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Abstract

Background

Although WHO recommends viral load (VL) monitoring for those on antiretroviral therapy
(ART), availability in low-income countries remains limited. We investigated long-term VL
and resistance in HIV-infected children managed without real-time VL monitoring.

Methods and findings

In the ARROW factorial trial, 1,206 children initiating ART in Uganda and Zimbabwe
between 15 March 2007 and 18 November 2008, aged a median 6 years old, with median
CD4% of 12%, were randomised to monitoring with or without 12-weekly CD4 counts and to
receive 2 nucleoside reverse transcriptase inhibitors (2NRTI, mainly abacavir+lamivudine)
with a non-nucleoside reverse transcriptase inhibitor (NNRTI) or 3 NRTIs as long-term ART.
All children had VL assayed retrospectively after a median of 4 years on ART; those with
>1,000 copies/ml were genotyped. Three hundred and sixteen children had VL and geno-
types assayed longitudinally (at least every 24 weeks). Overall, 67 (6%) switched to second-
line ART and 54 (4%) died. In children randomised to WHO-recommended 2NRTI+NNRTI
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long-term ART, 308/378 (81%) monitored with CD4 counts versus 297/375 (79%) without
had VL <1,000 copies/ml at 4 years (difference = +2.3% [95% Cl —3.4% to +8.0%]; P=
0.43), with no evidence of differences in intermediate/high-level resistance to 11 drugs.
Among children with longitudinal VLs, only 5% of child-time post-week 24 was spent with
persistent low-level viraemia (80-5,000 copies/ml) and 10% with VL rebound >5,000 cop-
ies/ml. No child resuppressed <80 copies/ml after confirmed VL rebound >5,000 copies/ml.
A median of 1.0 (IQR 0.0,1.5) additional NRTI mutation accumulated over 2 years’ rebound.
Nineteen out of 48 (40%) VLs 1,000-5,000 copies/ml were immediately followed by resup-
pression <1,000 copies/ml, but only 17/155 (11%) VLs >5,000 copies/ml resuppressed (P <
0.0001). Main study limitations are that analyses were exploratory and treatment initiation
used 2006 criteria, without pre-ART genotypes.

Conclusions

In this study, children receiving first-line ART in sub-Saharan Africa without real-time VL
monitoring had good virological and resistance outcomes over 4 years, regardless of CD4
monitoring strategy. Many children with detectable low-level viraemia spontaneously resup-
pressed, highlighting the importance of confirming virological failure before switching to sec-
ond-line therapy. Children experiencing rebound >5,000 copies/ml were much less likely to
resuppress, but NRTI resistance increased only slowly. These results are relevant to the
increasing numbers of HIV-infected children receiving first-line ART in sub-Saharan Africa
with limited access to virological monitoring.

Trial registration
ISRCTN Registry, ISRCTN24791884

Author summary

Why was this study done?

o Although WHO guidelines recommend that HIV-infected children be monitored using
HIV viral load tests when they are receiving treatment, availability remains limited.

o Most HIV-infected children on treatment therefore get either no or infrequent viral
load tests; they may get CD4 count measurements and regular clinical assessments.

» We wanted to find out what implications this might have for children’s long-term
response to treatment, in terms of controlling the virus and development of resistance
to antiretroviral drugs.

What did the researchers do and find?

o We measured viral load and drug resistance using stored samples from a large rando-
mised controlled trial of 1,206 HIV-infected children starting treatment in Uganda and
Zimbabwe who were randomised to monitoring with or without CD4 counts, as well as
to 2 different first-line antiretroviral drug regimens. Two-thirds received the treatment
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regimen that WHO now recommends long-term (2 nucleoside reverse transcriptase
inhibitors and 1 non-nucleoside reverse transcriptase inhibitor).

« After an average of 4 years on treatment, we found no evidence that CD4 monitoring
strategy affected viral suppression or resistance. Overall, 74% of the 753 children rando-
mised to current WHO-recommended regimens were fully suppressed.

o We also investigated how viral load changed and resistance developed over time in a
subset of children taking current WHO-recommended regimens. After the first 24
weeks on treatment, only 5% and 10% of child-time was spent with persistent lower-
level viral load (80-5,000 copies/ml) or rebound to >5,000 copies/ml, respectively. Even
among children with high viral load, intermediate- to high-level drug resistance to key
second-line drugs was found only in a minority, although children with virological
rebound had slight increases in resistance over 2 years.

What do these findings mean?

« In this study, children on currently recommended WHO regimens did very well,
whether or not they were monitored using CD4 counts. Therefore, getting treatment to
more children remains the most important activity, even if viral load and/or CD4 moni-
toring is not available.

