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Abstract

Background

Test-trace-isolate programs are an essential part of coronavirus disease 2019 (COVID-19)

control that offer a more targeted approach than many other nonpharmaceutical interven-

tions. Effective use of such programs requires methods to estimate their current and antici-

pated impact.

Methods and findings

We present a mathematical modeling framework to evaluate the expected reductions in the

reproductive number, R, from test-trace-isolate programs. This framework is implemented

in a publicly available R package and an online application. We evaluated the effects of com-

pleteness in case detection and contact tracing and speed of isolation and quarantine using

parameters consistent with COVID-19 transmission (R0: 2.5, generation time: 6.5 days). We

show that R is most sensitive to changes in the proportion of cases detected in almost all

scenarios, and other metrics have a reduced impact when case detection levels are low

(<30%). Although test-trace-isolate programs can contribute substantially to reducing R,

exceptional performance across all metrics is needed to bring R below one through test-

trace-isolate alone, highlighting the need for comprehensive control strategies. Results from

this model also indicate that metrics used to evaluate performance of test-trace-isolate,

such as the proportion of identified infections among traced contacts, may be misleading.

While estimates of the impact of test-trace-isolate are sensitive to assumptions about

COVID-19 natural history and adherence to isolation and quarantine, our qualitative findings

are robust across numerous sensitivity analyses.

Conclusions

Effective test-trace-isolate programs first need to be strong in the “test” component, as case

detection underlies all other program activities. Even moderately effective test-trace-isolate
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programs are an important tool for controlling the COVID-19 pandemic and can alleviate the

need for more restrictive social distancing measures.

Author summary

Why was this study done?

• Control measures for the ongoing COVID-19 pandemic rely largely on untargeted

interventions, like social distancing, which have high economic and social costs.

• Test-trace-isolate programs, in which known cases are asked to isolate and their contacts

are traced and then asked to quarantine, are an attractive option to control the spread of

COVID-19 in a more targeted fashion.

• Estimating the impact of test-trace-isolate programs is not straightforward, due to feed-

back loops between control measures and disease transmission.

What did the researchers do and find?

• We developed a mathematical modeling framework to assess the potential impact of

test-trace-isolate programs.

• In most cases, increasing the percentage of cases successfully isolated will yield the larg-

est relative reductions in disease transmission (as compared to improvements in suc-

cessful contact quarantine or reductions in time to isolation or quarantine).

• Programs already achieving a high percentage of case isolation will see more substantial

gains from improving the speed of case isolation and improving the completeness and

speed of contact tracing and quarantine.

What do these findings mean?

• Test-trace-isolate programs must be supported by widespread and expeditious testing

and case detection to suppress SARS-CoV-2 transmission.

• Even imperfect test-trace-isolate programs can meaningfully complement other inter-

ventions as part of a comprehensive public health response with fewer social and eco-

nomic costs.

• The modeling framework is publicly available in an interactive web application, and

additional teaching materials are available in a free online course.

Introduction

In the absence of a vaccine or a widely available prophylactic drug, nonpharmaceutical inter-

ventions are the only tools available to curb the spread of the ongoing coronavirus disease

2019 (COVID-19) pandemic. During the initial phases of the pandemic, broad-reaching
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interventions like stay-at-home orders and nonessential business closures were applied

throughout the world, affecting large swathes of the population and causing severe social and

economic disruption [1–6].

Because of the high costs of broadscale social distancing measures, there has been an

increasing focus on alternative approaches with fewer ancillary costs. One such approach is a

test-trace-isolate program, in which extensive “testing” is used to identify cases in the commu-

nity; public health agencies then “trace” the contacts of these cases in order to identify people

who may have been infected; and the initial cases are asked to “isolate” and their contacts are

asked to quarantine for the period of time that they could be, or become, infectious [7]. If effec-

tive, test-trace-isolate programs can reduce the need for more restrictive, widespread control

measures. Already they have played a critical role in controlling severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) transmission in places ranging from Utah to South

Korea, where these programs have been credited with enabling successful control while avoid-

ing the most restrictive social distancing measures (e.g., stay-at-home orders) [8–11].

