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Summary points

• The worldwide burden of Plasmodium vivax malaria has more than halved from an esti-

mated 17.3 to 6.5 million cases between 2010 and 2019. This resulted from increased

deployment of conventional malaria control measures (rapid diagnostic tests, effective

antimalarial treatment, vector control) and significant global investment in malaria

elimination. There is no generally available P. vivax vaccine, nor is there likely to be one

in the near future.

• The latest-generation RDTs used for P. vivax diagnosis have sensitivities comparable to

microscopy. Ultrasensitive PCR methods which can detect parasite densities as low as

28/ml have revealed a much higher prevalence of asymptomatic P. vivax infection in

malaria endemic regions than previously estimated.

• Chloroquine remains an effective schizonticide for vivax malaria, except in Indonesia,

Sabah and Papua New Guinea where there is high-level chloroquine resistance. Artemi-

sinin combination therapies are effective alternative schizonticides that unify the treat-

ment of all malarias. Relapses contribute significantly to the burden of P. vivax
infections. Prevention of relapse requires “radical cure” with an 8-aminoquinoline (pri-

maquine daily for 7 to 14 days, or single-dose tafenoquine). These drugs cause oxidant

haemolysis in G6PD deficiency, so safe use requires G6PD testing. Overall, the risks of

primaquine haemolysis have been overemphasised and the benefits of relapse preven-

tion underappreciated.

• Qualitative screening tests for G6PD deficiency (detecting <30% normal enzyme activ-

ity) are adequate for screening before giving primaquine for radical cure, but a quantita-

tive point of care G6PD test to detect <70% normal enzyme activity is needed for

tafenoquine.

• Radical curative efficacy depends on the total 8-aminoquinoline dose given; higher pri-

maquine doses (7 mg base/kg rather than 3.5 mg base/kg) are required in parts of South-

east Asia and Oceania. The currently recommended dose of tafenoquine (300 mg) is

sub-optimal. In low transmission settings, elimination of vivax malaria is possible with

current tools.
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Introduction

Plasmodium vivax is more geographically dispersed than Plasmodium falciparum, with trans-

mission occurring over a wider range of temperatures than for P. falciparum [1], and at lati-

tudes as far as 64˚ North [2]. P. vivax is the predominant cause of human malaria in Asia and

the Asia-Pacific regions where, with large populations and a declining incidence of P. falcipa-
rum infections, over 80% of the global P. vivax burden occurs [3]. P. vivax is also prevalent in

the horn of Africa, Madagascar, and parts of Central and South America, but it has been eradi-

cated from Europe, Russia, North America, and most of the Middle East [2,4].

Clinical management of P. vivax malaria relies on clinical suspicion, a reliable blood diagnos-

tic, and access to efficacious effective schizonticidal (blood stage) and hypnozoiticidal (radical

cure) drug regimens. Currently, P. vivax malaria is treated with chloroquine or artemisinin com-

bination therapy (ACT) for the blood stage infection. While chloroquine has been standard

treatment for vivax malaria for some 70 years, the emergence and global spread of chloroquine

resistance in P. falciparum has meant that different treatments are now required for P. falcipa-
rum and the other human malarias. Use of ACTs (except artesunate-sulfadoxine-pyrimeth-

amine) allows again a unified treatment for all malaria, and it provides a safety net in case of

misdiagnosis or an unidentified mixed infection with P. falciparum. Despite declining suscepti-

bility, chloroquine is still effective for P. vivax infection in most of the world, except for Indone-

sia, Sabah and Oceania where resistance is high grade [5,6]. Chloroquine is substantially less

expensive than ACTs, although a unified treatment provides significant operational cost-savings.

Historically, P. vivax has been considered benign, although severe infections may some-

times occur [7–10]. Concomitant illness or chronic disease may contribute to the severity of P.

vivax infection [11,12]. The management of severely ill patients with P. vivax malaria is similar

to that of P. falciparum malaria [13]. P. vivax malaria in pregnancy is associated with miscar-

riage and low birth weight [14,15].

The great challenge for P. vivax malaria treatment is how to prevent relapses. These result

from dormant liver stage parasites (hypnozoites) that activate weeks or months after the pri-

mary infection to cause a recurrent P. vivax infection (relapse). The intervals to and frequency

of symptomatic relapses vary geographically and depend also on age and the intensity of trans-

mission [16–18]. Frequent P. vivax infections are a major cause of morbidity in vivax malaria,

particularly in young children in whom repeated relapse may cause severe anaemia, malnutri-

tion, and growth delay [19, 20]. Thus, an important goal of treatment is to prevent relapse.

This requires radical curative treatment with an 8-aminoquinoline in addition to treatment of

the blood stage infection. The 8-aminoquinoline drugs cause haemolysis in patients with glu-

cose-6-phosphate dehydrogenase deficiency (G6PDd), and this risk of dangerous iatrogenic

haemolysis has limited their use substantially. In general, the harm caused by frequent relapse,

particularly in young children, has been under appreciated, whereas the risks of haemolysis

have been overemphasised, with a net result that primaquine radical cure has been underused.