Considerable variability in viral loads and substantial resuppression, particularly in chil-
dren with single measurements 1,000-5,000 copies/ml, means that care needs to be
taken not to switch too early to second-line drugs in order to maximise the time that
children can successfully spend on first-line treatment.

Among children experiencing confirmed viral rebound >5,000 copies/ml, resistance
increased only slightly over 2 years, providing reassurance that annual VL monitoring,
as recommended by WHO, is adequate in resource-limited settings.

Introduction

The Joint United Nations Programme on HIV/AIDS (UNAIDS) has set an ambitious target
for 2020: that 90% of people living with HIV know their status, 90% of those diagnosed receive
antiretroviral therapy (ART), and 90% receiving ART have viral load (VL) suppression [1].
There are an estimated 1.8 million HIV-infected children worldwide, >80% of whom live in
sub-Saharan Africa. Treating children is challenging, given their more limited access to antire-
troviral drugs compared with adults; in 2015, only 49% of HIV-infected children globally were
estimated to be receiving ART [2]. Current WHO guidelines recommend VL monitoring 6
and 12 months after initiating ART, and every 12 months thereafter [3]. A threshold of >1,000
copies/ml is used to define virological failure, which, if confirmed and adherence has been
addressed, should be followed by the switch to second-line ART. Current guidelines also rec-
ommend stopping routine CD4 monitoring, provided patients are clinically stable and virolog-
ically suppressed. However, despite this push to increase VL monitoring and reduce reliance
on immunological and clinical failure criteria, the availability of VL monitoring remains lim-
ited in low-income settings (estimated at 25% of people living with HIV in 2014 [4]), and VL
is less frequently measured in low-income settings than in well-resourced ones (typically
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annually versus 3-monthly). Therefore, it is important to understand virological outcomes
among children who are not managed using real-time VL monitoring, as this reflects the real-
ity in most ART programmes in resource-limited settings.

Although management without VL monitoring has enabled ART rollout, children with
virological failure risk developing resistance, which may reduce efficacy of second-line therapy.
In a systematic review of 30 studies from low-income settings in 2011 [5], 80% and 88% of
children failing first-line ART had 1 or more International AIDS Society (IAS)-USA major
nucleoside reverse transcriptase inhibitor (NRTI) and non-nucleoside reverse transcriptase
inhibitor (NNRTTI) resistance-associated mutations, respectively. In 2012, WHO reported that
60% and 67% of adults and children in sub-Saharan Africa failing first-line ART at 12 months
had NRTT and NNRTI resistance, respectively [6]. The only large randomised trial to date of
second-line ART in African adults found that those receiving NRTI-based second-line regi-
mens had equivalent virological suppression to those receiving regimens based on 2 new
drug classes [7], suggesting that NRTI cross-resistance may have less relevance than feared.
However, longitudinal VL and resistance data are rare in children starting first-line ART in
resource-limited settings.

We therefore investigated virological outcomes and resistance in the ARROW randomised
trial (ISRCTN24791884), which compared first-line ART regimens and CD4 monitoring strat-
egies in children and adolescents in Uganda and Zimbabwe [8]. Overall, ARROW showed that
CD4 monitoring, compared with clinical monitoring alone, provided some clinical benefit
after the first year on ART, but 5-year survival was very high overall (96%), supporting prioriti-
sation of ART rollout over access to laboratory monitoring. There was no evidence of differ-
ences between 3NRTI and 2NRTI+NNRTI long-term maintenance regimens in terms of
clinical outcomes or CD4, but medium-term virological suppression was poorer with 3NRTI,
supporting 2NRTI+NNRTI becoming the WHO-recommended first-line regimen for children
as of 2013.

The ARROW trial provided a unique opportunity to evaluate long-term virological out-
comes in stored samples from a large cohort of well-characterised children with high retention
in whom VL monitoring was not undertaken in real-time. In the present study, we had 2 main
objectives. The first was to directly compare children randomised to monitoring with and
without CD4 counts in terms of long-term VL suppression and resistance. The second was to
characterise the patterns of long-term virological control and resistance in children receiving
first-line ART in sub-Saharan Africa without frequent, regular real-time VL monitoring
(reflecting the reality in most ART programmes) in an observational analysis without regard
to the trial randomisations. We focussed on children receiving currently WHO-recommended
2NRTI+NNRTI maintenance ART regimens.