Not all test-trace-isolate programs are created equal, and the success of test-trace-isolate

programs is ultimately measured in their ability to reduce transmission. The proportion of

infections identified through testing and contact tracing dictate the proportion of transmission

chains we can potentially disrupt, while the speed of isolation and quarantine dictates how

many potentially infectious contacts are prevented [12]. The resulting reductions in disease

transmission can be quantified and compared by estimating the reproductive number, R, the

average number of new infections caused by a single infected individual.

Translating test-trace-isolate program metrics into reductions in the reproductive number

is not a direct calculation due to feedback loops between control measures and disease trans-

mission dynamics. As a test-trace-isolate program interrupts chains of transmission, it changes

the propagation of disease in future generations. Any approach aiming to translate quantitative

program metrics into meaningful measures of the effectiveness of disease control must account

for these dynamic processes.

Here, we propose a mathematical framework for modeling the impact of test-trace-isolate

strategies on onward transmission, as measured by expected reductions in an average, popula-

tion-level reproductive number. Using this approach, we explore the factors which most influ-

ence the success of a test-trace-isolate program, their interactions, and how these results may

be used in developing strategies for improvement. To enable broad adoption of our approach,

the methods presented here are implemented in an R package, tti [13], and the web-based

Contact Tracing Evaluation and Strategic Support Application (ConTESSA) [14], both of

which are freely available online.

Methods

Mathematical framework

To estimate the effectiveness of a test-trace-isolate program, we frame our analysis in terms of

the effective reproductive number, R, defined as the number of onward transmissions an

infected individual is expected to make given the current immune status of the population and

implemented control measures. We first define the population of infected individuals to be

spread across 3 compartments; infections Detected through testing and subsequently isolated

(D), infections among Quarantined contacts of identified cases (Q), and undetected infections

in the Community (C) (Fig 1). Though there will be uninfected individuals both in quarantine

and in the community, these do not play a role in our calculations and are ignored.

We consider the proportion of the population in each compartment at any given time t to

be defined by a 1×3 matrix, denoted DQCt. To calculate the proportion of infected individuals
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in each compartment at time t+1, we apply the rates at which individuals in each compartment

cause new infections, and then the rates at which these secondary infections are detected and

isolated through the following equation:

DQCtþ1 ¼
ðDQCtÞðINFECTÞðDETECTÞP

½ðDQCtÞðINFECTÞ�
; ð1Þ

where INFECT is a 3×3 diagonal matrix describing the number of infections caused in the next

generation by members of each detection compartment, and DETECT is a 3×3 matrix describ-

ing the probability that infections in the next generation are detected and isolated, quaran-

tined, or undetected in the community.

The diagonal elements of the INFECT matrix, [RD, RQ, RC], represent the reproductive

number for members of each compartment. Hence, given the normalized version of the DQC
matrix specified above, we can calculate the overall reproductive number at time t as:

Rt ¼ ðDQCtÞðINFECTÞ

Fig 1. Conceptual representation of the model algorithm, where infections in generation t (left column) infect new individuals according to RD, RQ,

and RC reproductive numbers that populate the INFECT matrix (center column). These newly propagated infections are then distributed into D, Q,

and C compartments in generation t+1 (right column) according to the various detection transition probabilities specified in the DETECT matrix

(colors of center column). Symptomatic individuals (darker shading) may be more likely to be detected than asymptomatic individuals (lighter

shading).

https://doi.org/10.1371/journal.pmed.1003585.g001
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The DETECT matrix then assigns these new infections to the appropriate detection classes

of the DQC matrix in the next generation. Specifically:

DETECT ¼

IðDÞ ! D IðDÞ ! Q IðDÞ ! C

IðQÞ ! D IðQÞ ! Q IðQÞ ! C

IðCÞ ! D 0 IðCÞ ! C

2
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ð2Þ

where I(X) represents those infected by people in compartment X in the previous generation,

ωX is the probability that a contact of a detected individual in compartment X is traced and

quarantined (quarantine completeness), and ρ is the probability that a community infection is

detected and effectively isolated by a test-trace-isolate program (isolation completeness). The

transitions in each row of the DETECT matrix represent the probability that people in the cor-

responding notional infection compartment will be detected by a particular means (hence

rows sum to one).