Diagnosis of Plasmodium vivax malaria

Microscopy and rapid diagnostic tests. For over a century, the gold standard for diag-

nosing P. vivax malaria has been the microscopy observation of asexual parasites on a thick or

thin blood film. Accurate microscopy requires trained laboratory staff supported with ade-

quate laboratory supplies and well-maintained microscopes, which are not always available in

resource-limited settings. The limit of detection for expert microscopy is about 50 parasites/uL

which coincides approximately with the pyrogenic density [21]. The diagnostic sensitivity

depends on the slide quality and the experience of the microscopist. Thus under field
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conditions, microscopy may miss some symptomatic cases because of the low parasite densities

in P. vivax infections, but overall, it is suitably sensitive and specific for clinical diagnosis. Rapid

diagnostic tests (RDTs) have been developed which detect antigens common to all malarias

(e.g., aldolase) or those specific to P. vivax (e.g., PvLDH). First-generation RDTs had lower sen-

sitivities for P. vivax parasitaemia [22] and could give false positive results [23] with high-den-

sity P. falciparum infections. The sensitivity and specificity of P. vivax RDTs have both been

improved significantly. From 2008 to 2018, the proportion of P. vivax, P. falciparum, and pan-

malaria RDTs meeting the current WHO performance threshold for procurement increased

from approximately 20% to 90% [24]. During that decade, over 2.3 billion RDTs have been sold

[25]. Access to reliable point-of-care diagnostic tools has allowed for early diagnosis and

improved tremendously the ability to treat confirmed rather than suspected P. vivax infections.

Polymerase chain reaction (PCR) detection and genotyping. PCR allows low densities

of malaria parasites to be detected reliably in blood samples. For low-volume blood samples

such as filter paper blood spots, lower limits of reliable detection are typically in the range of 1

to 10 parasites/uL. In recent years, high-volume ultrasensitive PCR methods (uPCR) have

been developed which amplify a larger amount of DNA, and these provide lower limits of

detection around 28 parasites per mL (based on genus) with a second species-specific probe

based on the 18S RNA gene [26]. These ultrasensitive methods allow detection of the majority

of all infected people in endemic areas [27]. Most of these malaria-infected people are asymp-

tomatic although, as parasite densities fluctuate over time, transmissible densities of gameto-

cytes occur intermittently, and they are therefore a source of transmission [28]. PCR

identification of infection is therefore an important component of epidemiological or clinical

research assessment for submicroscopic recurrences, but it should not be used in disease diag-

nosis and management as it is too sensitive. That is, it will detect asymptomatic individuals

who often have another reason for their febrile illness (reduced specificity).

Molecular genotyping is not needed for clinical management, although it is useful in clinical

trials where, together with time-to-event information, it can help distinguish relapse from

reinfection [29]. The interpretation of parasite genotyping is not as straightforward as it is for

P. falciparum infections as relapses can be with genotypes similar or identical to the initial

infection, or they can be with completely different genotypes resulting from heterologous hyp-

nozoite activation [30, 31]. Nevertheless, combining genotype comparison with time-to-event

information does allow probabilistic differentiation between relapses and reinfections.

Prevention

Insecticide-treated nets. Insecticide-treated nets (ITNs) are the mainstay of malaria con-

trol in most of the malaria-endemic world. Between 2017 and 2019, over 25,000,000 ITNs were

distributed annually in malaria-endemic regions outside sub-Saharan Africa [4]. The effective-

ness of ITNs depends on many factors which include distribution, coverage, adherence, main-

tenance, vector biting patterns, and levels of insecticide resistance [32]. Unsurprisingly ITNs

are less effective if the anopheline vectors bite when people are not under or near their bed

nets [33,34]. Most of the main vectors in SE Asia exhibit exophilic crepuscular biting patterns

which decrease the effectiveness of ITNs in preventing malaria. In Papua New Guinea, anoph-

eline vectors changed their behaviour to bite earlier after the introduction of bed nets [35].

Moreover, ITNs have no direct impact against relapse, which is often the main cause of vivax

malaria (and once relapse proportions exceed 50%, relapses become the main cause of P. vivax
infections). Despite these limitations, ITNs do provide partial benefit and are an adjunct

method to prevent primary P. vivax infections and interrupt transmission [36]. Long-lasting

nets (LLINs), in which the insecticide persists for the natural life of the net, are a substantial
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advance. There is rising concern about increasing pyrethroid resistance. Progress against pyre-

throid resistance has been made in the forms of a new pyrrole insecticide, chlorfenapyr

[37,38], and a chemical synergist which prevents insects from detoxifying pyrethroids, pipero-

nyl butoxide (PBO) [39].

Insecticide use. The use of insecticides for malaria prevention focuses mainly on indoor

residual spraying (IRS) and long-lasting ITNs, although there are a variety of other approaches.

Organochlorides, organophosphates, carbamates, and pyrethroids are recommended by

WHO for IRS. From 2000 to 2009, over 3,200 metric tonnes of insecticide were used against

malaria vectors in P. vivax endemic regions [40]. Widespread insecticide use for agricultural

treatments and large-scale malaria control programmes create intense selection pressure on

vector populations to develop insecticide resistance [41,42]. Resistance to organochlorides and

pyrethroids has been detected in the Americas, Asia, SE Asia, and the southern Pacific [42,43]

where P. vivax is endemic, though even within a single country, resistance patterns may vary

[44]. The full extent of insecticide resistance is not well characterised because routine monitor-

ing in anopheline vector populations is not performed in all countries.

