
RESEARCH ARTICLE

Machine learning assessment of myocardial

ischemia using angiography: Development

and retrospective validation

Hyeonyong HaeID
1☯, Soo-Jin KangID

1☯*, Won-Jang KimID
2, So-Yeon Choi3, June-

Goo LeeID
4, Youngoh Bae1, Hyungjoo Cho1, Dong Hyun YangID

5, Joon-Won Kang5, Tae-

Hwan Lim5, Cheol Hyun LeeID
1, Do-Yoon Kang1, Pil Hyung Lee1, Jung-Min Ahn1, Duk-

Woo Park1, Seung-Whan LeeID
1, Young-Hak Kim1, Cheol Whan Lee1, Seong-Wook Park1,

Seung-Jung Park1

1 Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea,

2 Department of Cardiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea,

3 Department of Cardiology, Ajou University, Suwon, Korea, 4 Biomedical Engineering Research Center,

Asan Institute for Life Sciences, Seoul, Korea, 5 Department of Radiology, University of Ulsan College of

Medicine, Asan Medical Center, Seoul, Korea

☯ These authors contributed equally to this work.

* sjkang@amc.seoul.kr

Abstract

Background

Invasive fractional flow reserve (FFR) is a standard tool for identifying ischemia-producing

coronary stenosis. However, in clinical practice, over 70% of treatment decisions still rely on

visual estimation of angiographic stenosis, which has limited accuracy (about 60%–65%) for

the prediction of FFR < 0.80. One of the reasons for the visual–functional mismatch is that

myocardial ischemia can be affected by the supplied myocardial size, which is not always

evident by coronary angiography. The aims of this study were to develop an angiography-

based machine learning (ML) algorithm for predicting the supplied myocardial volume for a

stenosis, as measured using coronary computed tomography angiography (CCTA), and

then to build an angiography-based classifier for the lesions with an FFR < 0.80 versus�

0.80.

Methods and findings

A retrospective study was conducted using data from 1,132 stable and unstable angina

patients with 1,132 intermediate lesions who underwent invasive coronary angiography,

FFR, and CCTA at the Asan Medical Center, Seoul, Korea, between 1 May 2012 and 30

November 2015. The mean age was 63 ± 10 years, 76% were men, and 72% of the patients

presented with stable angina. Of these, 932 patients (assessed before 31 January 2015)

constituted the training set for the algorithm, and 200 patients (assessed after 1 February

2015) served as a test cohort to validate its diagnostic performance. Additionally, external

validation with 79 patients from two centers (CHA University, Seongnam, Korea, and Ajou

University, Suwon, Korea) was conducted. After automatic contour calibration using the
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caliber of guiding catheter, quantitative coronary angiography was performed using the

edge-detection algorithms (CAAS-5, Pie-Medical). Clinical information was provided by the

Asan BiomedicaL Research Environment (ABLE) system. The CCTA-based myocardial

segmentation (CAMS)-derived myocardial volume supplied by each vessel (right coronary

artery [RCA], left anterior descending [LAD], left circumflex [LCX]) and the myocardial vol-

ume subtended to a stenotic segment (CAMS-%Vsub) were measured for labeling. The ML

for (1) predicting vessel territories (CAMS-%LAD, CAMS-%LCX, and CAMS-%RCA) and

CAMS-%Vsub and (2) identifying the lesions with an FFR < 0.80 was constructed. Angiogra-

phy-based ML, employing a light gradient boosting machine (GBM), showed mean absolute

errors (MAEs) of 5.42%, 8.57%, and 4.54% for predicting CAMS-%LAD, CAMS-%LCX, and

CAMS-%RCA, respectively. The percent myocardial volumes predicted by ML were used to

predict the CAMS-%Vsub. With 5-fold cross validation, the MAEs between ML-predicted per-

cent myocardial volume subtended to a stenotic segment (ML-%Vsub) and CAMS-%Vsub

were minimized by the elastic net (6.26% ± 0.55% for LAD, 5.79% ± 0.68% for LCX, and

2.95% ± 0.14% for RCA lesions). Using all attributes (age, sex, involved vessel segment,

and angiographic features affecting the myocardial territory and stenosis degree), the ML

classifiers (L2 penalized logistic regression, support vector machine, and random forest)

predicted an FFR < 0.80 with an accuracy of approximately 80% (area under the curve

[AUC] = 0.84–0.87, 95% confidence intervals 0.71–0.94) in the test set, which was greater

than that of diameter stenosis (DS) > 53% (66%, AUC = 0.71, 95% confidence intervals

0.65–0.78). The external validation showed 84% accuracy (AUC = 0.89, 95% confidence

intervals 0.83–0.95). The retrospective design, single ethnicity, and the lack of clinical out-

comes may limit this prediction model’s generalized application.

Conclusion

We found that angiography-based ML is useful to predict subtended myocardial territories

and ischemia-producing lesions by mitigating the visual–functional mismatch between

angiographic and FFR. Assessment of clinical utility requires further validation in a large,

prospective cohort study.

Author summary

Why was this study done?

• Invasive fractional flow reserve (FFR, defined as the ratio of maximum flow in a diseased

artery to the proximal normal maximum flow) has been a standard tool to detect ische-

mia-producing lesions with FFR< 0.80.

• Although the current guidelines recommend the routine use of FFR for identifying

ischemia-producing lesions, the majority of treatment decisions still rely on visual

assessment of the degree of angiographic stenosis because of the time and expense asso-

ciated with FFR-guided decision-making.

• Conventional angiographic parameters cannot predict the presence of ischemia in cases

in which this is affected by the size of subtended myocardium.

Machine learning prediction of myocardial ischemia
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• Integration and optimization of information about both myocardial territory and steno-

sis degree are expected to improve the performance of angiographic prediction of low

FFR (FFR< 0.80).

What did the researchers do and find?

• A retrospective study was conducted using data from 1,132 angina patients with 1,132

intermediate coronary lesions (932 in the training dataset and 200 in the internal test

dataset), who underwent coronary angiography, coronary computed tomography angi-

ography (CCTA), and FFR to evaluate the lesion morphology, subtended myocardial

territories, and inducible ischemia, respectively.