Materials and methods

The ARROW trial (ISRCTN24791884) recruited 1,206 previously untreated HIV-infected chil-
dren and adolescents (aged 3 months to 17 years) eligible for ART using WHO 2006 criteria
[8], between 15 March 2007 and 18 November 2008. Children were recruited from 3 centres
in Uganda and 1 in Zimbabwe. Caregivers gave written informed consent for all children to
enrol; if older children (8-17 years) were aware of their HIV status, they gave additional assent
or consent following national guidelines. The ARROW trial and this current study were
approved by Research Ethics Committees and Institutional Review Boards for Uganda (Joint
Clinical Research Centre and Baylor College of Medicine and the Uganda National Council
for Science and Technology [UNCST]), for Zimbabwe (Medical Research Council of Zimba-
bwe [MRCZ/A/1321]), and for the United Kingdom (University College London [0701/001]).
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Children were randomised 1:1 to clinically driven monitoring (CDM; CD4 counts mea-
sured 12-weekly in real time but not returned to physicians) or laboratory plus clinical moni-
toring (LCM; CD4 counts measured 12-weekly) (CONSORT diagram in Figure 1 of [8]).
Children were also randomised 1:1:1 in a factorial design to 3 first-line regimens: open-label
lamivudine+abacavir+NNRTI continuously (Arm-A); induction-maintenance with 4-drug
lamivudine+abacavir+NNRTI+zidovudine for 36 weeks, followed by lamivudine+abacavir
+NNRTI (Arm-B); or lamivudine+abacavir+zidovudine (Arm-C; 3NRTT including long-term
zidovudine). The NNRTI (nevirapine/efavirenz) was chosen by clinicians according to local
availability (varying by country) and child’s age. After >36 weeks, eligible children taking
lamivudine+abacavir twice daily were randomised to continue twice daily or move to once
daily [9]. Following WHO guidelines at the time [10], switch to second-line ritonavir-boosted
protease-inhibitor-containing ART was discouraged in the first year of therapy. Thereafter,
switch was based on clinical criteria in all participants (new/recurrent WHO stage 4 event [9];
or WHO stage 3 event(s) at clinician discretion, particularly if recurrent or persistent) or on
additional immunological criteria for LCM (confirmed on-ART CD4 <15% if aged 1-2 years,
<10% if aged 3-4 years, <100 cells/uL if aged >5 years). VLs were not measured in real time
nor used for any management. Children were followed until death or planned trial closure on
16 March 2012.

Study design

In the current study, we evaluated VL and resistance in 2 separate analyses (Fig 1). First, we
undertook a cross-sectional analysis (“cross-sectional study”) of VL assayed in all children on
cryopreserved plasma taken up to 6 months prior to the latest of trial closure (16 March 2012)
or death and also at switch to second-line; samples with VL >1,000 copies/ml were genotyped.
Second, we undertook a longitudinal study in a subgroup of 316 children randomised from 29
May 2008 (“longitudinal cohort”). In these children, retrospective VL was assayed longitudi-
nally at weeks 4, 24, 36, and 48 post-ART initiation, then every 24 weeks, with a small number
of additional VLs included from a previous analysis [10] (see S1 Appendix for assay complete-
ness over time). Genotyping was undertaken on samples with VL >1,000 copies/ml at week 48
or 144. For both studies, we present results for children taking WHO-recommended 2NRTI
+NNRTI regimens in the main text and results for all children, including those randomised to
3NRTI, in S1 Appendix. The sample size for the first study was determined by the size of the
trial [8] and for the second study by the size of the longitudinal cohort that aimed to include all
children randomised from 29 May 2008 when seed funding was obtained.

Laboratory methods

VLs were assayed blind to randomised group using Abbott m2000sp/rt or Roche COBAS
Amplicor Monitor ultrasensitive tests, v1.5, with lower limit of detection of 80 copies/ml
because many samples were diluted 1:2 due to low volumes. Genotyping for reverse transcrip-
tase was done blind to randomised group using an in-house assay at a WHO-designated labo-
ratory (Joint Clinical Research Centre, Kampala, Uganda) using the ABI 3730xl sequencer.
Major NRTT and NNRTI mutations were defined using IAS-USA 2013 [11], and drug suscep-
tibility was predicted using the Stanford algorithm version 7 [12].

Virological definitions

In the longitudinal cohort, we predefined complete VL response as <10,000 copies/ml or >1
log; drop at week 4, <5,000 copies/ml at week 24, declining or <400 copies/ml at week 36,
and subsequently <80 copies/ml at all measurements. VL measurements >80 copies/ml were
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1,206 previously untreated Ugandan/Zimbabwean children/adolescents aged 3 months-17 years,
eligible for ART using WHO 2006 criteria, and enrolled in the ARROW trial

Randomised to
2NRTI+NNRTI
(Arm-A) (n=397)

Randomised to 2NRTI+NNRTI maintenance
(after 36 weeks additional zidovudine)
(Arm-B) (n=404)

Randomised to 3ANRTI maintenance
(after 36 weeks additional NNRTI)
(Arm-C) (n=405)