Vaccines. There is no generally available P. vivax vaccine, and none is on the near hori-

zon. In contrast to P. falciparum, where hundreds of clinical trials and nearly 20 preclinical tri-

als are registered, only 1 clinical trial and 2 preclinical trials are registered for P. vivax [45].

Potential vaccine strategies for P. vivax are irradiated sporozoites [46] and the blood stage anti-

gens P. vivax Duffy binding protein (PvDBP), P. vivax merozoite surface proteins (PvMSP1,

PvMSP3α, PvMSP9), P. vivax apical membrane antigen (PvAMA1), and the liver stage antigen

P. vivax circumsporozoite protein (PvCSP) [47]. Transmission-blocking antigens are also

potential targets. Phase I human trials have been conducted with PvCSP [48] and PvDBP [49]

and asexual stage antigen Pv25 [50,51]. Currently, a single Phase I P. vivax vaccine trial (of a

viral vectored PvDBP vaccine) is listed on the global WHO malaria clinical vaccine projects

“Rainbow tables” (Trial NCT01816113) [45]. Vaccine development for P. vivax faces different

challenges than with P. falciparum. P. vivax has greater genetic diversity [52] and cannot be

maintained reliably in continuous cultures in vitro.

Chemoprophylaxis. Chemoprophylaxis is recommended to protect travellers from

nonendemic areas entering a malaria-endemic area. Recommendations are largely focused on

P. falciparum, the more dangerous malaria parasite, both to prevent severe disease, and also

because nearly all the drugs which work against P. falciparum (either in pre-erythrocytic or

“causal” prophylaxis, or in blood stage “suppressive” prophylaxis) are also effective against P.

vivax. Intermittent presumptive treatment for infants and pregnant women (IPTi and IPTp)

and seasonal malaria chemoprevention (SMC) are interventions which aim to prevent P. fal-
ciparum blood stage infections in populations that live in areas of moderate to high P. falcipa-
rum transmission. These are typically areas where P. vivax is either uncommon or absent. The

only suppressive chemoprophylactic strategy specifically targeting P. vivax for endemic popu-

lations is a weekly chloroquine dose of 5 mg base/kg (300 mg base adult dose) given during

pregnancy and lactation [53] as 8-aminoquinolines are contraindicated in this population

(Table 1). This is seldom used, probably because of insufficient cost-effectiveness where inci-

dence is low. But the cost-effectiveness balance does favour chloroquine prophylaxis to sup-

press relapse in pregnancy in women following an incident tropical (frequent relapse) P. vivax
infection—and then it should be given. The role of IPTp with dihydroartemisinin-piperaquine

in parts of Indonesia and Papua New Guinea, where transmission and resistance to chloro-

quine are both high, is under investigation with promising results in clinical trials [54].

As countries eliminate malaria, the infections they encounter will increasingly be in travel-

lers arriving from endemic areas. Suppressive chemoprophylaxis with drugs effective against

P. falciparum has been the primary approach for malaria prevention (e.g., the same regimens
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apply to P. vivax), although they do not prevent the establishment of hypnozoites. The 8-ami-

noquinolines (primaquine and tafenoquine) have good activities against the pre-erythrocytic

stages of all malarias, as well as blood stage activities against P. vivax, and so can be used for

chemoprophylaxis. These drugs prevent later relapses as they kill hypnozoites (whereas IPTi or

SMC with schizonticides only delay multiplication of the blood stage). Atovaquone-proguanil

is also considered to provide highly effective causal prophylaxis against P. vivax but it does not

prevent relapses. Recent observations in travellers showed a similar rate of P. vivax infections

(40% to 50%) up to 1 year after returning to a nonendemic area following either atovaquone-

proguanil, mefloquine, or doxycycline prophylaxis. This compares with a rate of only 1% to

2% in travellers who had received primaquine [55]. This suggests that while atovaquone is

active against the developing hypnozoite, it is not active against the metabolically inert hypno-

zoite more than 3 days postinoculation [56]. The drugs, which act primarily on the liver stage

(pre-erythrocytic) infection (i.e., causal prophylaxis), have the substantial advantage that they

Table 1. Chemoprophylactic regimens against Plasmodium vivax infection.

Indication and treatment Contraindicationsa Dose When to start Treatment duration

Suppressive chemoprophylaxis in

pregnancy

Chloroquine Severe renal or hepatic disease, can exacerbate

psoriasisa
300 mg base weekly First antenatal visit or

3 weeks after

treatment of vivax

malaria

Continue until

delivery

Suppressive chemoprophylaxis in

travellers

Any antimalarial regimen that is used

for P. falciparum chemoprophylaxis

(doxycycline or mefloquine)

Doxycycline: Myasthenia gravis, children <8

years, second or third trimester pregnancy

Mefloquine: Epilepsy, history of or current

psychiatric disease, severe hepatic disease

Doxycycline 100 mg daily

Mefloquine 250 mg base

weekly

1 day before travel

4 weeks before travel

Continue for 4

weeks after return to

nonendemic area

Causal prophylaxis in travellers

Primaquine G6PD deficiency, pregnancy, mothers breast

feeding infants (<6 months)b or those who are

G6PD deficient, and infants <6 months

30 mg base daily with food 1 day before travel Continue until 7

days after return to

nonendemic area

Tafenoquinec,d G6PD deficiency (quantitative testing showing

>70% normal activity required), pregnancy,

mothers breast feeding infants who are G6PD

deficient, history of psychotic disorder or

current psychiatric symptoms

Loading dose of 200 mg base

daily for 3 days, then 200 mg

weekly with food (maximum

6 months)