• The mean absolute errors between angiography-based machine learning (ML)-derived

versus CCTA-derived subtended myocardial volume were 6.26% ± 0.55% for left ante-

rior descending artery, 5.79% ± 0.68% for left circumflex artery, and 2.95% ± 0.14% for

right coronary artery lesions.

• Using all clinical and angiographic features, the ML models predicted an FFR < 0.80

with an overall accuracy of approximately 80% in the test set. In the external validation,

the overall accuracy for predicting FFR < 0.80 was 84%.

What do these findings mean?

• Angiography-based supervised ML is useful to predict subtended myocardial territories

and to identify ischemia-producing lesions by mitigating the visual–functional mis-

match between angiography and FFR.

• The data-driven approach may support clinicians in identifying clinically relevant coro-

nary lesions without FFR measurement and in making clinical decisions.

• Performance and clinical utility require further validation in a large, prospective cohort

study.

Introduction

Stratification of cardiovascular risk in patients with stable coronary artery disease is a key to

identify high-risk patients who will benefit from percutaneous coronary intervention (PCI).

The appropriateness of revascularization has been determined by the presence and extent of

myocardial ischemia. A myocardial perfusion imaging study previously suggested that revas-

cularization has a greater survival benefit in patients with a moderate to large degree of ische-

mic myocardium (�10% of the total myocardium) [1]. Invasive fractional flow reserve (FFR,

defined as the ratio of maximum flow in a diseased artery to the proximal normal maximum

flow) has been a standard tool for lesion-specific hemodynamic assessment and treatment

decision-making [2–4]. With abundant clinical evidence showing a significant reduction in

major adverse cardiac events using FFR-guided PCI (versus angiography-guided PCI), current

guidelines recommend FFR measurement when assessing intermediate coronary stenosis.

Machine learning prediction of myocardial ischemia
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However, in clinical practice, over 70% of treatment decisions still rely on a visual estimation

of angiographic stenosis. This may be due to the prolonged procedure time and high short-

term costs associated with FFR-guided diagnosis, as well as the need for adenosine-induced

hyperemia and the fact that reimbursement systems do not favor this approach [5,6].

Although invasive coronary angiography and intravascular ultrasound (IVUS) are com-

monly utilized for evaluating coronary anatomy and optimizing PCI, the subjective nature of

visual estimation limits the accurate estimation of stenosis severity [7]. In addition, the integra-

tion of morphologic and physiologic parameters and the identification of clinically relevant

coronary lesions remain challenging [8–10]. In previous studies, the overall diagnostic accu-

racy of quantitative angiography for predicting FFR < 0.80 was shown to be only 60%–65%

[10,11]. One of the reasons for the visual–functional mismatch is that myocardial ischemia is

primarily determined by the variable size of the supplied myocardium at risk, as well as by the

degree of stenosis [11]. Our previous data suggested that the application of coronary computed

tomography angiography (CCTA)-based myocardial segmentation (CAMS)-derived percent

myocardial volume subtended to a stenotic segment (CAMS-%Vsub) improves the diagnostic

accuracy of angiographic indices used to identify ischemia-producing lesions [12,13]. None-

theless, the necessity of concurrently performing noninvasive CCTA and invasive angiography

limited the clinical utility of the mathematical model.

Machine learning (ML) techniques have emerged as highly effective computer algorithms

for the identification of patterns in large datasets with a multitude of variables, facilitating the

construction of models for data-driven prediction or classification [14–17]. The aims of this

study were to develop an angiography-based supervised ML algorithm for predicting the

CAMS-%Vsub and to build an angiography-based supervised ML model to classify lesions into

those with an FFR< 0.80 and those� 0.80.

Methods

Study population

Between 1 May 2012 and 31 January 2015, 5,378 consecutive patients with stable or unstable

angina underwent invasive coronary angiography at the Asan Medical Center, Seoul, Korea.

Preprocedural FFR and CCTA data for assessing an intermediate coronary lesion (defined as

an angiographic stenosis diameter of 30%–80% on visual estimation) were available for 1,143

patients. Among them, 10 patients with tandem lesions, 10 with stented lesions, 17 with in-

stent restenosis, 22 with chronic total occlusion, 10 with side branch evaluation, 145 with sig-

nificant left main coronary artery stenosis, and 5 with scarred myocardium and regional wall

motion abnormality on echocardiography were excluded. When FFR was measured in multi-

ple lesions, the lesion with the lowest FFR value was selected. Following exclusions, 932

patients (932 lesions) were used for model training (the training sample). In addition, data

from a nonoverlapping population of 200 stable and unstable angina patients (200 lesions)

who underwent preprocedural angiography, IVUS, and FFR in a different phase (between 1

February 2015 and 30 November 2015) were used as a test sample to validate the diagnostic

performance of the ML models for the prediction of FFR < 0.80 (Table 1). De-identified clini-

cal information, including patient age and sex, was supported by the Asan BiomedicaL

Research Environment (ABLE) system. All patients provided written informed consent for the

procedures. The protocol of retrospective data analysis (1 January 2017 to approximately 30

November 2017) was approved by the institutional review board of the Asan Medical Center

(S1 file), and a waiver for informed consent was granted. This study is reported as per the

transparent reporting of a multivariable prediction model for individual prognosis or diagno-

sis (TRIPOD) guidelines (S1 Checklist).

Machine learning prediction of myocardial ischemia
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The external validation of the ML models was conducted in 79 angina patients (64 patients

from CHA University, Seongnam, Korea, and 15 patients from Ajou University, Suwon,

Korea) who underwent invasive coronary angiography and FFR to assess an intermediate cor-

onary lesion.

Computed tomography imaging and CAMS analysis

Computed tomography imaging, including CCTA, was performed using first- or second-genera-

tion dual-source computed tomography (Definition or Definition Flash, Siemens, Germany). The

CCTA data with the fewest motion artifacts and clearest demarcation of the coronary artery were

transferred to customized software for CAMS analysis (A-View Cardiac, Asan Medical Center,

Korea). After extracting the centerline of each coronary artery and the left ventricular myocardium

on the computed tomographic images, the 3D Voronoi algorithm was used to assign the myocar-

dial territories of the major epicardial coronary arteries, including the left anterior descending

artery (LAD), left circumflex artery (LCX), and right coronary artery (RCA). In brief, the Voronoi

algorithm is a mathematical algorithm that divides the area or space between predetermined

points or lines according to the shortest distances from those points or lines [18–20]. The left ven-

tricular myocardial volume was divided into three major epicardial coronary artery territories

based on the shortest distance from the coronary artery. The CAMS-%RCA, CAMS-%LCX, and

CAMS-%LAD were defined as the percentage ratios of the myocardial volumes supplied by the

RCA, LCX, and LAD to the total left ventricular myocardial volume. CAMS-%Vsub was defined as

the percentage ratio of the myocardial volume subtended to a stenotic coronary segment to the

total left ventricular myocardial volume. Fig 1 shows an example of the CAMS analysis.