Current WHO-recommended regimen* (Arms A+B)

(n=801)

Regimen not currently recommended
by WHO** (n=405)

v

!

v

\’

Randomised to
CD4 monitoring
(n=399)

Randomised to no
CD4 monitoring
(n=402)

Randomised to
CD4 monitoring
(n=201)

Randomised to no
CD4 monitoring
(n=204)

VL assayed at latest of trial clos

ure (12 March 2012) or death, and switch to second-line

Enrolled in
immunology
substudyt
(n=107)

Enrolled in
immunology
substudyt
(n=101)

Enrolled in
immunology
substudyt
(n=51)

Enrolled in
immunology
substudyt
(n=57)

VL assayed at weeks 4, 24, 36, and 48 post-ART initiation, then 24-weekly

* Results presented in main text
** Results presented in S1 Appendix
1 97% of children enrolled after 29 May 2008

Fig 1. Flow diagram of children included in virological analyses. * Results presented in main text. ** Results presented in S1 Appendix. T 97% of
children enrolled after 29 May 2008. Abbreviations: ART, antiretroviral therapy; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside
reverse transcriptase inhibitor; VL, viral load.

https://doi.org/10.1371/journal.pmed.1002432.g001

classified as a blip if the child had a previous VL <80 copies/ml and either subsequently resup-
pressed <80 copies/ml (1 or 2 VL >80 copies/ml allowed; n = 150) or their last measurement
was a single value >80 copies/ml (n = 31; S1 Appendix). Those not resuppressing <80 copies/
ml but remaining <5,000 copies/ml were defined as persistent low-level viral load (pLLVL),
whereas rebound was defined as confirmed VL >5,000 copies/ml (following WHO 2010
guidelines [13]). Each individual VL measurement on first-line ART was classified (S1 Table);
in order to record the greatest degree of viral replication observed to have occurred, children
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could move from response to blip, pLLVL, and rebound states but not backwards through
these states; i.e., if a child had ever experienced a VL blip, they were subsequently classified as
having previously ‘blipped’.

Statistical analysis

Other than the overall comparison of VL suppression and resistance by monitoring randomi-
sation at trial closure (protocol secondary endpoints), all analyses were exploratory and not
part of the prespecified protocol (S1 Protocol) or analysis plan. Categorical factors were com-
pared between randomised and other groups using chi-squared tests, unless otherwise stated,
based on complete cases. Log;oVL trajectories in pLLVL and rebound from the first measure-
ment in the state were estimated using multilevel models with child-level random intercepts
and slopes (unstructured correlation for rebound; independent for pLLVL, as correlation
parameter was not estimable). Resistance was summarised at the first VL in rebound, then at
the last available genotype tested subsequently, using signed-rank tests to compare repeated
genotypes within each child. As VLs may be performed irregularly in clinical practice, in the
longitudinal cohort we also estimated the probability that a single or confirmed VL above vari-
ous thresholds (80, 200, 400, 1,000, and 5,000 copies/ml) post-week 24 would have been fol-
lowed by the next VL 5-30 weeks later returning below that threshold.

All analyses were performed using Stata 14.2 (StataCorp). All P values are 2-sided.

Results

One thousand two hundred and six children initiated ART in ARROW, aged median 6.0 years
(IQR 2.4,9.3) with median CD4% 12% (7%,17%) (Table 1). Over a median 4 years follow-up,
54 children (4%) died [9], 39/54 (72%) before week 48. Sixty-seven children (6%) switched to
ritonavir-boosted protease-inhibitor-containing regimens (see S1 Appendix for details of VL
in children who died or switched).

Long-term virological response (cross-sectional study)

One thousand one hundred and thirty-two children (94%) were alive and in follow-up at trial
closure with VL measurements available for 1,127/1,132 (99.6%) after median 3.9 years on
ART (IQR 3.7,4.4). As expected, long-term virological suppression was significantly greater on
the WHO-recommended 2NRTI+NNRTI maintenance regimen than 3NRTI maintenance
(S1 Fig). All subsequent analyses therefore focussed on children randomised to the WHO-rec-
ommended 2NRTI+NNRTI maintenance regimen (see S1 Appendix for analyses in 3NRTT).

There was no difference in long-term virological suppression between those monitored
with versus without CD4 counts (chi-squared P > 0.1 across thresholds shown in Fig 2).
Among children receiving the WHO-recommended 2NRTI+NNRTT regimen, 284/378 (75%)
monitored with CD4s versus 275/375 (73%) monitored without CD4s had VL <80 copies/ml
after 4 years on ART (difference = +1.8% [95% CI —4.4% to +8.0%]; chi-squared P = 0.57), and
308 (81%) versus 297 (79%), respectively, had VL <1,000 copies/ml (difference = +2.3% [95%
CI -3.4% to +8.0%]; chi-squared P = 0.43).