1 day before travel

Atovaquone-proguanil Pregnancy, severe renal disease (GFR <30 mL/

min)

250 mg/100 mg (1 tablet)

daily with food

1 day before travel

Presumptive antirelapse therapy in

travellers (PART)–necessary after

suppressive chemoprophylaxis

Primaquine Same as for the causal prophylaxis indication 0.25–0.50 mg base/kg/day

with food

7 days after return to

the nonendemic area

14 days

Tafenoquined (currently

recommended only in combination

with chloroquine treatment or

chemoprophylaxis)c

Same as for the causal prophylaxis indication,

except that history of psychiatric disorder or

current psychiatric symptoms are not a

contraindication

300 mg base with food 7 days after return to

the nonendemic area

Single dose

a Contraindications listed are in addition to allergy and apply only to the prophylaxis and not treatment indication.

b Minimal primaquine was excreted into mature breast milk in a study of breast feeding infants >28 days old [57].

c Tafenoquine product labelling has been changed so that only chloroquine may be used as the partner schizonticide [58,59]. Paediatric dosing recommendations are

anticipated (TEACH trial) [60].

d The US Centers for Disease Control and Prevention (CDC) malaria guidance extends the use of tafenoquine for radical cure to PART [61].

GFR, glomerular filtration rate; G6PDd, glucose-6-phosphate dehydrogenase deficiency; PART, presumptive antirelapse therapy.

https://doi.org/10.1371/journal.pmed.1003561.t001
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can be stopped within days of leaving the endemic area, whereas the blood stage suppressive

drugs (mefloquine, tetracyclines, chloroquine) need to be continued for 1 month after leaving

to capture late emerging blood stage infections. To ensure that relapses from P. vivax and Plas-
modium ovale are prevented presumptive antirelapse therapy (PART) with a radical curative

dose of 8-aminoquinolines (primaquine and tafenoquine) may be given following departure

from an endemic area to persons receiving suppressive chemoprophylaxis (Table 1). The tim-

ing of the PART dose is important as it should be started while blood schizonticide concentra-

tions remain above the mean inhibitory concentration. Thus, PART can be started within the

final 2 weeks of doxycycline and mefloquine, and the final week of atovaquone-proguanil sup-

pressive chemoprophylactic regimens.

Treatment of acute Plasmodium vivax malaria

Blood stage treatment. Since 1947, chloroquine has been the treatment of choice for

blood stage infections with P. vivax. The standard treatment regimen is 25 mg of base equiva-

lent/kg divided over 3 days and given either as 10 mg/kg initially followed either by 10 mg/kg

at 24 hours and 5 mg/kg at 48 hours, or by 3 doses of 5 mg/kg 12 hourly [53]. Various other

ways of giving this 25 mg/kg treatment dose have been recommended, and chloroquine may

be administered safely over 36 hours provided that individual doses do not exceed 10 mg/kg.

Although lower doses are effective, there is no reason to depart from this standard regimen in

most regions. Absorption of chloroquine by mouth is reliable even when patients are prostrate

[62], and there is seldom need for parenteral treatment. Indeed, parenteral formulations of

chloroquine are no longer generally available, so those patients who do require initial paren-

teral treatment for severe P. vivax malaria should be given intravenous or intramuscular arte-

sunate until they can take oral medication reliably [13]. ACTs are also highly effective (except

for artesunate-sulfadoxine-pyrimethamine) and provide a slightly more rapid clinical and

parasitological response than chloroquine [63–67]. The post-treatment suppression of early

relapses depends on the elimination kinetics of the ACT partner drug—mefloquine, pipera-

quine, pyronaridine, and amodiaquine ACTs provide approximately similar durations of sup-

pression compared with chloroquine, whereas artemether-lumefantrine provides a

significantly shorter period of suppression [68]. Both chloroquine and ACTs are generally well

tolerated antimalarial treatments. The weight-adjusted schizonticidal treatment regimens are

similar in pregnant and lactating women [54]. Paediatric formulations are available for arte-

mether-lumefantrine, artesunate-amodiaquine, dihydroartemisinin-piperaquine, and pyro-

naridine-artesunate, and the doses are similar to those recommended for falciparum malaria.

Child-friendly formulations and smaller-dose tablets are needed for primaquine.

Primaquine and tafenoquine both have significant blood stage activities but as the therapeu-

tic response is significantly slower than with chloroquine or ACTs, they should not be used as

monotherapies for blood stage infections [69,70]. Nevertheless, the asexual stage activity of

8-aminoquinolines does contribute significantly to the treatment efficacy and prevents resis-

tance to standard schizonticides by providing a combination treatment for the blood stage

infection. P. vivax gametocytes are considered as sensitive as the asexual stages to antimalarial

drugs [71] so, unlike P. falciparum, specific gametocytocidal treatment is not necessary.

