
The Effect of Automated Alerts on Provider
Ordering Behavior in an Outpatient Setting
Andrew W. Steele

1*
, Sheri Eisert

2
, Joel Witter

3
, Pat Lyons

4
, Michael A. Jones

5¤
, Patricia Gabow

6
, Eduardo Ortiz

7

1 Information Services, Denver Health, Denver, Colorado, United States of America, 2 Health Services Research, Denver Health, Denver, Colorado, United States of America,

3 General Internal Medicine, Denver Health, Denver, Colorado, United States of America, 4 Software Division, Siemens Medical Solutions, Malvern, Pennsylvania, United

States of America, 5 Thomson Micromedex, Greenwood Village, Colorado, United States of America, 6 Medicine, Denver Health, Denver, Colorado, United States of America,

7 Medicine, Washington D.C. VA Medical Center, Washington, District of Columbia, United States of America

Competing Interests: AWS, SE, JW,
PG, and EO have no competing
interests. PL is an employee of
Siemens Medical Solutions. MAJ was
employed by Thomson Micromedix
during the time of the study.

Author Contributions: AWS, SE, JW,
PL, MAJ, PG, and EO designed the
study. AWS analyzed the data. AWS,
JW, SE, PL, MAJ, PG, and EO
contributed to writing the paper.

Academic Editor: Robert Davis,
Centers for Disease Control and
Prevention, United States of America

Citation: Steele AW, Eisert S, Witter
J, Lyons P, Jones MA, et al. (2005)
The effect of automated alerts on
provider ordering behavior in an
outpatient setting. PLoS Med 2(9):
e255.

Received: January 14, 2005
Accepted: June 21, 2005
Published: September 6, 2005

DOI:
10.1371/journal.pmed.0020255

Copyright: � 2005 Steele et al. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License, which
permits unrestricted use,
distribution, and reproduction in any
medium, provided the original work
is properly cited.

Abbreviations: ADE, adverse drug
event; CPOE, Computerized
Physician Order Entry

*To whom correspondence should
be addressed. E-mail: asteele@dhha.
org

¤Current address: University of
Colorado Hospital, Denver, Colorado,
United States of America

A B S T R A C T
Background

Computerized order entry systems have the potential to prevent medication errors and
decrease adverse drug events with the use of clinical-decision support systems presenting
alerts to providers. Despite the large volume of medications prescribed in the outpatient
setting, few studies have assessed the impact of automated alerts on medication errors related
to drug–laboratory interactions in an outpatient primary-care setting.

Methods and Findings

A primary-care clinic in an integrated safety net institution was the setting for the study. In
collaboration with commercial information technology vendors, rules were developed to
address a set of drug–laboratory interactions. All patients seen in the clinic during the study
period were eligible for the intervention. As providers ordered medications on a computer, an
alert was displayed if a relevant drug–laboratory interaction existed. Comparisons were made
between baseline and postintervention time periods. Provider ordering behavior was
monitored focusing on the number of medication orders not completed and the number of
rule-associated laboratory test orders initiated after alert display. Adverse drug events were
assessed by doing a random sample of chart reviews using the Naranjo scoring scale.
The rule processed 16,291 times during the study period on all possible medication orders:

7,017 during the pre-intervention period and 9,274 during the postintervention period. During
the postintervention period, an alert was displayed for 11.8% (1,093 out of 9,274) of the times
the rule processed, with 5.6% for only ‘‘missing laboratory values,’’ 6.0% for only ‘‘abnormal
laboratory values,’’ and 0.2% for both types of alerts. Focusing on 18 high-volume and high-risk
medications revealed a significant increase in the percentage of time the provider stopped the
ordering process and did not complete the medication order when an alert for an abnormal
rule-associated laboratory result was displayed (5.6% vs. 10.9%, p¼0.03, Generalized Estimating
Equations test). The provider also increased ordering of the rule-associated laboratory test
when an alert was displayed (39% at baseline vs. 51% during post intervention, p , 0.001).
There was a non-statistically significant difference towards less ‘‘definite’’ or ‘‘probable’’
adverse drug events defined by Naranjo scoring (10.3% at baseline vs. 4.3% during
postintervention, p¼ 0.23).