The other aspect that determines the effectiveness of a test-trace-isolate program is the

reduction in R that we see among those who are isolated or quarantined (Fig 2). We define the
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Fig 2. Conceptual representation of test-trace-isolate programs, where detection of a case in generation t through

widespread testing and subsequent isolation reduces onward transmission to generation t+1. Individuals in generation t+1
are then traced and quarantined (and subsequently isolated, if the contact is a suspected or confirmed case) to reduce onward

transmission from those who may be infected.

https://doi.org/10.1371/journal.pmed.1003585.g002
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relative transmissibility of individuals in these compartments by γD and γQ such that:

RD ¼ gDRC ð3Þ

RQ ¼ gQRC ð4Þ

The main mechanism by which isolation and quarantine reduce transmission is the (at least

partial) truncation of the infectious period. Hence, these values are defined by the equations:

gD ¼

Z tD

� 1

f ðxÞdx ð5Þ

gQ ¼

Z tQ

� 1

gðxÞdx ð6Þ

where f(x) is the distribution of relative infectiousness indexed from day of symptom onset;

g(x) is the expected distribution of relative infectiousness of secondary cases indexed from

their infector’s time of symptom onset; and τD and τQ represent the average time to case isola-

tion and contact quarantine, respectively, from time of case symptom onset. We therefore

assume isolation and quarantine are perfectly effective, such that individuals do not transmit

once in quarantine or isolation, though exceptions to this assumption are discussed below.

Translating observed metrics to model inputs

Health departments collect data on their test-trace-isolate programs, but these observed met-

rics need to be translated into model inputs. To estimate isolation completeness (ρ), we can

divide the average number of infections that were isolated by the estimated number of total

infections in the community. The latter value may be difficult to obtain but can be approxi-

mated in a number of ways, including serosurveys and extrapolation from the number of

deaths and approximate infection fatality ratio. Quarantine completeness (ω) can be estimated

by dividing the number of quarantined individuals by the total number of contacts.

For the purposes of our model, time to isolation (τD) is the average number of days from case

symptom onset to case isolation, while time to quarantine (τQ) is the average number of days from

case symptom onset to contact quarantine. Often these timings are the composite of several con-

stituent processes, including time from symptom onset to testing, time from testing to notification

and isolation, and the time from obtaining a test result to tracing and quarantining contacts.

Adding real-world complexity to the model

Above we describe the basic model framework, but to take into account the complexities of the

real world, we can expand the number of compartments in the DQC matrix and the corre-

sponding INFECT and DETECT transitions. In the implementation used to generate the

results described below, we create compartments to differentiate symptomatic and asymptom-

atic infections as well as household and community contacts to address the fact that these

groups may differ in their probability and speed of detection, ability to be traced and quaran-

tined, infectiousness, and risk of being infected.

Contact quarantine may not perfectly disrupt onward transmission in the real world; aver-

age quarantine duration may be modified in the expanded model to match local guidelines,

and imperfect quarantine adherence may be incorporated by tuning the proportion of contacts

assumed to be effectively quarantined. The assumption of perfectly effective case isolation may

be modified by tuning the proportion of cases assumed to be effectively isolated.
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This expanded model has 9 DQC compartments and is described in full in the Supplemen-

tary Methods (S1 Text).

Disease simulation

To obtain expected reductions in R, we first initiate the model with a DQC matrix that has

only undetected community infections (C = 1). Then, we simulate the infection and detection

processes across multiple disease generations until equilibrium is achieved in the DQC matrix

(this usually occurs in less than 10 generations). This equilibrium provides an estimate of what

would be achieved by a specified test-trace-isolate strategy if it maintained its current charac-

teristics for the foreseeable future.

The model may also be run as a stochastic simulation, to explore the impact of overdisper-

sion and stochasticity in the epidemic process in general. In stochastic simulations, we normal-

ize the DQC matrix to a standard population size, then simulate the number of infections each

individual causes for each notional INFECT compartment as a random draw from a negative

binomial distribution based on the values in the INFECT matrix. These infections are then

assigned to the compartments DQC matrix based on draws from a multinomial distribution

parameterized by the rows of the DETECT matrix. Since there is no equilibrium state, stochas-

tic simulations are run for a fixed number of generations.

The simulations presented in this paper assume that R0 = 2.5 without interventions, a gen-

eration time of 6.5 days (unless otherwise stated, Table C in S1 Text) [15], and initially, that

whether individuals develop symptoms or not has no meaningful impact on transmission or

detection probability in surveillance, and that household and community contacts are equally

likely to be infected and quarantined. In later analyses, we relax these latter assumptions and

add stochasticity to illustrate how our results are influenced by overdispersion in transmission,

the presence of asymptomatic transmission, and differential risk of infection and tracing speed

in household contacts.