Table 1. Baseline clinical and angiographic characteristics in the training and test samples.

Characteristics Training sample Test sample

Patient/lesion number 932/932 200/200

Age, years 63.12 ± 9.81 63.86 ± 9.56

Men 700 (75%) 158 (79%)

Diabetes mellitus 289 (31%) 59 (30%)

Hypertension 592 (64%) 138 (69%)

Current smoker 387 (42%) 86 (43%)

Hyperlipidemia 597 (64%) 134 (67%)

Unstable angina 181 (19%) 30 (15%)

Body mass index, kg/m2 24.97 ± 3.21 24.85 ± 3.09

Body surface area, m2 1.73 ± 0.18 1.73 ± 0.17

FFR at maximal hyperemia 0.80 ± 0.11 0.80 ± 0.10

Angiographic data

LAD artery lesion 591 (63%) 127 (64%)

LCX artery lesion 117 (13%) 24 (12%)

RCA lesion 224 (24%) 49 (24%)

DS, % 53.90 ± 11.24 54.90 ± 9.84

MLD, mm 1.49 ± 0.44 1.52 ± 1.19

Lesion length, mm 17.51 ± 9.69 16.14 ± 8.28

Proximal RLD, mm 3.38 ± 0.56 3.34 ± 0.51

Distal RLD, mm 2.94 ± 0.55 2.89 ± 0.51

Data are shown as n (%) or mean ± standard deviation; all, p-values were >0.05 between training versus test samples.

Abbreviations: DS, diameter stenosis; FFR, fractional flow reserve; LAD, left anterior descending; LCX, left circumflex; MLD, minimal lumen diameter; RCA, right

coronary artery; RLD, reference lumen diameter.

https://doi.org/10.1371/journal.pmed.1002693.t001
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Angiographic measurements

Quantitative coronary angiography was performed using standard techniques with automated

edge-detection algorithms (CAAS-5, Pie-Medical, the Netherlands). After automatic contour

calibration by using the known caliber of guiding catheter, angiographic diameter stenosis

(DS), minimal lumen diameter (MLD), lesion length, and the proximal and distal reference

lumen diameters (RLDs) were measured. Definitions of the angiographic features used for ML

training are summarized in Table 2.

FFR measurement

FFR is defined as the ratio of the mean distal coronary pressure (Pd, measured with the pres-

sure wire) to the mean aortic pressure (Pa, measured simultaneously with the guiding catheter)

at maximum hyperemia. First, “Equalizing” was performed with the guidewire sensor posi-

tioned at the guiding catheter tip. A 0.014-inch FFR pressure guidewire (Radi, St. Jude Medi-

cal, Uppsala, Sweden) was then advanced distal to the stenosis. The FFR was measured at the

maximum hyperemia induced by an intravenous infusion of adenosine administered through

a central vein at 140 μg/kg/min increasing to 200 μg/kg/min, to enhance detection of hemody-

namically relevant stenoses. Hyperemic pressure pullback recordings were performed. A ste-

nosis was considered functionally significant when the FFR was <0.80 [3,4].

IVUS analysis

After intracoronary administration of 0.2 mg nitroglycerin, IVUS imaging was routinely per-

formed using motorized transducer pullback (0.5 mm/s) and a commercial scanner (Boston Scien-

tific Scimed, Minneapolis, MN, United States) with a rotating 40-MHz transducer within a

3.2-French imaging sheath. For the 630 patients for whom preprocedural IVUS data were available,

Fig 1. (A) Angiography shows an intermediate stenosis (white arrow) of the mid LAD. (B) The CAMS-derived myocardial volume supplied by LAD was 38.5 cc (shown

as red area), and the total left ventricular myocardial volume was 110 cc. The CAMS-%LAD was 35.0%. The myocardial volume subtended to the poststenotic segment

was 29.0 cc (blue arrows), and the CAMS-%Vsub was 26.3%. The FFR was 0.82. CAMS, coronary computed tomography angiography–based myocardial segmentation;

CAMS-%Vsub, CAMS-derived percent myocardial volume subtended to a stenotic segment; FFR, fractional flow reserve; LAD, left anterior descending.

https://doi.org/10.1371/journal.pmed.1002693.g001
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Table 2. Angiographic features used in the ML models.

Features related to vessel territories

DR
#, mm Maximal lumen diameter within the 10-mm segment from OS to proximal RCA

DL
�, mm Maximal lumen diameter within the 10-mm segment from OS to proximal LAD

DX
�, mm Maximal lumen diameter within the 10-mm segment from OS to proximal LCX

DLM
�, mm Maximal lumen diameter within left main coronary artery segment

Diminutive RCA RCA ending prior to giving off the PDA and PL branch

Apex-LAD LAD runs along the ventricular apex and curves towards the apico-inferior wall

Presence of RI presence of ramus intermedius

Calculated %RCA† estimated percent myocardial volume supplied by the RCA

Calculated %LAD† estimated percent myocardial volume supplied by the LAD

Calculated %LCX† estimated percent myocardial volume supplied by the LCX

Features related to myocardial volume subtended to a stenotic segment

Distance to OS, mm distance between the OS to the narrowest site

Proximal RLD, mm proximal RLD

Distal RLD, mm distal RLD

Averaged RLD, mm average of proximal and distal RLDs

Proximal segment disease involvement of proximal segment

Mid segment disease involvement of mid segment

Distal segment disease involvement of distal segment

D1‡, mm diameter of the uppermost diagonal branch above the stenosis

D2‡, mm diameter of the lower diagonal branch above the stenosis

S1‡, mm diameter of the largest septal branch above the stenosis

D3‡, mm diameter of the uppermost diagonal branch below the stenosis

D4‡, mm diameter of the lower diagonal branch below the stenosis

S2‡, mm diameter of the largest septal branch below the stenosis

D1 + D2, mm sum of diagonal branch diameters above the stenosis

D1 + D2 + S1, mm sum of all branch diameters above the stenosis

D3 + D4, mm sum of diagonal branch diameters below the stenosis

D3 + D4 + S2, mm sum of all branch diameters below the stenosis

D3‡, mm diameter of the uppermost diagonal branch below the stenosis

D4‡, mm diameter of the lower diagonal branch below the stenosis

First OM the lesion located at the first OM

Second OM the lesion located at the second OM

SB1, mm diameter of the largest branch above the stenosis

SB2, mm diameter of the uppermost branch below the stenosis

SB3, mm diameter of the lower branch below the stenosis

SB2 + SB3, mm sum of all branch diameters below the stenosis (SB2 and SB3)