Of 110 children with VL >1,000 copies/ml and genotype on WHO-recommended 2NRTI
+NNRTI (the vast majority on lamivudine+abacavir), only 17 (15%) had intermediate/high-
level resistance to tenofovir and 10 (9%) to zidovudine, the key NRTI backbone drugs used in
second-line treatment (Fig 3). There was no evidence of differences between CD4 monitoring
groups in intermediate/high-level resistance to NRTIs or NNRTIs (exact P > 0.2). Prevalence
of IAS-USA NRTI or NNRTT mutations was also similar (S2 Fig). 42 (82%) monitored with
CD¢4s versus 48 (81%) without had the M184V mutation conferring resistance to lamivudine
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Table 1. Characteristics at ART initiation of all children in the trial; children randomised to 2NRTI+NNRTI followed in the longitudinal cohort; and
those subsequently experiencing VL blips, pLLVL, and/or rebound.

Factor (at ART
initiation)

Male
Centre

A

B

C

D
Age (years)
Weight-for-age**
Height-for-age**
VL (copies/ml)

CD4%
WHO stage
1or2
3or4
Monitoring
CD4 monitoring
No CD4 monitoring
Initial NNRTI
Nevirapine
Efavirenz

* Excluding 2 children who died before 4 weeks (with baseline VL only) and 2 non-responders (never achieved VL <9,500 ¢/ml).

All ARROW
children
N=1,206

596 (49.4%)

400 (33.2%)
188 (15.6%)
318 (26.4%)
300 (24.9%)
6.0 (2.4,9.3)
-2.2(-3.3,-1.3)
-2.4(-3.4,-1.5)

268,800 (89,200,
748,700)°

12(7,17)

354 (29.4%)
852 (70.6%)

600 (49.8%)
606 (50.2%)

758 (62.9%)
448 (37.1%)

2NRTI+NNRTI
longitudinal cohort
N=204*

Median (IQR) or n (%)

97 (47.5%)

70 (34.3%)

32 (15.7%)

53 (26.0%)

49 (24.0%)

5.9 (2.4,9.4)
-2.1(-3.3,-1.3)
-2.6(-3.4,-1.7)

212,700 (61,400,
608,800)"

13 (7, 19)

69 (33.8%)
135 (66.2%)

104 (51.0%)
100 (49.0%)

110 (53.9%)
94 (46.1%)

2NRTI+NNRTI ever
experienced VL blips
N=93

Median (IQR) or n (%)

46 (49.5%)

46 (49.5%)

9 (9.7%)

18 (19.4%)

20 (21.5%)

5.4 (2.4,8.1)
-2.0(-3.0, -1.3)
-2.8(-3.4,-1.7)

273,400 (116,400,
741,800)"

13 (8, 18)

30 (32.3%)
63 (67.7%)

47 (50.5%)
46 (49.5%)

53 (57.0%)
40 (43.0%)

2NRTI+NNRTI ever
experienced pLLVL
N=20

Median (IQR) or n (%)

8 (40.0%)

1 (5.0%)

2 (10.0%)

11 (55.0%)

6 (30.0%)

5.2 (2.4,10.4)
-2.4(-3.7,-1.4)
-2.5(-3.5, -1.4)

253,800 (105,800,
721,800)

13 (6, 17)

9 (45.0%)
11 (55.0%)

13 (65.0%)
7 (35.0%)

12 (60.0%)
8 (40.0%)

2NRTI+NNRTI ever
experienced rebound
N=28

Median (IQR) or n (%)

13 (46.4%)

4 (14.3%)

8 (28.6%)

6 (21.4%)

10 (35.7%)

6.4 (1.5,12.4)
-2.1(-3.3,-1.3)
-21(-3.2,-1.3)

316,000 (103,100,
1,149,300)

7(3, 16)

10 (35.7%)
18 (64.3%)

14 (50.0%)
14 (50.0%)

13 (46.4%)
15 (53.6%)

** Height-for-age calculated using WHO reference [14]; as weight-for-age only covers children aged <121 months, this was calculated using the UK
reference that covers the full age range of ARROW children [15] (Spearman correlation between UK and WHO references = 0.99 in n=971 children aged

<121 months).

0 Assayed for 867/1,206 (72%) children.

1 Missing for 1 child.

Note: Children experiencing more than 1 of VL blips, pLLVL, and rebound included in all relevant columns.
Abbreviations: ART, antiretroviral therapy; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; VL, viral

load.

https://doi.org/10.1371/journal.pmed.1002432.t001

(difference = +1.0% [95% CI —13.4% to +15.4%]). Only 8 children (7%) (5 CD4-monitoring, 3
no CD4-monitoring) had the K65R NRTI mutation.

