \mid \theta_m) = \frac{\exp(\alpha_i + \beta_i \theta_m)}{1 + \exp(\alpha_i + \beta_i \theta_m)}, \theta_m \sim N(0,1)
\]

The Graded Response Model that we used for ordered item data (e.g. where a child can get a 0, 1, 2 or 3 for each item) is very similar to the IRT model above except now there are as many difficulty parameters, or cut-offs, as the number of different scores a child can obtain on that item. Therefore, the probability that child \(m \) got a score of at least \(k \) on item \(i \) is:

\[
\Pr(x_{im} \geq k \mid \theta_m) = \frac{\exp(\alpha_{ik} + \beta_i \theta_m)}{1 + \exp(\alpha_{ik} + \beta_i \theta_m)}, \theta_m \sim N(0,1)
\]

We estimated item level difficulty and discrimination parameters using STATA’s IRT command. We used mean and variance adaptive Gauss-Hermite quadrature with 21 quadrature points to integrate out \(\theta_m \) when estimating parameters. We then used Empirical Bayes methods to predict each child’s underlying \(\theta_m \) and the standard error of this prediction.

To ensure parameter estimates were stable and meaningful we only used items attempted by at least 20% of the sample.