Conclusion

Providers will adhere to alerts and will use this information to improve patient care.
Specifically, in response to drug–laboratory interaction alerts, providers will significantly
increase the ordering of appropriate laboratory tests. There may be a concomitant change in
adverse drug events that would require a larger study to confirm. Implementation of rules
technology to prevent medication errors could be an effective tool for reducing medication
errors in an outpatient setting.
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Introduction

Medical error reduction has become a major force for
health care in the United States of America since the
landmark publication of the 1999 Institute of Medicine
report, To Err Is Human: Building a Safer Health System and the
subsequent report, Crossing the Quality Chasm: A New Health
System for the 21st Century [1,2]. It is estimated that 700,000
people die or are injured in hospitals each year from adverse
drug events (ADEs) [2]. Among the preventable ADEs, more
than half were associated with the ordering of the medication
[3]. As many as 28% of the ADEs are thought to be associated
with medication errors [4]. Computerized Physician Order
Entry (CPOE) systems have the capability to address
medication errors by utilizing dosing recommendations,
reminders for selecting appropriate medications, and clinical
checking for drug–allergy, and drug–drug interactions [5–7].
However, despite the potential, less than 10% of hospitals
have implemented CPOE [8].

In the outpatient setting, studies have shown that between
18% and 25% of patients may have an ADE [9,10]. Many
medications have specific renal, hematologic, and hepatic
effects. Monitoring guidelines have been recommended for
many of these medications. Health-care providers, however,
may find it difficult to acquire and maintain the information
to appropriately prescribe these medications. Utilization of a
computerized clinical-decision support system linked to
patient specific laboratory data within CPOE applications
may assist in handling this information overload.

Types of ordering errors include selecting the wrong
medication for the patient’s illness, choosing an incorrect
dose given specific patient characteristics such as age and
renal function, and ordering medication when the patient is
known to be allergic to the medication. Some errors occur
when the provider is not aware of clinical information that is
readily available within computer applications [11]. It has
been shown that as many as 45% of medication errors may be
related to drug–laboratory issues [12]. Further, appropriate
monitoring of clinically relevant laboratory values is often
inadequate. For example, despite four Federal Drug Admin-
istration warnings recommending monthly liver function
testing for patients on an oral hypoglycemic, Troglitazone,
follow-up studies found less than 5% compliance with these
recommendations [13]. Lastly, it is impossible for providers to
remember and stay current with all of the new information
being provided. For example, the top forty prescribed
medications each has on average seven drug–laboratory
interactions [14].

This study evaluated the implementation of computerized
provider order entry (CPOE) and an integrated computer-
based clinical-decision support system (CDSS) in an out-
patient clinic at Denver Health as tools for medication error
reduction. The study was done in collaboration with
Thomson Micromedex and Siemens Medical Solutions. The
overarching purpose of the study was to determine the
impact of using computerized alerts to improve the
prescribing of medications in the outpatient setting. The
study focused on drug–laboratory interactions related to
medication use that can lead to hyper- and hypokalemia,
nephrotoxicity, thrombocytopenia, and hepatic inflamma-
tion.

Methods

Patients and Setting
This study was conducted at Denver Health outpatient

primary-care clinics. Denver Health is the principle safety net
institution for Colorado. A single electronic record links
primary-care clinics, specialty clinics, and the acute care
hospital. Medication and laboratory orders are placed using
CPOE. Table 1 provides the demographic characteristics of
the patients seen during the study period. There were 19,076
patients seen during this 9-mo time period. Sixty-four
percent of the patients were female, 82% were Hispanic,
42% had Medicaid coverage, 41% were uninsured, and 17%
had Medicare, private, or other types of insurance.
All provider staff were allowed to enter medication orders

including physicians, allied health providers (nurse practi-
tioners, physician assistants), and residents. All registered
patients were eligible for the intervention.
The Colorado Multiple Institutional Review Board (COM-

IRB) approved the study. COMIRB is a statewide board
established to review biomedical and behavioral research
involving humans to ensure appropriate ethical issues are
addressed (see Protocol S1).