VL control over time on first-line WHO-recommended ART without real-
time VL monitoring (longitudinal cohort)

We next evaluated virological responses over time in the 208 of the 316 longitudinal cohort
children randomised to 2NRTI+NNRTI maintenance. At ART initiation, these children were
broadly similar to those in the whole trial [9] (Table 1). Two children (1%) died before week 4
and had only baseline VL. Of the remaining 206 children, 204 (99%) achieved an initial VL
response and were included in subsequent analyses. Only 2 children (1%) switched to second-
line and 2 (1%) died after week 4 (1 VL responder, 1 in rebound).
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https://doi.org/10.1371/journal.pmed.1002432.9002

VL measurements were classified as response, current or previous blip, pLLVL (80-5,000
copies/ml), or rebound (>5,000 copies/ml). The differing levels of VL control over time
are shown in Fig 4a. Interestingly 39 children (19%) were slow VL responders, i.e., still >80
copies/ml at week 36 but <80 copies/ml by week 48. After 72 weeks on ART, the percentage
of children with either pLLVL or VL rebound stabilised and then remained constant;
however, an increasing percentage had experienced at least 1 viral blip. In total, 93 children
(46%) experienced 132 single (n = 118, 89%) or double (n = 14, 11%) blips >80 copies/ml,
but the median (IQR) VL during these blips was only 200 (110-560) copies/ml, and
children who had blipped did not progress faster to pLLVL or rebound than children
remaining with complete VL response (rate 1.2 versus 4.7 per 100 child-years, respectively;
S3 Fig). Overall, post-week 24, these children randomised to WHO-recommended 2NRTI
+NNRTT spent 60% of child-time as complete VL responders and 85% as either complete
VL responders or having had blips; 5% of time was spent with pLLVL and 10% with rebound
>5,000 copies/ml. As for the cross-sectional cohort, there was no evidence of any difference
in VL response between those monitored with or without CD4 counts throughout (exact
P> 0.1, S3 Table).

Overall, 20 children (10%) experienced pLLVL. Geometric mean VL at the start of pLLVL
was 780 copies/ml (95% CI 420-1,460) and did not increase over the subsequent (Kaplan-
Meier) median >156 weeks (IQR 37,>156) spent with pLLVL through the end of follow-up
(change —0.02 log; per year [95% CI —0.20 to +0.16], P = 0.81; Fig 4b). In addition, some chil-
dren with pLLVL resuppressed, albeit transiently; 21/105 (20%) measurements in pLLVL were
<80 copies/ml.
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https://doi.org/10.1371/journal.pmed.1002432.g003

Twenty-eight children (14%) experienced rebound to >5,000 copies/ml, most commonly
following pLLVL (rate of progression from pLLVL to rebound 21.3/100 child-years, S3 Fig).
Geometric mean VL at rebound was 41,910 copies/ml (95% CI 27,100-64,810); VL did not
increase over the median of 95 weeks (IQR 25,137) spent with rebound (change -0.11 log;,
per year [95% CI -0.27 to +0.05], P = 0.18; Fig 4b). In contrast to pLLVL, no measurements
after confirmed rebound >5,000 copies/ml were <80 copies/ml.

Development of resistance on first-line 2NRTI+NNRTI without routine VL
monitoring

In 12 children on 2NRTI+NNRTT with genotyping performed both at rebound and a median
2.3 (range 0.7-2.8) years subsequently, IAS-USA major NRTI mutations increased from a
median (IQR) of 2 (0,2.5) to 2.5 (1.5,3.5) (median +1.0 [IQR 0.0,1.5] additional NRTI muta-
tions per child; signed-rank P = 0.009). However, these additional NRTI mutations had little
impact on predicted drug susceptibility, with only 1 child moving from no more than low-
level to high-level resistance for both tenofovir and zidovudine (Fig 5). Only 5 children had
repeated genotypes during pLLVL (median 2.1 [range 0.5-2.6] years between first and last
genotype during pLLVL); none moved from no resistance or low-level resistance to intermedi-
ate or high-level resistance for tenofovir or zidovudine.
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https://doi.org/10.1371/journal.pmed.1002432.9g004
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VL resuppression without routine VL monitoring in children randomised
to 2NRTI+NNRTI maintenance