High fevers can be managed with standard doses of paracetamol, and vomiting can be

treated with antiemetics. If patients show signs of severe vivax malaria, then the management

is exactly the same as for severe falciparum malaria [13]. Uncomplicated mixed infections with

P. falciparum and P. vivax should be treated with an ACT and a radical curative regimen [53].

Antimalarial drug resistance. Chloroquine resistance in P. vivax has emerged more

slowly than for P. falciparum. The mechanism of resistance and its molecular basis have
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proved elusive. Evidence of chloroquine resistance was detected first in a traveller returning

from Papua New Guinea over 30 years ago [5,6]. Chloroquine resistance has been defined as a

patent P. vivax infection in the presence of chloroquine + desethychloroquine levels >100 ng/

mL in whole blood or >10 ng/mL in plasma [72]. Since then, chloroquine resistance has risen

to high levels in Indonesia and Oceania (Fig 1) and so ACTs are used instead of chloroquine in

this region. Dihydroartemisinin-piperaquine, artesunate-mefloquine, artemether-lumefan-

trine, and artesunate-pyronaridine are all very effective treatments of vivax malaria [62–65].

While amodiaquine is also more effective than chloroquine against resistant P. vivax, it is not

as well tolerated as dihydroartemisinin-piperaquine, and resistance in P. falciparum is wide-

spread in P. vivax-endemic regions. Amodiaquine-containing regimens are not therefore rec-

ommended for chloroquine-resistant P. vivax infections [73–74]. Despite evidence for slowly

rising chloroquine resistance in P. vivax, chloroquine still remains effective throughout most

malaria-endemic areas [65,75–79]. As the concomitant use of primaquine (for radical cure)

provides significant independent asexual stage activity, it may mask low-level chloroquine

resistance [80–82]. The lack of a molecular marker of chloroquine resistance and the limited

availability of in vitro testing in vivax malaria [83] means that the epidemiology of chloroquine

resistance is not well described. Antifol resistance occurs readily in P. vivax through mutations

in Pvdhfr which are readily identified. Antifol resistance is geographically widespread [84,85].

P. vivax is also intrinsically relatively resistant to sulphonamides. This is why the artesunate-

sulfadoxine-pyrimethamine ACT should not be used for P. vivax treatment.

Plasmodium vivax relapse. Relapses of P. vivax and P. ovale are the recurrent blood stage

infections which originate from hypnozoites in the liver. Relapses occur with periodic regular-

ity (Fig 2); short latency phenotypes prevalent in tropical climes relapse at approximately 3- to

Fig 1. Levels of chloroquine resistance against Plasmodium vivax from 1985–2019. The data were exported from the WWARN Vivax Surveyor tool at https://www.

wwarn.org/tracking-resistance/vivax-surveyor. Evidence for chloroquine resistance comes from P. vivax clinical trials published from 1985–2019. Some trials are from

different years in the same area; this figure does not specify the change in chloroquine resistance pattern over time. CQS: Chloroquine sensitive, Category 1: very

suggestive of resistance, Category 2: suggestive of resistance, Category 3: potential evidence of resistance.

https://doi.org/10.1371/journal.pmed.1003561.g001
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4-week intervals. These intervals are prolonged by slowly eliminated antimalarial drugs. Lon-

ger latency phenotypes may relapse 8 to 9 months after a primary infection [86]. The propor-

tion of infections which relapse varies between 20% and 100% depending on location and

transmission intensity.

The multiplication of the blood stage infection of early relapses is suppressed by slowly

eliminated antimalarials (e.g., chloroquine) prescribed for the previous clinical P. vivax epi-

sode. As a consequence, in tropical areas, relapses become patent 3–6 weeks after artemether-

lumefantrine and 5–7 weeks after chloroquine, whereas they occur around 3 weeks after arte-

sunate or quinine treatment [76].

Antirelapse (radical cure) treatment

Primaquine. For over 60 years, the mainstay of antirelapse treatment has been a 14-day

primaquine regimen. Divergent policies and practices, concerns over haemolysis, and the

unavailability of G6PD testing have contributed to low rates of primaquine uptake for radical

cure in malaria-endemic countries [87].

The radical curative efficacy of primaquine depends on the total dose given. There have

been relatively few randomised trials in which the radical curative efficacy of primaquine has

been assessed with a necessary�4-month follow-up (1 year is preferable). In South America,

7-day regimens are used. The radical curative efficacy of the 7-day low-dose (total 3.5 mg base/

kg) primaquine regimen was approximately 80% [88–92]. In SE Asia and Oceania, higher

doses are needed for maximum efficacy [93]. The most commonly recommended higher dose

Fig 2. Plasmodium vivax relapse patterns. The temporal patterns of P. vivax relapse in different “strains.” The red

arrow indicates the infective mosquito bite which leads to the primary infection. The blue triangles represent patent P.

vivax infections; the largest triangle is the primary infection. The proportions of successive relapses decline, and there

is an increasing probability that the relapses are oligosymptomatic or asymptomatic. The translucent blue triangles are

P. vivax infections which may sometimes occur. The short latency frequent relapse pattern (typified by the “Chesson

strain”) is prevalent across tropical areas. The intermediate phenotype may occur in South Asia. The long latency

phenotype (typified by the Madagascar, St Elizabeth, and McCoy strains) is found in Central America, North Africa,

and central Asia, while the long latency “hibernans” phenotype, which was prevalent in Northern Europe and Russia, is

still found in North Korea.