All scenarios are based on hypothetical test-trace-isolate programs designed to represent a

range of possible program effectiveness. Other parameter assumptions are available in Table C

in S1 Text.

Model code and resources

The expanded model is implemented in the tti R package [13]. We also developed the Con-

TESSA, an R Shiny web application, around a simplified version of our modeling framework.

The purpose of this application is to provide a user-friendly interface where managers of test-

trace-isolate activities, equipped with their observed metrics, can examine how well their pro-

gram reduces onward transmission and explore how their results might change with improve-

ments to completeness and timing metrics as well as different underlying assumptions. The

ConTESSA application is complemented by a free Coursera course that describes key contact

tracing program metrics and provides more detailed instruction on how to use the application

[16].

Results

Case isolation and contact quarantine completeness and timing

Application of our framework shows that the reproductive number can be reduced by improv-

ing performance across all dimensions of a test-trace-isolate program: detection and isolation

completeness, the speed of case isolation, the proportion of contacts followed up and quaran-

tined, and the speed at which quarantine occurs (Fig 3). However, the effect of improvements
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Fig 3. Improvements to case isolation and contact quarantine: Impact of case isolation timing (x-axis) and completeness (line colors) on the effective reproductive

number (y-axis) for (A) a highly effective contact tracing program and (B) a less effective contact tracing program. (C) Heat map of the effective reproductive number

across a range of case isolation timing (y-axis) and completeness (x-axis) scenarios, assuming that contact tracing is highly effective. Impact of contact tracing timing (x-

axis) and completeness (line colors) on the effective reproductive number (y-axis) for (D) a widespread and rapid case isolation scenario and (E) a less effective and

slower case isolation scenario. (F) Heat map of the effective reproductive number across a range of contact tracing timing (y-axis) and completeness (x-axis) scenarios,

assuming that detection and isolation of index cases is widespread and rapid. For all panels, the open shapes mark example scenarios with highly effective contact

tracing (70% quarantined on average 4 days after case symptom onset) in contrast to the filled shapes of a less effective contact tracing scenario (30% quarantined after 8

days). Circles mark example scenarios with widespread and rapid case isolation (50% isolated on average 4 days after case symptom onset) in contrast to squares, which

have limited and slower case isolation (10% isolated after 7 days). Shapes display consistent scenarios across all panels in the figure.

https://doi.org/10.1371/journal.pmed.1003585.g003
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in one dimension are not independent of performance in the other dimensions, and as such,

the aspect where improvements will yield the greatest dividends, the “next best move,”

depends on the current status of the program.

Consider a situation where you only detect and isolate 10% of cases through your commu-

nity testing program, and it takes an average of 7 days from symptom onset to do so (squares

in Fig 3). Whether you have highly effective contact tracing (70% of contacts quarantined on

average 4 days after case symptom onset, hollow shapes in Fig 3) or less effective contact trac-

ing (30% quarantined on average 8 days after case symptom onset, solid shapes in Fig 3), little

will be gained by improving the speed of case isolation, and the greatest reductions in trans-

mission will be achieved by improving the proportion of infections detected and isolated

(direction 1 in Fig 3A). Increasing the proportion of infections detected and isolated, regard-

less of other metrics, is critical because it is these detected cases that “seed” all other test-trace-

isolate activities. If an infection is not detected, it cannot be isolated, and their contacts cannot

be traced and quarantined.

Reducing the time to case isolation (direction 2 in Fig 3A) may be nearly as effective as

improving case isolation completeness in certain contexts, in particular, if contact tracing is

less effective and isolation completeness is reasonably high (over 30%). Because the vast major-

ity of transmission occurs in the days immediately before and after symptom onset, improve-

ments in the speed of case isolation that bring it to 4 days or fewer will yield the greatest

reductions in transmission. Beyond this, there is limited opportunity to reduce onward trans-

mission of the isolated case and thus little difference between delays of 6, 8, or 10 days. Increas-

ing the speed of case isolation is particularly important when contact tracing is ineffective (Fig

3B), hence the program must rely predominantly on reductions in transmission from isolated

cases themselves.