Finally, we considered the implications of the children living with low-level VLs in the context
of no VL monitoring or infrequent VL measurements, as occurs in ART programmes in low-
income settings. Among children in the longitudinal cohort randomised to 2NRTI+NNRTI,
36 (18%) of 203 single VL measurements >1,000 copies/ml were immediately followed by a
subsequent VL <1,000 copies/ml. However, this depended on the level of VL: whereas 19
(40%) of 48 single VLs 1,000-4,999 copies/ml were immediately followed by a VL<1,000 cop-
ies/ml, this occurred in 17 (11%) of 155 single VLs >5,000 copies/ml (chi-squared P < 0.001,
S4 Table). Even with confirmed VL 1,000-4,999 (i.e., 2 consecutive values >1,000 copies/ml
with the first <5,000 copies/ml), 4/35 (11%) were immediately followed by a VL <1,000 cop-
ies/ml. In contrast, although 7/155 (5%) of single VL >5,000 copies/ml immediately resup-
pressed <80 copies/ml, no measurements after confirmed rebound >5,000 copies/ml were
<80 copies/ml.

Discussion

There are few long-term longitudinal data on virological and resistance outcomes among chil-
dren initiating first-line ART in sub-Saharan Africa. In this study, we compared virological
outcomes in a large cohort of children with moderately advanced HIV disease receiving first-
line ART without real-time VL monitoring in Uganda and Zimbabwe. Overall, virological out-
comes were good, with almost three-quarters of children on current WHO-recommended
abacavir+lamivudine+NNRTI regimens fully suppressed after 4 years of ART and only 6%
switching to second-line treatment. We found no evidence of a difference in VL suppression
or drug susceptibility between children managed with or without CD4 monitoring. Virological
blips were relatively common, but pLLVL and rebound >5,000 copies/ml occurred in a minor-
ity; only 15% of child-time after week 24 was spent with viraemia in children taking NNRTI
+2NRTI regimens. Even among children with VL >1,000 copies/ml, intermediate/high-level
drug resistance to key second-line NRTIs was found only in a minority. Children with virolog-
ical rebound did have a small increase in genotypic NRTI resistance over 2 years. Overall,
these results suggest that, where available, annual VL monitoring as recommended by WHO is
a reasonable and pragmatic approach in low- and middle-income countries.

The ARROW trial showed that CD4 monitoring (without routine VL monitoring) provided
clinical benefit over clinical monitoring alone after the first year on ART. However, event rates
were very low (new WHO stage 4 disease/death 0.4 per 100 child-years with CD4 monitoring
versus 1.3 without) and 5-year survival was very high (96%). We have now extended these
findings, by showing that virological suppression in the cohort as a whole was high. After a
median of 4 years, 80% of children randomised to WHO-recommended 2NRTI+NNRTI-
based regimens had VL <1,000 copies/ml and 74% had undetectable virus. This is similar to a
recent small cohort of Kenyan children monitored for 4 years, in whom two-thirds maintained
long-term virological control [16]. Virological suppression from most paediatric [17,18]
cohorts falls short of the 90% target set by UNAIDS, highlighting the need for simpler, better-
tolerated regimens and effective adherence interventions.

VL did not increase significantly over time in children with pLLVL or rebound; rather, it
appeared that viraemia reached an equilibrium (approximately 1,000 and approximately
40,000 copies/ml, respectively), similar to the set-point that is characteristic of untreated HIV
infection [19], perhaps due to the capacity for HIV-specific CD8+ T-cell responses to control
viral replication on suboptimal ART [20], before potentially changing again to a new equilib-
rium in the rebound state, driven by further loss of adherence or by immune escape from
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previously effective T-cell responses [21]. Future studies of HIV-specific T-cell responses in
ART-treated children are warranted to investigate these hypotheses further.

Children with virological failure in ARROW had frequent NNRTI and lamivudine resis-
tance, as expected, but retained high susceptibility to both tenofovir and zidovudine, the rec-
ommended second-line NRTT options. Perhaps more importantly, a median of 2 years’ viral
replication at approximately 40,000 copies/ml led to an increase of only 1 major NRTI muta-
tion and did not substantively alter drug susceptibility. In the PENPACT-1 trial, which com-
pared switch at VL 1,000 versus 30,000 copies/ml in Europe and the Americas, NNRTI
resistance had already developed when VL reached >1,000 copies/ml [22], despite 3-monthly
VL monitoring. Although NRTT thymidine analogue mutations accumulated with ongoing
replication in the 30,000 copies/ml switch threshold group in PENPACT-1, this occurred less
frequently in children taking abacavir+lamivudine. Children took a median 80 weeks for VL
to increase from 1,000 to 30,000 copies/ml, but all those switching from 2NRTI+NNRTT to
second-line at VL >>30,000 copies/ml resuppressed within 24 weeks and had similar VL sup-
pression at 5 years compared with those switching at >1,000 copies/ml. Similarly, responses to
second-line therapy were good despite modest accumulation of resistance in the Kenyan study
[16]. Even when failure is confirmed virologically, clinicians are often reluctant to switch ART
because of limited and more complex second-line options (particularly appropriate formula-
tions); limited access to resistance testing to inform decision-making; concerns regarding
adherence; and, in resource-limited settings, very limited availability of third-line ART [23].
ARROW provides some reassurance that delays in switching of up to 2 years should have lim-
ited implications, particularly since the risk of onward transmission from children is low and
the only large randomised trial addressing the role of NRTIs with substantial predicted cross-
resistance in second-line treatment suggested they retained considerable activity in adults
[7,24].