Features related to lesion severity

MLD minimal lumen diameter

%DS DS = (averaged RLD–MLD)/ averaged RLD × 100

lesion length length of stenosis

# measured by using LAO view

�measured by using LAO caudal view
† calculated %RCA = 106.1 × DR / (DL + DX + DR)– 9.02; calculated %LCX = 140.9 × DX / (DL + DX + DR)– 18.24;

calculated %LAD = 100 –calculated %RCA–calculated %LCX
‡ Only side branches with lumen diameter > 1.5 mm were included.

Abbreviations: DS, diameter stenosis; LAD, left anterior descending artery; LAO, left anterior oblique; LCX, left

circumflex artery; ML, machine learning; OM, obtus marginalis; OS, ostium; PDA, posterior descending artery; PL,

posterolateral; RCA, right coronary artery; RI, ramus intermedius; RLD, reference lumen diameter.

https://doi.org/10.1371/journal.pmed.1002693.t002
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the IVUS-derived minimum lumen area (IVUS-MLA) within a stenotic segment was obtained

using computerized software (EchoPlaque 3.0, Indec Systems, Mountain View, CA, USA).

ML model for predicting CAMS-Vsub

The overall flow of the supervised ML models using the angiographic features is shown in Fig

2. A theoretical overview and summary of the ML algorithms and technical details are

described in the supporting information (S1 Text).

First, a light gradient boosting machine (GBM) with leave-one-out cross-validation was

applied to predict the CAMS-derived percent myocardial volume supplied by each coronary

artery (CAMS-%RCA, CAMS-%LCX, and CAMS-%LAD). The angiographic attributes affect-

ing each vessel territory are summarized in Table 2. The variables estimated in our pilot data

on the basis of the lumen diameters of LAD, RCA, and LCX (calculated %RCA, %LCX, and %

LAD) were also included as attributes (see method in S1 Text). Then, the percent myocardial

volumes supplied by each coronary artery (ML-%RCA, ML-%LCX, and ML-%LAD), as pre-

dicted by the algorithm, were used for the next step.

Fig 2. Workflow for the ML. CAMS-%RCA, CAMS-%LCX, and CAMS-%LAD are CCTA-measured percent ratios of the myocardial

volumes supplied by the RCA, LCX, and LAD to the total left ventricular myocardial volume. ML-%RCA, ML-%LCX, and ML-%LAD are

ML-predicted percent ratios of the myocardial volumes supplied by the RCA, LCX, and LAD to the total left ventricular myocardial volume.

CAMS, CCTA-based myocardial segmentation; CAMS-%Vsub, CAMS-derived percent myocardial volume subtended to a stenotic segment;

CCTA, coronary computer tomography angiography; CV, cross-validation; ET, extra tree; FFR, fractional flow reserve; GBM, gradient

boosting machine; KNN, K-nearest neighbor; LAD, left anterior descending; LCX, left circumflex; LOOCV, leave-one-out cross-validation;

ML, machine learning; ML-%Vsub, ML-predicted percent myocardial volume subtended to a stenotic segment; MLP, multilayer perceptron;

OLS, ordinary least squares; RCA, right coronary artery; RF, random forest; SVM, support vector machine.

https://doi.org/10.1371/journal.pmed.1002693.g002
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The second step was to build a model to predict the CAMS-%Vsub values. The ML algo-

rithms evaluated were ordinary least squares (OLSs), ridge and lasso regressions, elastic net,

random forests, extra trees, GBM, light GBM, CatBoost, and multilayer perceptrons. A 5-fold

cross-validation scheme divided the training sample into five nonoverlapping partitions

(method described in S1 Text). Each partition was rotated to be the validation set, with the

remaining partitions being used as the training set (S1 Fig). As attributes, the ML-%RCA, ML-

%LCX, and ML-%LAD were added to the angiographic features affecting the CAMS-%Vsub

(Table 2). The mean absolute errors (MAEs) and mean squared errors (MSEs) were the met-

rics used to evaluate the performance of the models for predicting the CAMS-%Vsub values.

ML model for predicting FFR< 0.80

To develop the binary classifiers to separate the lesions with an FFR < 0.80 from those�0.80,

43 clinical and angiographic features including age, sex, involved segment (proximal LAD,

mid LAD, distal LAD, proximal RCA, mid RCA, distal RCA, proximal LCX, distal LCX, first

and second obtus marginalis), and the angiographic features affecting vessel territories,

CAMS-%Vsub, and lesion severity were used and summarized in S2 Table. The evaluated algo-

rithms were K-nearest neighbor, binary class L2 penalized logistic regression, support vector

machine, random forest, extra tree, AdaBoost, light GBM, CatBoost, Gaussian naïve Bayes,

and multilayer perceptron (S1 Text). The receiver operating curve (ROC), which was based on

the relative performances considering the whole range of possible probability thresholds (from

0 to 1), has an area that ranges from 0.5 for classifiers without any prediction capability to 1 for

perfectly classifying algorithms. Analyses based on precision-recall curves were also con-

ducted. Using a 5-fold cross-validation scheme (S1 Fig), the accuracy was calculated by averag-

ing the accuracies over the five tests performed in the multiple rounds of cross-validation. For

a nonbiased assessment of the performance for identifying lesions with an FFR of<0.80, the

classifiers that had been previously built on the training samples were applied to a completely

independent test set of 200 lesions enrolled in the different phase.