The benefits of increasing the speed and completeness of contact tracing and quarantine

are greatest in the context of already highly effective testing and isolation (e.g., 50% of infec-

tions isolated on average 4 days after symptom onset, circles in Fig 3D). In such situations,

increasing quarantine completeness yields the largest reductions in transmission (direction 3

in Fig 3D), particularly when the speed of contact quarantine is less than 8 days from case

symptom onset.

Improvements in the speed of contact quarantine (direction 4 in Fig 3D) are most effective

during the 4- to 8-day window after case symptom onset for similar reasons; this period corre-

sponds to the greatest expected infectiousness of infected contacts. The impact of improve-

ments in the speed or completeness of contact tracing is less if testing and isolation fail to

reach a high percentage of infections (Fig 3E). As noted above, this is because without adequate

detected cases to seed contact tracing activities, the ability of tracing and quarantine to have an

impact is substantially reduced.

The completeness and timing of test-trace-isolate activities determine whether we can

achieve goals in disease control using these approaches. A common goal is to bring R below

one so that the epidemic will start to recede in the population. We explored the range of pro-

gram characteristics that could achieve this goal, under the assumption that contacts were

quarantined on the same day as case isolation, and quarantine completeness ranged from 50%

to 100% (Fig 4).

At R = 2.5 (our baseline when no other interventions are in place) with perfect contact

quarantine, at least 60% of cases must be isolated to achieve R<1; this minimum percentage

decreases to 50% when starting at R = 2, 34% at R = 1.5, and 20% at R = 1.25 (corresponding to

20%, 40%, and 50% reductions in baseline R due to other interventions) (Fig 4). It is not possi-

ble to achieve R<1 if case isolation occurs more than 6.4 days after symptom onset, on average,

and this threshold increases to 7, 9, and 10 days for R starting at 2, 1.5, and 1.25.
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Quarantine need not be perfect to achieve R<1 (colors in Fig 4), but the tolerance for

imperfect quarantine changes with isolation speed. For example, case isolation completeness

needs to increase from 60% to 75% to offset a decrease in contact quarantine completeness

from 100% to 50% when cases are isolated on the same day as symptom onset. However, this

tolerance for incomplete quarantine rapidly degrades as the time to isolation increases, and, in

the absence of other interventions (i.e., R = 2.5), no isolation program will achieve R<1 with

50% quarantine completeness if the average time to case isolation exceeds 2.6 days.

Infections arising in traced contacts

A metric often recommended for evaluating test-trace-isolate programs is the proportion of

identified infections that were already under quarantine [7]. Programs are thought to be suc-

cessful if this metric is high because it may indicate that a substantial fraction of transmission

chains were interrupted through isolation of case contacts early in (or prior to) their infectious

period. In practice, a program might approximate this by calculating the proportion of all

newly detected infections among traced contacts, who may or may not be in quarantine when

they are confirmed to be infected. This proportion is equivalent to Q
QþD in our model.

An increasing proportion of new infections detected among traced contacts only represents

an improvement in the program effectiveness if the timing of case isolation remains constant

or becomes quicker. As delays in isolation increase, a greater number of secondary infections

will occur among traced contacts. Hence, we can see both an increase in the proportion of

newly detected infections among traced contacts and an increase in the effective reproductive

number (direction “2” in Fig 5).

Adding real-world complexity

In the sections above, we assume that all infected individuals are equally likely to transmit and

be detected. Yet, there is evidence that asymptomatic individuals (those who never develop

symptoms) are less infectious than those who do develop symptoms [17,18]. If the relative con-

tribution of asymptomatic individuals to onward transmission is low, limited detection of

asymptomatic cases will have little effect on the reproductive number (Fig A in S1 Text).

Fig 4. Isolation strategies (timing and completeness) capable of achieving R<1 when a given proportion of contacts (50% to 100%) are quarantined on the same day

as case isolation. These strategies are shown for 4 possible baseline values of R, assuming other nonpharmaceutical interventions (NPIs) are in effect to reduce

transmission from the uncontrolled scenario, R = 2.5.

https://doi.org/10.1371/journal.pmed.1003585.g004
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Similarly, previous scenarios assume that all contacts are equally at risk of being infected,

but contact tracing studies suggest that the risk of SARS-CoV-2 infection for household con-

tacts could be 6 (or more) times higher compared to other close contacts [11,17]. Quarantining

household contacts therefore is expected to have a larger impact in reducing the reproductive

number than quarantining nonhousehold contacts (Fig B in S1 Text).