Opver the longer term, substantial efforts are being made to ensure virological monitoring is
available in all settings. However, challenges in training, procurement, specimen transport,
and financial resources have limited its roll-out [25]. Coverage was estimated at 25% in 2014
[4] and is only estimated to increase to around 47% by 2019 [26]; furthermore, monitoring is
mostly restricted to high-level facilities and after the first year is not recommended more often
than yearly in most low-income countries. No virological monitoring was undertaken in
ARROW; furthermore, VL suppression did not differ between children with or without CD4
monitoring, showing that good virological outcomes are achievable even with clinical moni-
toring, which can be done at low-level health facilities. Most children switching to second-line
ART had detectable VL. Together, these findings highlight that absence of VL monitoring
should not be a barrier to providing first-line or switching to second-line ART, given the con-
siderable morbidity and mortality benefits of treatment.

Where virological monitoring is used, it is important to consider the implications of detect-
able viraemia in children. Current guidelines recommend switching to second-line ART at a
confirmed VL above 1,000 copies/ml. However, we found that it was not uncommon for sin-
gle, or even confirmed, VLs above this threshold to be immediately followed by return to
values below the threshold without adherence counselling (since all VLs were measured retro-
spectively). This was particularly true for VLs between 1,000-5,000 copies/ml—precisely those
levels where switch might be considered to have the greatest potential to prevent resistance
accumulation. Resuppression on NNRTI-based regimens despite NNRTI resistance has previ-
ously been noted in cohorts [27] and a treatment interruption study [28]. This highlights the
importance of maximising efforts to extend the durability of first-line ART, for example
through enhanced adherence counselling and peer support, given detectable VL. Furthermore,
it demonstrates the importance of repeating VL testing before switching from first-line to
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second-line ART in low-income countries, given the limited treatment regimens available, par-
ticularly where VL is 1,000-5,000 copies/ml. Importantly, no children with confirmed VL
>5,000 copies/ml resuppressed <80 copies/ml. Outside a clinical trial such as ARROW, blips
may also be caused by ART interruptions following drug stock-outs. Whilst blips have previ-
ously been shown to have no deleterious effect on subsequent VL rebound or CD4 responses
[29], their impact on markers of underlying inflammation remains unclear in children and
requires further study.

Study limitations include the fact that this was an exploratory analysis within a clinical trial
that was conducted using 2006 WHO treatment thresholds, which have now been superseded
by universal ART initiation criteria; whether virological outcomes would be different in chil-
dren treated using current guidelines is unknown. However, given that VLs would be expected
to be lower and CD4 percentages higher with earlier treatment, our results plausibly reflect a
‘worst-case’ scenario moving forwards. Genotyping was not conducted at ART initiation, and
so may have missed preexisting resistance before ART. A reported 6.8% of those in the WHO
African Region with available pre-ART genotypes had 1 or more mutations in any drug class
before therapy initiation in 2010 [6], although prevalence of transmitted drug resistance is
likely to be considerably lower here, since children were born between 1990-2008. Further
resistance could have been identified by sequencing at lower thresholds; all genotyping was
performed in Uganda based on a 1,000 copies/ml genotyping threshold. Our study was con-
ducted within a clinical trial where drug supplies were continuous and participants received
greater support than in a treatment programme; therefore, incidence of virological failure
could have been lower. However, in contrast, most existing paediatric resistance data are from
programmes/clinics with real-time VL monitoring; one might expect that resistance may be
more prevalent without real-time VL monitoring.

In summary, we found that virological and resistance outcomes were good in this study,
and that neither VL suppression nor predicted susceptibility of second-line treatment options
were impacted by monitoring with or without CD4 counts over median 4 years follow-up in
children initiating ART in Uganda and Zimbabwe. Despite being managed without real-time
VL monitoring, only 20% of children on WHO-recommended 2NRTI+NNRTI first-line ART
experienced pLLVL or rebound, during which time VL levels were stably maintained over rela-
tively long periods. In rebound, genotypic resistance increased only slightly over 2 years, pro-
viding reassurance that annual VL monitoring, as recommended by WHO, is a reasonable and
pragmatic approach for HIV-infected children on first-line ART in resource-limited settings.
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