https://doi.org/10.1371/journal.pmed.1003561.g002
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is a total of 7 mg base/kg given over 14 days (adult dose 30 mg/day), although most countries

still recommend the lower dose (3.5 mg base/kg total dose; adult dose 15 mg/day for 14 days or

30 mg/day for 7 days). Potentially poor adherence to the 14-day treatment reduces the effec-

tiveness of radical cure. Recent studies show that shortening the course of the higher-dose

treatment to 7 days (adult dose 60 mg/day) is efficacious and safe in G6PD normal patients,

although significant haemolysis may occur in heterozygote females with intermediate G6PD

activity who have tested normal with standard qualitative G6PD screening tests [94,95] (see

below). G6PD quantitative tests may be needed for this short-course high-dose treatment. For

patients who test as G6PD deficient, a weekly primaquine dose (0.75 mg base/kg/dose) given

for 8 weeks has been recommended, although the safety of this dose has only been assessed in

a few populations [53,96–98].

In early clinical trials, it was observed that chloroquine potentiated the radical curative effi-

cacy of primaquine [99]. The mechanism underlying this relationship and its clinical signifi-

cance remain unclear. Radical curative efficacy is similar when primaquine is paired with

chloroquine or an ACT, and radical cure rates over 95% can be achieved after supervised dos-

ing [29,94,95]. Primaquine requires metabolism to its bioactive metabolites by the liver isoen-

zyme CYP2D6 [100,101]. Primaquine failure may therefore occur in patients with CYP2D6

mutations associated with a poor or intermediate metaboliser phenotype. Overall, adherence

likely plays a greater role in the failure of primaquine to prevent relapse. Resistance to prima-

quine has been reported, but there is no conclusive evidence of acquired resistance in liver

stages.

Primaquine is contraindicated in pregnancy, is not recommended in infants <6 months,

and has also been withheld from lactating women, although a recent study shows that the dose

ingested by the breastfeeding infant is very small [57] and therefore very unlikely to exert any

biological effect. This restriction may well be lifted. Primaquine is generally well tolerated. It

may cause abdominal pain if larger doses (over 0.5 mg/kg) are taken on an empty stomach.

This is lessened if given with food. The main adverse effect of the 8-aminoquinolines is dose-

dependent oxidant haemolysis in G6PD deficiency. Primaquine-induced methaemoglobinae-

mia is usually mild, but it can be severe in NADH methaemoglobin reductase deficiency.

Haemolysis in G6PD deficiency. G6PD deficiency is the most common human enzymo-

pathy. Gene frequencies average 8% to 10% across much of the tropical world [102]. The risk

of haemolysis in G6PD deficiency is the main obstacle to the use of 8-aminoquinolines for rad-

ical cure. The enzyme deficiency is X-linked so males are either normal or deficient (hemizy-

gotes), whereas women can be either normal, or fully (homozygotes) or partially deficient

(heterozygotes). On average, at a population level, female heterozygotes have half their red

cells which are normal and half which are G6PD deficient but, because of random X-inactiva-

tion (Lyonisation), these proportions vary substantially between individuals, thus causing wide

variations in the degree of enzyme deficiency among female heterozygotes. Both primaquine

and tafenoquine cause predictable dose-related haemolysis in G6PD-deficient individuals

[103,104]. Haemolysis disproportionately affects older red blood cells because G6PD activity

declines as red blood cells age [105]. There are approximately 200 different polymorphic

G6PD deficiency genotypes [106]. The majority confer reduced enzyme activity, although the

degree of deficiency varies substantially among the different genotypes. The extent of haemoly-

sis depends on the dosage of drug and the genotype. In Africa, the less severe A-genotype is

prevalent, whereas in Asia, the common genotypes confer greater enzyme deficiency. The

most commonly used screen for G6PD deficiency is the qualitative G6PD fluorescent spot test

(FST), which detects the naturally fluorescent NADPH. The FST detects <30% of normal

G6PD activity reliably (deficient blood does not fluoresce) so it identifies the male hemizy-

gotes, female homozygotes, and those heterozygotes with G6PD activity near the 30%

PLOS MEDICINE

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003561 April 23, 2021 9 / 21

https://doi.org/10.1371/journal.pmed.1003561


threshold. The FST may not be feasible at lower-level healthcare settings as it requires electric-

ity, trained laboratory staff, and quality control. New qualitative lateral flow G6PD RDTs are

available. These can be performed where the FST cannot. These RDTs are an important sup-

port tool for diagnosing G6PD deficiency, and the safe prescription of primaquine as P. vivax
radical cure is scaled up. Patients who have a test result indicating G6PD deficiency should not

receive the standard primaquine regimen. Instead, in areas where the less severe G6PD vari-

ants (e.g., G6PD A-) are prevalent, they should receive a once weekly 0.75 mg base/kg dose for

8 weeks [53,96]. The safety of the weekly regimen has not been established in patients with

G6PD variants that are severe (e.g., G6PD Mediterranean). However, a threshold for pheno-

typic severity has not been defined. Even with FST or RDT screening, there may still be signifi-

cant haemolysis in G6PD heterozygote females who have slightly more than 30% of G6PD

normal erythrocytes. Such females would be considered as G6PD normal and potentially given

primaquine. Unfortunately, in many regions, G6PD testing is unavailable so the practitioner

treating vivax malaria is faced with a dilemma—to give radical cure “at risk,” or to err on the

side of safety and not give it. In this difficult choice, the substantial morbidity of recurrent P.

vivax malaria, particularly in young children who may be ill every second month, has often

been underappreciated [107]. Importantly, in gauging the risk, it is important to note that

G6PD deficiency protects against P. vivax malaria, so at a population level, the risk of haemoly-

sis in patients is lower than would be predicted from prevalence surveys in healthy individuals

[108]. In a recent study in Afghanistan of Pashtun patients (in whom the main G6PD variant

is the “severe” Mediterranean variant), the prevalence of G6PD deficiency in men (i.e., hemi-

zygotes) presenting with vivax malaria was 4 times lower than in the healthy population [109].