There is growing evidence that the distribution of onward transmission for SARS-CoV-2 is

overdispersed, meaning that most individuals contribute little to onward transmission, while

superspreading events result in the bulk of secondary infections [19,20]. Overdispersion has
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Fig 5. Relationship between R and the proportion of detected infections among traced contacts. Each position along a line shows a

single test-trace-isolate strategy, with a fixed delay from case symptom onset to isolation (shown in the numbers at the top) and 90% of

contacts quarantined on the same day as case isolation. Points are colored by the proportion of infections detected and isolated through

testing. When isolation timing remains constant, higher case isolation completeness corresponds with increases in the proportion of

detected infections among traced contacts and reductions in R (Arrow 1). However, increases in the proportion of detected infections

among traced contacts could indicate an increase in R, if the delay to case isolation is also increasing, thus leading to more secondary

cases among traced contacts (Arrow 2).

https://doi.org/10.1371/journal.pmed.1003585.g005
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little effect on the mean estimates of the reproductive number (Fig C in S1 Text). However,

when there are few total infections in a community, the random occurrence or detection of

any one superspreading event can drastically alter program impact, including ending an out-

break altogether, thereby increasing uncertainty in R.

Recent policy recommendations have suggested that 10-day quarantines rather than the

previously recommended 14-day quarantines may be acceptable under certain circumstances

[21]. When we modify our assumption of perfectly effective quarantine, we find that 10-day

quarantines are somewhat less effective and that this effect is more pronounced in scenarios

with rapid quarantine and widespread and rapid isolation (Fig D in S1 Text).

Sensitivity analyses

The above results are sensitive to assumptions about the infectious period and generation time

of SARS-CoV-2. While the qualitative trends and relationships hold regardless, assumptions of

a shorter generation time substantially increase the necessary speed at which activities must

occur to have a meaningful impact (Fig E–I in S1 Text).

Discussion

Test-trace-isolate programs have the potential to play an important role in COVID-19 control,

but the extent of that role depends on each program’s ability to limit transmission of the virus.

Here, we have presented a modeling framework with which to evaluate the performance of the

often independent test-and-isolate and contact tracing components of test-trace-isolate pro-

grams and shown how 4 key metrics of performance interact. The results show that a pro-

gram’s ability to detect cases through community testing is one of the greatest drivers of

program effectiveness, as it is these cases that seed all other activities. Rapid case isolation,

complete contact tracing, and timely quarantine will compound the impact that identifying a

new seed will have on the trajectory of the epidemic. Nevertheless, exceptional performance

may be needed across all of these dimensions if transmission is to be controlled by test-trace-

isolate alone, raising the importance of complementary control activities [22].

Previous work has emphasized the importance of decreasing delays to case isolation and

contact quarantine to reduce disease transmission [23,24]. However, these models assumed

high testing and isolation coverage (�60%), levels perhaps attainable in the early or late stages

of an outbreak, but far exceeding estimated infection detection rates in many locations with

established epidemics [25–28]. Here, we explore a broader range of case detection and isola-

tion proportions, including values that may be more feasibly attained in areas with substantial

incidence. In doing so, we show the critical importance of the proportion of cases detected.

Once adequate levels of detection are reached, the speed of case isolation and contact quar-

antine will begin to matter more. In practice, these delays are linked, as many of the same

activities must be completed before isolation or quarantine can occur (e.g., sample collection,

laboratory testing, contact of infected or exposed individuals). Hence, practical improvements

in important aspects of a test-trace-isolate program, such as speed of laboratory testing, may

have an outsized impact on the performance of the program overall.

These results have implications for the design and implementation of test-trace-isolate pro-

grams. The ability to identify and interrupt a high proportion of transmission chains will

require investment in widespread testing. Population screening, in addition to symptom-

based or at-will testing, could meaningfully improve a program’s impact on transmission.

Inexpensive, easy to administer, and widely available tests could facilitate expanded detection

efforts [29,30]. Even if such tests have lower sensitivity, the higher coverage attainable could

result in detection of a higher percentage of infections [31]. Importantly, these improvements
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to testing capacity and access must be available to those populations most impacted by

COVID-19 and not exacerbate existing testing disparities. If we increase testing coverage, but

fail to reach those who are at highest risk for infection, there will be little impact on

transmission.