In the training set, the algorithms were independently trained on the 200 train-validation

random splits with a 3:1 ratio by bootstrap, and the average performances and 95% confidence

intervals were calculated. In the 200 bootstrap replicates obtained by random sampling of 50

out of the 200 test samples, the average performance and bootstrap confidence intervals were

also calculated.

Statistical analysis

The statistical analyses for evaluating patient and lesion characteristics at baseline were performed

using SPSS (version 10.0, SPSS, Chicago, IL, USA). All values are expressed as means ± 1 standard

deviation (continuous variables) or as counts and percentages (categorical variables). Continuous

variables were compared using unpaired t tests; categorical variables were compared using χ2 sta-

tistics. A p-value< 0.05 was considered statistically significant. ROCs were analyzed using Med-

Calc Software (Mariakerke, Belgium) to assess the best cutoff for angiographic DS or IVUS-

measured lumen area to predict FFR< 0.80 with maximal accuracy.

Results

Clinical and lesion characteristics

The clinical characteristics and angiographic data of the patients in the training and test sets

are summarized in Table 1. The mean age was 63 ± 10 years, and 76% were men. The evaluated

vessels were LAD in 63%. The overall CAMS-%RCA, CAMS-%LAD, and CAMS-%LCX were
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27.2% ± 9.3%, 42.4% ± 7.2%, and 27.7% ± 9.6%, respectively. The CAMS-%Vsub was 31.1% ±
10.2%. FFR < 0.80 was shown in 41.6% of the lesions.

Angiographic prediction of vessel territory

By applying the light GBM to the training sample, the feature importance metrics for deter-

mining the CAMS-derived percent myocardial volume subtended to each coronary artery

were determined, with the values being summarized in S1 Table. The estimated percent myo-

cardial volumes (calculated %RCA, %LCX, and %LAD) based on the proximal vessel diame-

ters were the most important features for predicting the CAMS-%RCA, CAMS-%LCX, and

CAMS-%LAD, respectively. Additionally, the presence of ramus intermedius, a diminutive

RCA, and an apical LAD curve affected the vessel territories. With the light GBM and leave-

one-out cross-validation, the MAEs and MSEs were 5.42% and 7.10%, respectively, for predict-

ing CAMS-%LAD, 8.57% and 11.28% for predicting CAMS-%LCX, and 4.54% and 6.51% for

predicting CAMS-%RCA.

Angiographic prediction of percent myocardial volume subtended to

stenotic segments

Table 3 summarizes the diagnostic performances of the various ML models used to predict

CAMS-%Vsub. Among the models, the MAEs between the ML-predicted percent myocardial

volume subtended to a stenotic segment (ML-%Vsub) and the CAMS-%Vsub were minimal

with the use of the elastic net algorithm (6.26% ± 0.55% for LAD lesions, 5.79% ± 0.68% for

LCX lesions, and 2.95% ± 0.14% for RCA lesions). When the elastic net algorithm was applied

to all cases, the overall MAE was 5.39%. Table 4 shows the feature importance metrics by elas-

tic net for the prediction of CAMS-%Vsub.

Prediction of FFR< 0.80 in the training sample

To classify the lesions into those with an FFR < 0.80 versus� 0.80, 43 clinical and angio-

graphic features affecting vessel territories, CAMS-%Vsub, and lesion severity were used for

ML (S2 Table). Based on the feature importance metrics by CatBoost, the top-12 features for

determining the FFR were identified (Table 4). The ROC-based diagnostic performances of

the ML algorithms are shown in Table 5, S3 Table, and Fig 3. In addition, the diagnostic per-

formances based on the precision-recall curves are shown in S4 Table.

Table 3. Diagnostic performances of ML models for predicting the CAMS-%Vsub.

Model OLSs Lasso Ridge Elastic net Random forest Extra tree GBMs Light GBMs CatBoost MLPs

LAD lesion

MAE, SD 6.26, 0.56 6.26, 0.56 6.27, 0.55 6.26, 0.55 6.54, 0.42 6.65, 0.34 6.43, 0.51 6.63, 0.42 6.41, 0.32 6.29, 0.57

MSE, SD 7.89, 0.72 7.87, 0.72 7.88, 0.72 7.89, 0.69 8.17, 0.50 8.27, 0.41 8.07, 0.64 8.29, 0.50 8.14, 0.39 7.95, 0.69

LCX lesion

MAE, SD 5.77, 0.67 4.77, 0.70 5.84, 0.73 5.79, 0.68 6.69, 0.55 6.43, 0.59 6.31, 0.75 6.39, 0.36 6.28, 0.43 6.41, 0.62

MSE, SD 7.60, 0.92 7.62, 0.90 7.65, 0.98 7.66, 0.93 8.84, 0.86 8.51, 0.98 8.46, 1.01 8.53, 0.69 8.42, 0.92 8.52, 0.73

RCA lesion

MAE, SD 3.01, 0.16 2.96, 0.12 2.98, 0.16 2.95, 0.14 3.43, 0.44 3.47, 0.40 3.27, 0.43 3.45, 0.49 3.26, 0.28 4.26, 0.62

MSE, SD 4.23, 0.21 4.19, 0.18 4.20, 0.20 4.19, 0.19 4.62, 0.56 4.63, 0.57 4.51, 0.47 4.87, 0.49 4.41, 0.42 5.80, 0.43

Abbreviations: CAMS-%Vsub, coronary computed tomography angiography–based myocardial segmentation–derived percent myocardial volume subtended to a

stenotic segment; GBM, gradient boosting machine; LAD, left anterior descending artery; LCX, left circumflex artery; MAE, mean absolute error; ML, machine learning;

MLP, multilayer perceptron; MSE, mean squared error; OLS, ordinary least square; RCA, right coronary artery; SD, standard deviation.

https://doi.org/10.1371/journal.pmed.1002693.t003
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In the subgroup that included the 630 patients with available preprocedural IVUS data, the

IVUS-MLA was 2.77 ± 1.32 mm2. When the IVUS-MLA was added as an attribute, the classifi-

ers using L2 penalized logistic regression, random forest, and support vector machine showed

an overall accuracy of 78%–80% (area under the curve [AUC] = 0.87) to predict an FFR < 0.80

that is used as a hemodynamic index requiring revascularization (Fig 3 and S5 Table).