The result of these various uncertainties has been a diverse array of National treatment recom-

mendations and practices for radical cure. Many countries do recommend giving primaquine

“at risk,” yet despite over 60 years of widespread use, the total number of documented fatalities

from haemolysis is only fifteen [110,111]. The likely reason for this low number is that prima-

quine can be stopped as soon as there are symptoms or clinical evidence of substantial acute

haemolysis (e.g., lassitude, exertional dyspnoea, haemoglobinuria, or abdominal discomfort)

and, because primaquine and its oxidant metabolites are rapidly eliminated, the anaemia is

limited. This probably explains why mass treatments with primaquine without G6PD testing,

even in areas where G6PD Mediterranean was the main deficiency genotype, were not appar-

ently associated with serious toxicity [110].

Tafenoquine. Tafenoquine is a slowly eliminated 8-aminoquinoline (terminal elimination

half-life of approximately 12 days) which allows single-dose treatment. As with primaquine,

tafenoquine is generally well tolerated and abdominal discomfort is lessened if given with

food. During the long development of tafenoquine, concerns were raised about the potential

for vortex keratopathy, electrocardiograph QT prolongation, and psychiatric reactions. The

clinical evidence to date has largely resolved these issues [112–115] although, in the product

labelling, tafenoquine for causal prophylaxis is considered contraindicated in persons with

psychiatric symptoms. Being a single-dose treatment, tafenoquine addresses a major limitation

of the 7- or 14-day primaquine regimen, the potential for poor adherence. However, this

advantage is at the expense of a substantial risk of haemolytic toxicity in G6PD deficiency as,

once tafenoquine is taken, it cannot be “stopped” if there is drug-induced haemolysis. A meta-

analysis of the multicountry phase 3 studies showed that tafenoquine had a 6-month radical

curative efficacy similar to low-dose primaquine (0.25 mg/kg/day for 14 days) in South Amer-

ica (67% versus 66%, respectively) and the horn of Africa (75% versus 80%, respectively), but

the efficacy of the currently recommended 300 mg dose was significantly inferior in the SE

Asian sites (74% versus 93%, respectively) [116,117]. These are disappointing radical curative

efficacies and suggest that higher tafenoquine doses are probably needed in SE Asia and
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Oceania where P. vivax relapse rates are high, and also in South America where both radical

cure regimens performed poorly [118]. Tafenoquine efficacy did not appear to be affected sig-

nificantly by CYP2D6 polymorphisms in the Phase III trials [119], but more data are needed

to confirm these early findings.

As described, tafenoquine’s advantage in being slowly eliminated (terminal half-life approx-

imately 12 days), and thus effective in a single dose, is also its Achilles heel. If given to an indi-

vidual who is G6PD deficient, the drug exposure and resulting haemolysis will persist until all

the susceptible erythrocytes have been destroyed. Some female heterozygotes, who would be

undetected by the standard screens, could still theoretically lose up to 70% of their red cells.

This is why the higher G6PD activity threshold (>70% G6PD activity) has been chosen for

tafenoquine eligibility. The gold standard method for G6PD quantitation is spectrophotometry

requiring relatively expensive and sophisticated laboratory techniques, so it is not feasible in

nearly all healthcare settings. Thus, for safe use of tafenoquine, new quantitative point-of-care

G6PD tests have been developed. Studies to validate G6PD quantitative tests are completed

[120,121] and under regulatory review. More extensive field testing is ongoing to assess the

performance of these quantitative G6PD tests in field settings under “real world” conditions

and the rates of incorrect test results or interpretations.

The current exclusions to tafenoquine apply to approximately 25% of the population in

endemic areas, depending on the G6PD allelic frequency, and fertility and lactation rates

[122]. Approving its use in lactating females would substantially improve potential population

coverage. Tafenoquine has received regulatory approval in the United States of America, Aus-

tralia, Brazil, and Thailand [116,117]. Results from the first trial assessing tafenoquine use in

children (2 to 15 years) with P. vivax malaria show that dosing regimens in 4 weight bands

were safe and efficacious and reached the target AUC0-1 [60]. As a result, current restrictions

on use in children will likely be lifted. Tafenoquine has usually been coadministered with chlo-

roquine. In a recently completed clinical trial in Indonesian soldiers, dihydroartemisinin-

piperaquine coadministered with tafenoquine (300 mg dose) was shown to be no different

than dihydroartemisinin-piperaquine alone [58] in preventing recurrence of P. vivax malaria.