Any increases in case detection will be ineffective if isolation and quarantine fail to inter-

rupt transmission. To some extent, this can be counteracted by improvements to other aspects

of a program (e.g., proportion of cases detected), but measures to facilitate effective isolation

and quarantine may be needed to reach transmission control goals. Given the high risk of

household transmission, measures that can intervene in these settings may be highly impor-

tant. Facilities for isolation outside of the household were associated with substantial reduc-

tions in R in China [32]. Use of facial coverings has also been proven effective at reducing

household transmission for SARS-CoV-2 and other respiratory viruses [33–35]. Social and

economic support for isolation and quarantine, particularly if outside the home, may be neces-

sary for test-trace-isolate programs to be effective in many communities [7]. Technology, such

as use of mobile phone data to identify contacts, may improve the speed and completeness of

contact tracing, but compliance may be undermined if contact definitions are too broad, and

substantial resources would still be required to initiate and support quarantine of identified

contacts [36,37].

The case isolation and contact quarantine completeness metrics used in our model may be

better conceptualized as the “proportion of onward transmission that would have been other-

wise caused by those isolated or quarantined.” Thus, programs will see greater reductions in

transmission from isolation or quarantine of those who are more likely to transmit. In the

expanded version of our model, we already address differences between symptomatic and

asymptomatic transmission and household versus community contacts. There may be pro-

grammatic reasons to specifically target other groups, and our basic framework could be

extended to accommodate such strategies.

Our framework is not without limitations. This model describes a general strategy of trac-

ing and quarantining the immediate contacts of identified cases in a community. It may not be

easily extensible to settings such as schools or workplaces. Alternative strategies also exist,

including tracing of contacts-of-contacts [38] and so-called backwards tracing [39]. The latter

approach is part of a fundamentally different way of using contact tracing in disease control

that has been used in COVID-19 response in some countries (e.g., Japan [40]), which focuses

on identifying settings that have the potential to facilitate superspreading events or otherwise

amplify transmission.

Our estimates of program effectiveness are sensitive to assumptions of disease natural his-

tory, though we have explored the impact of some of these assumptions (Fig E–I in S1 Text),

and further exploration is possible. We assumed that the incubation period, generation time,

and test-trace-isolate time delays were fixed at mean values, although previous work has

shown that variability in these time delay distributions may affect the impact of disease control

[12]. In addition, the model relies on a simplified version of transmission that does not

account for many risk factors for SARS-CoV-2 infection or the contact structure in the popula-

tion [38,41], which could lead to persistent transmission even when the population reproduc-

tive number is low (e.g., if there are clusters of connected cases that are not detected or cannot

isolate completely). This may be particularly true if heterogeneities in transmission are associ-

ated with our ability to identify individuals through testing or contact tracing. Though nonad-

herence can be crudely considered by modifying the proportion isolated and proportion

quarantined, our model framework does not capture the real-world imperfections where cases

and contacts are unable to completely avoid contact with all other individuals. While the

reproductive number is a useful representation of transmission control at the population level,
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it does not capture differential health burden of infections, and a program could have a higher

R but better limit mortality if it effectively protects at-risk populations.

Test-trace-isolate programs should not alone be used to control COVID-19. It is exceed-

ingly difficult to achieve a reproductive number less than one without additional reductions in

transmission from other interventions, which may include masking or broadscale social dis-

tancing. Likewise, our model is based on proportions, but resource needs are determined by

the absolute number of identified cases and traced contacts. When incidence is high, resources

needed to test and trace the desired proportion of infections may be excessive, but if incidence

is brought down through other control measures, the same targets may be logistically feasible.

Still, test-trace-isolate programs need not themselves bring R below one to be valuable, and

incremental reductions in transmission can alleviate the need for the most severe social dis-

tancing measures.

Hence, test-trace-isolate isolate programs have a valuable role to play in the COVID-19

response, even if such programs themselves are not the whole solution. Understanding the

impact that a program is having, or that would result from investing in better program perfor-

mance, is critical to the effective use of these programs within a broader control strategy. We

hope that the model presented here, which is implemented in publicly available tools, will help

facilitate the effective use of these programs in the COVID-19 response.

Supporting information

S1 Text. Supporting information. Model details, input parameters, and sensitivity analyses.

(PDF)
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