Performance in test sample

The test samples including the 200 lesions that were not utilized during the training showed

no significant differences in clinical and lesion characteristics in comparison with the training

sample (Table 1). In the identification of lesions with an FFR < 0.80, angiographic DS > 53%

as the cutoff derived from an ROC analysis showed a sensitivity of 74%, a specificity of 61%,

and an overall accuracy of 66% (AUC = 0.71). In addition, an IVUS-MLA < 2.34 mm2 had a

sensitivity of 53%, a specificity of 79%, and an overall accuracy of 67% (AUC = 0.72).

Using clinical and angiographic features, the overall diagnostic accuracies of the ML classi-

fiers (L2 penalized logistic regression, support vector machine, and random forest) in the test

set were approximately 80% for predicting an FFR < 0.80 (AUC = 0.84–0.87, Table 5 and S6

Table). Table 6 summarizes the performances with bootstrap confidence intervals in the 200

bootstrap replicates for each of the training and test sets.

By adding the IVUS-MLA, the classifiers using L2 penalized logistic regression and support

vector machine achieved an overall accuracy of 78%–79% in the test set (AUC = 0.86–0.87, Fig

4 and S5 Table).

External validation

In the external validation cohort including 79 patients, the age was 59.6 ± 9.0 years, and 58

(73.4%) were men. An FFR< 0.8 was seen in 25 (31.6%) lesions. The angiographic DS and

Table 4. Ranked angiographic features for predicting CAMS-%Vsub and FFR< 0.80.

Rank Predictors of CAMS-%Vsub by Elastic Net� Predictors of FFR

by CatBoost#

LAD lesion LCX lesion RCA lesion

First proximal LAD (3.07) distal RLD (2.77) ML-%RCA (2.04) MLD (12.1%)

Second distal RLD (1.15) proximal LCX (2.75) distal RLD (0.13) %DS (6.1%)

Third ML-%LAD (1.12) SB2 + SB3 (2.05) averaged RLD (0.12) Age (5.9%)

Fourth distal LAD (−1.06) SB2 (0.75) proximal RLD

(0.10)

DLM (5.4%)

Fifth S1 (−1.04) SB1 (0.68) distance to OS (−0.02) calculated %LCX (4.7%)

Sixth averaged RLD (0.84) averaged RLD (0.68) proximal RCA (0.00) lesion length (4.5%)

Seventh D3 + D4 (0.82) ML-%LCX (0.63) mid RCA (0.00) DRCA (4.4%)

Eighth proximal RLD (0.52) first OM (−0.59) distal RCA (0.00) calculated %LAD (4.3%)

Ninth D3 (0.44) SB3 (0.31) distance to OS (4.3%)

10th D2 (0.20) distance to OS (0.00) DLCX (4.3%)

11th S2 (0.06) proximal RLD (0.00) DLAD (4.1%)

12th distance to OS (0.05) distal LCX (0.00) proximal LAD (4.0%)

�coefficient (by Elastic Net)
#feature importance (by CatBoost)

Abbreviations: CAMS-%Vsub, coronary computed tomography angiography–based percent myocardial segmentation–derived myocardial volume subtended to a

stenotic segment; DS, diameter stenosis; FFR, fractional flow reserve; LAD, left anterior descending artery; LCX, left circumflex artery; MLD, minimal lumen diameter;

OM, obtus marginalis; OS, ostium; RCA, right coronary artery; RLD, reference lumen diameter.

https://doi.org/10.1371/journal.pmed.1002693.t004
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MLD were 48.3% ± 8.0% and 1.64 ± 0.39 mm, respectively. The performances of the ML mod-

els for the prediction of FFR < 0.8 were shown in Table 5.

Discussion

This study demonstrated that (1) angiography-based ML predicted the CAMS-%Vsub with an

MAE of 6.26%, 5.79%, and 2.95% for LAD, LCX, and RCA lesions, respectively, and (2) for the

identification of ischemia-producing lesions with a FFR < 0.80, the ML classifiers (L2 penal-

ized logistic regression, support vector machine, and random forest) using the angiographic

features showed an overall diagnostic accuracy of 80% (maximal AUC = 0.87), which was

greater than that of angiographic DS criterion (66%, AUC = 0.71) or even that of the

IVUS-MLA threshold (67%, AUC = 0.72).

Assessment of the myocardial mass at risk is of great importance because the presence and

extent of ischemic myocardium determines the clinical relevance of revascularization [21–22].

A recent meta-analysis suggested that, in comparison with medical therapy, PCI significantly

reduces mortality in patients with objective ischemia documented by functional tests [21].

Moreover, myocardial perfusion imaging suggests that revascularization has a greater survival

benefit in patients with a moderate to large degree of ischemic myocardium [1]. These data

Table 5. Angiographic prediction of FFR< 0.80.

Threshold of

predictive score

AUC Sensitivity Specificity PPV NPV Overall accuracy

Prediction of FFR < 0.80 in the training sample (N = 932)

L2 penalized logistic

regression�
0.41 ± 0.03 (0.37–

0.45)

0.81 ± 0.04

(0.75–0.86)

0.74 ± 0.05

(0.67–0.8)

0.74 ± 0.04

(0.67–0.79)

0.67 ± 0.05

(0.59–0.72)

0.80 ± 0.04

(0.74–0.85)

0.74 ± 0.04

(0.67–0.79)

Support vector

machine�
0.42 ± 0.01 (0.40–

0.44)

0.81 ± 0.04

(0.74–0.85)

0.73 ± 0.05

(0.65–0.8)

0.74 ± 0.04

(0.68–0.78)

0.67 ± 0.05

(0.59–0.72)

0.79 ± 0.04

(0.73–0.85)

0.74 ± 0.04

(0.67–0.79)

Random forest� 0.43 ± 0.02 (0.40–

0.47)

0.81 ± 0.05

(0.75–0.88)

0.72 ± 0.04

(0.65–0.77)

0.72 ± 0.05

(0.66–0.81)

0.65 ± 0.06

(0.57–0.74)

0.78 ± 0.04

(0.72–0.83)

0.72 ± 0.05

(0.65–0.79)

AdaBoost� 0.50 ± 0.00 (0.50–

0.50)

0.75 ± 0.05

(0.67–0.82)

0.70 ± 0.03

(0.64–0.74)

0.70 ± 0.04

(0.64–0.76)