These data prompted a product label change to Krintafel (the US regulatory approved form of

tafenoquine for treatment) in early 2020 [59]. Now, only chloroquine is recommended to be

the partner drug to tafenoquine for P. vivax malaria treatment. If followed this would prevent

the use of tafenoquine in areas with chloroquine-resistant P. vivax parasites where national

malaria programmes recommend ACTs for vivax malaria. Clearly, further clinical trials are

needed to identify the correct dose of tafenoquine for radical cure [118] and resolve this part-

ner drug uncertainty.

How can we identify hypnozoite carriers?. There is currently no test which identifies

people with hypnozoites who may later relapse. Living or working in an area of P. vivax trans-

mission is obviously a risk factor, and having had vivax malaria without radical treatment is

clearly the major risk. Pregnant women cannot receive 8-aminoquinolines so are at significant

risk if they have vivax malaria during pregnancy. If primaquine could be allowed during lacta-

tion (as breast milk excretion is minimal [57]), this should result in a recommendation to give

radical cure after delivery. PCR, particularly high-volume uPCR, identifies the majority of

asymptomatic P. vivax infections. Serology can also identify recent infection, although is not

widely available.

Assessment of therapeutic responses. As in falciparum malaria, the treatment responses

in P. vivax infections can be assessed by measurement of symptom resolution, fever clearance,

and parasite clearance. The lower parasite densities in P. vivax mean that parasite rate clear-

ance estimates are more difficult to assess, although sequestration is not a confounder in mea-

suring parasite clearance rates because all parasite stages are in the circulation [123].
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Quantitative polymerase chain reaction (qPCR) estimation of parasite clearance rates has been

used successfully in human challenge experiments but is not widely available [124]. These par-

asite clearance estimates based on qPCR are not confounded by gametocytaemia (as they are

in falciparum malaria) because P. vivax gametocyte clearance parallels asexual stage clearance

after a blood schizonticide [71]. The major challenge in therapeutic assessment is distinguish-

ing relapse, recrudescence, and reinfection, and therefore identifying early resistance. Both

chloroquine and the ACT partner drugs are eliminated slowly so that suppressive blood con-

centrations persist for weeks after treatment [118]. Lumefantrine provides the shortest period

of suppression and mefloquine the longest of the currently deployed ACTs. In tropical areas,

the first sign of chloroquine resistance in vivo, well before slowing of parasite clearance, is the

failure to suppress the first relapse [72,125]. This may not be evident unless patients are fol-

lowed for 2 months in comparative studies (Fig 3A). As the level of resistance increases, the

interval shortens and the first relapse becomes patent within 28 days (Fig 3B). Chloroquine

should suppress relapse emergence within 28 days so recurrence within this period, whether

from relapse or reinfection, still indicates resistance [125]. If a recurrent infection occurs

within 28 days of starting chloroquine for the previous vivax infection, an ACT (such as dihy-

droartemisinin-piperaquine, artemether-lumefantrine, or artesunate-mefloquine) should be

prescribed. Resistance can be confirmed by measuring the whole blood chloroquine level at

the time of recurrent parasitaemia [93]. With higher levels of resistance (Fig 3C), recrudes-

cence preempts the relapse. At this stage, parasite genotyping is informative as these early

recurrences will all be of the same genotype as the initial infection [29].

Summary

Frequent recurrent P. vivax malaria causes substantial preventable morbidity. Better diagnosis,

easier G6PD testing, and use of ACTs as an alternative to chloroquine are improving the clini-

cal management of P. vivax malaria, but the challenge now is to make these more widely avail-

able. Primaquine radical cure is under used. Tafenoquine provides single-dose radical cure,

but the optimum dose and method of using tafenoquine safely still need to be determined. The

tools needed for P. vivax elimination are available. Malaria elimination activities conducted in

remote settings [126–128] have been successful in reducing P. vivax incidence considerably,

but continuing to sustained elimination will require substantial commitment and resources.
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Fig 3. Plasmodium vivax chloroquine treatment failure in scenarios of low, intermediate, and high levels of

resistance in areas with frequent relapsing P. vivax [118]. The vertical axis shows the total number of parasites in the

body in acute vivax malaria. The light grey shaded area is the blood chloroquine concentration profile. The limit of

microscopy detection is approximately 50 parasites/uL. In each panel, chloroquine-sensitive parasites are shown by

green lines and marked S. The relapses emerge from the liver approximately 2 weeks after starting treatment. There is

uncertainty whether chloroquine eliminates or temporarily suppresses the first relapse (in most cases it suppresses but

does not eliminate [118]) so dotted lines representing both scenarios are shown. Resistant parasites causing relapse and

recrudescence are marked R. Upper panel (A): When there are low levels of resistance, the blood stage infection is

cleared usually by the schizonticide, and the first relapse is suppressed until the drug levels fall below the mean

inhibitory concentration (MIC) (e.g., in this illustrated example, chloroquine levels above the MIC are maintained

until day 28, and relapse parasitaemia becomes patent 2 weeks later) [125]. Recrudescence is very unlikely (occurring

only in those patients with low drug levels) and in patients with relapse, the recrudescence would not be detected

because the relapse appears first. Middle panel (B): When resistance to chloroquine is at an intermediate level, the

blood stage infection clears, but the first relapse becomes patent before 28 days. If a relapse occurs, it would still

preempt any recrudescence. Lower panel (C): With high levels of resistance, the blood stage infection recrudesces

before the relapse parasitaemia becomes patent.

https://doi.org/10.1371/journal.pmed.1003561.g003
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