S13 Table. Sensitivity analysis: basic reproductive numbers (R_0) with varying relative infectiousness of symptomatic cases.

<table>
<thead>
<tr>
<th>Modeled infectiousness</th>
<th>Initial conditions</th>
<th>Geographical area</th>
<th>Basic reproduction number (R_0) estimate</th>
<th>Transmission pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Artibonite communes</td>
<td>Nationwe</td>
<td>River-mediated</td>
</tr>
<tr>
<td>$r = 1 + 0.5 \log_{10}(v)$</td>
<td>Number of infected arrivals</td>
<td>1</td>
<td>1.81 (1.66, 2.03)</td>
<td>1.15 (1.00, 1.37)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.60 (1.47, 1.78)</td>
<td>0.98 (0.86, 1.16)</td>
</tr>
<tr>
<td></td>
<td>Background cholera incidence rate</td>
<td>3</td>
<td>1.51 (1.39, 1.68)</td>
<td>0.92 (0.80, 1.09)</td>
</tr>
<tr>
<td></td>
<td>0.5/1000 PYAR</td>
<td>1</td>
<td>1.81 (1.66, 2.02)</td>
<td>1.15 (1.00, 1.37)</td>
</tr>
<tr>
<td></td>
<td>1.0/1000 PYAR</td>
<td>1</td>
<td>1.81 (1.66, 2.02)</td>
<td>1.15 (1.00, 1.36)</td>
</tr>
<tr>
<td></td>
<td>2.0/1000 PYAR</td>
<td>1</td>
<td>1.81 (1.66, 2.02)</td>
<td>1.15 (1.00, 1.36)</td>
</tr>
<tr>
<td></td>
<td>5.0/1000 PYAR</td>
<td>1</td>
<td>1.80 (1.66, 2.01)</td>
<td>1.14 (1.00, 1.35)</td>
</tr>
<tr>
<td></td>
<td>10.0/1000 PYAR</td>
<td>1</td>
<td>1.80 (1.66, 1.99)</td>
<td>1.14 (0.99, 1.33)</td>
</tr>
<tr>
<td>$r = 1 + 2 \log_{10}(v)$</td>
<td>Number of infected arrivals</td>
<td>1</td>
<td>1.77 (1.61, 1.98)</td>
<td>1.11 (0.95, 1.31)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.56 (1.41, 1.74)</td>
<td>0.94 (0.78, 1.13)</td>
</tr>
<tr>
<td></td>
<td>Background cholera incidence rate</td>
<td>3</td>
<td>1.48 (1.35, 1.66)</td>
<td>0.89 (0.76, 1.06)</td>
</tr>
<tr>
<td></td>
<td>0.5/1000 PYAR</td>
<td>1</td>
<td>1.77 (1.61, 1.98)</td>
<td>1.11 (0.95, 1.31)</td>
</tr>
<tr>
<td></td>
<td>1.0/1000 PYAR</td>
<td>1</td>
<td>1.77 (1.61, 1.98)</td>
<td>1.11 (0.95, 1.31)</td>
</tr>
<tr>
<td></td>
<td>2.0/1000 PYAR</td>
<td>1</td>
<td>1.77 (1.61, 1.97)</td>
<td>1.10 (0.95, 1.31)</td>
</tr>
<tr>
<td></td>
<td>5.0/1000 PYAR</td>
<td>1</td>
<td>1.76 (1.60, 1.96)</td>
<td>1.10 (0.95, 1.30)</td>
</tr>
<tr>
<td></td>
<td>10.0/1000 PYAR</td>
<td>1</td>
<td>1.75 (1.60, 1.94)</td>
<td>1.09 (0.95, 1.28)</td>
</tr>
</tbody>
</table>

PYAR: person-years at risk (incidence rate denominator).

*$$R_0$$ estimates are reported as median (95% CrI) from the posterior distribution of the parameters fitted under assumptions of one, two, or three infected peacekeepers at the outset of the epidemic. We derive the formula for $$R_0$$ via the next-generation matrix approach (S1 Text §3.9).

Incidence-rate-specific $$R_0$$ estimates are obtained by pooling estimates across parameter sets according to the binomial probabilities of one, two, or three infected peacekeepers arriving (S1 Text §1.1).