0.62 ± 0.04

(0.56–0.68)

0.76 ± 0.03

(0.72–0.8)

0.70 ± 0.04

(0.64–0.75)

CatBoost� 0.37 ± 0.06 (0.27–

0.45)

0.78 ± 0.05

(0.73–0.86)

0.71 ± 0.03

(0.67–0.76)

0.72 ± 0.00

(0.65–0.78)

0.64 ± 0.05

(0.58–0.71)

0.77 ± 0.03

(0.73–0.82)

0.71 ± 0.04

(0.66–0.77)

Prediction of FFR < 0.80 in the test sample (N = 200)

L2 penalized logistic

regression

0.41 0.86 0.79 0.81 0.78 0.82 0.80

Support vector

machine

0.38 0.87 0.80 0.8 0.77 0.83 0.80

Random forest 0.44 0.84 0.78 0.81 0.77 0.81 0.80

AdaBoost 0.50 0.80 0.73 0.76 0.72 0.77 0.74

CatBoost 0.40 0.83 0.75 0.78 0.74 0.79 0.76

External validation cohort (N = 79)

L2 penalized logistic

regression

0.33 0.91 0.84 0.8 0.66 0.91 0.81

Support vector

machine

0.35 0.89 0.84 0.81 0.68 0.92 0.82

Random forest 0.37 0.89 0.84 0.81 0.68 0.92 0.82

AdaBoost 0.5 0.84 0.76 0.8 0.63 0.88 0.78

CatBoost 0.3 0.89 0.8 0.85 0.71 0.9 0.84

�average of 5-fold cross-validation results shown by mean ± standard deviation.

Abbreviations: AUC, area under the curve; FFR, fractional flow reserve; NPV, negative predictive value; PPV, positive predictive value.

https://doi.org/10.1371/journal.pmed.1002693.t005
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Fig 3. ROCs for predicting FFR< 0.80 in the training sample (N = 932). (A) L2 penalized logistic regression using angiographic features.

(B) Random forest using angiographic features. (C) CatBoost using angiographic features. (D) L2 penalized logistic regression using

angiographic features and IVUS-MLA. (E) Random forest using angiographic features and IVUS-MLA. (F) CatBoost using angiographic

features and IVUS-MLA. AUC, area under the curve; FFR, fractional flow reserve; IVUS-MLA, intravascular ultrasound–derived minimal

lumen area; ROC, receiver operating curve.

https://doi.org/10.1371/journal.pmed.1002693.g003

Machine learning prediction of myocardial ischemia

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002693 November 13, 2018 13 / 19

https://doi.org/10.1371/journal.pmed.1002693.g003
https://doi.org/10.1371/journal.pmed.1002693


have provided an insight into a higher-risk population that may benefit from an approach that

incorporates ischemia-guided revascularization.

In daily practice, lesion-specific FFR is used to identify ischemia-producing lesions and to

decide whether or not to treat it [2–4]. Although coronary angiography and IVUS have been

commonly utilized to assess lesion severity, the diagnostic accuracy for predicting an

FFR< 0.80 by angiographic DS or IVUS-MLA alone is<60%–70%, which restricts their clini-

cal utility in treatment decision-making [8–10]. Similarly, the current study showed poor diag-

nostic accuracies for the detection of FFR < 0.80 using angiographic DS > 53% and

IVUS-MLA < 2.34 mm2 based on the ROC analysis (66% and 67%, respectively). One of the

reasons for the visual–functional mismatch is that myocardial ischemia is also determined by

the variable size of the supplied myocardium, as well as the degree of stenosis [11].

In our previous study, the use of CAMS-Vsub improved the diagnostic performance of

angiographic MLD and/or IVUS-MLA for the prediction of FFR< 0.80 [12,13]. Although a

mathematical model using Vsub/MLD4 > 6.26 increased the accuracy to 82%, it could be

applied only when the patient underwent noninvasive CCTA prior to catheterization. The cur-

rent angiography-based ML model showed an overall MAE of 5.39% for predicting the

CCTA-measured %Vsub. During the procedure, the angiographic prediction of the amount of

supplied myocardium supports clinicians by confirming the clinical relevance of revasculariza-

tion treatment in lesions with a large area of myocardium at risk and by precisely identifying

the ischemia-producing lesions by reducing the discrepancy between anatomical and func-

tional severity.

Table 6. Angiographic prediction of FFR< 0.80 in 200 bootstrap replicates.

Threshold of

predictive score

AUC Sensitivity Specificity PPV NPV Overall accuracy

200 bootstrap replicates in the training set

L2 penalized logistic

regression�
0.42 ± 0.03 [0.37–

0.48]

0.81 ± 0.03

[0.76–0.86]

0.74 ± 0.03

[0.69–0.78]

0.74 ± 0.03

[0.68–0.79]

0.67 ± 0.03

[0.61–0.72]

0.80 ± 0.02

[0.76–0.84]

0.74 ± 0.03

[0.69–0.79]

Support vector

machine�
0.42 ± 0.02 [0.37–

0.46]

0.80 ± 0.02

[0.76–0.85]

0.73 ± 0.03

[0.68–0.78]

0.73 ± 0.03

[0.68–0.79]

0.66 ± 0.03

[0.61–0.73]

0.79 ± 0.02

[0.75–0.84]

0.73 ± 0.03

[0.69–0.79]

Random forest� 0.43 ± 0.02 [0.4–0.47] 0.81 ± 0.02

[0.76–0.85]

0.73 ± 0.03

[0.67–0.8]

0.73 ± 0.03

[0.67–0.78]

0.66 ± 0.03

[0.59–0.72]

0.79 ± 0.02

[0.74–0.84]

0.73 ± 0.03

[0.67–0.79]

AdaBoost� 0.50 ± 0.00 [0.50–

0.50]

0.75 ± 0.03 [0.7–

0.8]

0.69 ± 0.03

[0.64–0.74]

0.69 ± 0.03

[0.64–0.74]

0.62 ± 0.03

[0.56–0.67]

0.76 ± 0.02

[0.72–0.80]

0.69 ± 0.03

[0.64–0.74]

CatBoost� 0.38 ± 0.06 [0.28–

0.49]

0.78 ± 0.03

[0.73–0.83]

0.71 ± 0.03

[0.66–0.76]

0.71 ± 0.03

[0.65–0.76]

0.64 ± 0.03

[0.58–0.69]

0.78 ± 0.02

[0.74–0.82]

0.71 ± 0.03

[0.67–0.76]

200 bootstrap replicates in the test set

L2 penalized logistic

regression�
0.47 ± 0.10 [0.27–

0.65]

0.83 ± 0.06

[0.71–0.94]

0.75 ± 0.07

[0.65–0.87]

0.76 ± 0.07

[0.63–0.89]

0.73 ± 0.07

[0.61–0.86]

0.78 ± 0.05

[0.68–0.88]

0.76 ± 0.06

[0.66–0.86]

Support vector

machine�
0.47 ± 0.08 [0.34–

0.61]

0.85 ± 0.05

[0.76–0.94]

0.78 ± 0.07

[0.65–0.87]

0.78 ± 0.07

[0.67–0.93]

0.76 ± 0.07

[0.63–0.9]

0.81 ± 0.05

[0.70–0.90]

0.78 ± 0.05

[0.68–0.88]

Random forest� 0.46 ± 0.05 [0.38–

0.56]

0.81 ± 0.05

[0.71–0.91]

0.74 ± 0.07

[0.61–0.87]

0.74 ± 0.06

[0.63–0.85]

0.71 ± 0.06 [0.6–

0.83]

0.77 ± 0.05

[0.67–0.88]

0.74 ± 0.05

[0.64–0.84]

AdaBoost� 0.50 ± 0.01 [0.48–

0.52]

0.77 ± 0.06

[0.65–0.88]

0.71 ± 0.08

[0.52–0.87]

0.71 ± 0.07

[0.56–0.81]

0.68 ± 0.07

[0.54–0.8]

0.74 ± 0.06

[0.62–0.87]

0.71 ± 0.06

[0.58–0.82]

CatBoost� 0.46 ± 0.17 [0.16–

0.79]

0.80 ± 0.05

[0.69–0.89]

0.73 ± 0.07

[0.57–0.87]

0.74 ± 0.07

[0.59–0.85]

0.70 ± 0.06

[0.58–0.82]

0.76 ± 0.06

[0.66–0.88]

0.73 ± 0.06

[0.62–0.84]

�average of 200 bootstrap replicates shown by mean ± standard deviation

[value] = bootstrap confidence intervals.

Abbreviations: AUC, area under the curve; FFR, fractional flow reserve; NPV, negative predictive value; PPV, positive predictive value.

https://doi.org/10.1371/journal.pmed.1002693.t006
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Several approaches for an FFR approximation of FFR using angiography-based models

have recently been introduced [23–26]. A virtual functional assessment index and quantitative

flow ratio based on computational fluid dynamics have shown the overall accuracies of 80%–

86% in predicting an FFR < 0.80. Those approaches require a 3D reconstruction of at least

two angiographic projections without foreshortening or overlapping vessels and the subse-

quent computational analyses. Using the clinical and 2D angiographic features affecting the

subtended myocardial mass and degree of stenosis, our current ML classifiers predicted an

FFR< 0.80 with an overall diagnostic accuracy of 80%. Therefore, the ML models not only

reduce procedural expense by avoiding FFR testing but also provide information on the sub-

tended myocardial territory that cannot be predicted by the FFR value. Ultimately, this data-

driven approach extends the role of angiography in decision-making for the management of

intermediate coronary stenosis.

Fig 4. ROC analyses for predicting FFR< 0.80 in the test sample (N = 200). (A) The ML models using angiographic

features showed greater AUCs (0.83–0.86) than did the angiographic DS alone (AUC = 0.71). (B) The ML models

using both angiographic features and IVUS-MLA showed larger AUC (0.82–0.87) than did the IVUS-MLA alone

(AUC = 0.72). AUC, area under the curve; DS, diameter stenosis; FFR, fractional flow reserve; IVUS-MLA,

intravascular ultrasound–derived minimal lumen area; ML, machine learning; ROC, receiver operating curve.

https://doi.org/10.1371/journal.pmed.1002693.g004
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Although traditional statistical methods validate the association between specific features

and an endpoint, the development of a prediction model remains challenging, particularly in

the setting of a nonlinear relationship between a factor and an outcome, interactions among

variables, and the presence of many predictor variables. ML, an application of artificial intelli-

gence, provides the ability to automatically learn a task without being explicitly programmed

[14–17]. The algorithms attempt to balance two competing interests, “bias and variance,” which

are summarized by loss functions to optimize a prediction model. Using angiographic features,

both regression and decision tree models showed good performance in the prediction of

CAMS-%Vsub, which led to greater detection of ischemia-producing lesions with reduced FFR.

The current study demonstrated the impact of the individual variables according to metrics

(feature importance). For the prediction of CAMS-%Vsub, the important features were seen to

be proximal segment involvement, RLD, ML-predicted territory of each vessel, the sum of the

distal branch diameters, and the distance between the ostium and the narrowest site. More-

over, the key features for predicting FFR < 0.80 were MLD; %DS; age, proximal vessel size of

LAD, LCX, and RCA; lesion length; distance between the ostium and MLD site; and the

involvement of the proximal LAD, which suggested the importance of the impact of the angio-

graphic determinant for stenosis degree and vascular territory on the FFR value. Although the

rank in each algorithm is specific to the ML model, the approach may be hypothesis generat-

ing, suggesting which features are valuable for inclusion in future studies.

Limitations

This study may be subject to selection bias. As the analysis included the single ethnicity and

excluded significant left main disease, side branch, and diffuse and tandem lesions, the model

cannot be applied generally. Although the developed models were validated in the historical

test set and the external validation cohort, the possibility of overfitting cannot be completely

excluded. This model did not include the computational fluid dynamics for estimating the ana-

tomical severity. A large prospective trial is required to validate whether the models allow clini-

cians to dispense with FFR measurement and therefore change the current clinical practice.

Finally, prespecified angiographic features were used for ML; an image-based deep learning

strategy using big data is worthy of investigation to achieve optimal diagnostic performance

for clinical use.

Conclusion

Angiography-based ML models were useful for the prediction of CAMS-%Vsub and for

improving the detection of ischemia-producing lesions. The data-driven approach may sup-

port clinicians in the identification of clinically relevant coronary lesions and in treatment

decision-making.
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