Data and Time Frame
Baseline results of rules application were collected from 08/

01/2002 to 11/29/2002 (17 wk). The intervention was imple-
mented on 12/01/2002. Postintervention data were collected
between 12/01/2002 and 04/30/2003 (21 wk). The timeframe
was chosen to provide a sample size of at least 475 which
would provide a power (1� b) of 90% with an a level of 0.05
to detect a difference of 5%, going from 5% to 10% between
the order cessation rate comparing preintervention to
postintervention phases.

Interventions
Denver Health has utilized rules technology for over two

years. As part of the collaboration with Thomson Micro-
medex, this study used commercially available rules devel-
oped in Arden Syntax language as Medical Logic Modules

Table 1. Demographics—All Patients, Westside Clinic (08/01/
2002–04/30/2003)

Variable Category N Percent

Number of patients 19,076 100.0

Age, y (mean) 25.3

Gender Female 12,241 64.2

Male 6,822 35.8

Total 19,076 100.0

Ethnic group African American 514 2.7

Caucasian 2,081 10.9

Hispanic 15,708 82.3

Other 773 4.1

Total 19,076 100.0

Insurance Medicaid 8,049 42.2

Medicare 1,249 6.5

Private/commercial 1,174 6.2

Uninsured 7,832 41.1

Other 772 4.0

Total 19,076 100.0

DOI: 10.1371/journal.pmed.0020255.t001
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(MLMs) and modified them to meet the local needs. Although
other types of rules were considered, only rules that were
commercially available from Thomson Micromedex and
applicable to the outpatient setting were used for this study.
All rules from Thomson Micromedex were reviewed, and it
was determined that the most appropriate available rules to
address patient safety in the outpatient setting covered the
following five areas: (1) potential drug-induced hypokalemia;
(2) potential drug-induced hyperkalemia;(3) potential drug-
induced nephrotoxicity; (4) potential drug-induced throm-
bocytopenia; and (5) potential drug-induced hepatotoxicity.

This study focused mainly on medications that were
associated with the above conditions and more commonly
used in the outpatient clinic, compared to other medications
that were largely used in an inpatient setting. These
medications and the associated rules are shown in Table 2.

For each drug–laboratory interaction, rules were written
identifying medications, routes of administration, and ab-
normal laboratory threshold levels for inclusion in the rule.
In addition, a determination was made for each medication as
to whether an alert should be provided for an abnormal
laboratory value only or either an abnormal laboratory value
or a missing laboratory value, or, despite an association with
the laboratory abnormality, no alert would be displayed to
the provider.

In response to the alerts, providers could decide to keep,
revise, or delete the medication order. They could also order
any rule-associated laboratory tests. Changes to orders could
not be collected given the technological capabilities of the
CPOE system, but lack of a medication order after the rule
was triggered was evidence that the provider decided to stop
the ordering process and not order the medication during
that session. Likewise, comparing the rates of ordering of
rule-associated laboratory tests before and after the inter-
vention provided a measure of the efficacy of the inter-
vention.

Thomson Micromedex provided the knowledge content for
each of the above rules. One physician (AWS) and a
pharmacist (MAJ) utilized a reference THOMSON Micro-
medex Healthcare Series Integrated Databases and then
agreed upon changes to the rules criteria. This was reviewed
by a second physician (JW) and some minor changes were
subsequently made. The final criteria list was provided to the

rules builder staff to incorporate into the rules. The Arden
Syntax rules contained within the Medical Logic Modules
were integrated into the rules engine application. Due to
differences in terminology and unique characteristics of the
Denver Health laboratory, order entry, and pharmacy data-
bases, portions of the rules had to be rewritten to conform to
these local needs. However, the logic of the rule remained
intact. The content and layout of the alert screens were
designed by the Information Services staff with input from
clinic providers. (Figure 1) The laboratory cutoff values for
triggering an alert were the same as the Denver Health
abnormal laboratory reference ranges. A timeframe of 6 mo
was chosen for using historical laboratory data. Various rules
output-message display formats were presented to a group of
providers, and consensus was reached on a final display.
During 2002, CPOE was implemented at one of Denver

Health’s larger outpatient clinics, the Sam Sandos Family
Health Clinic. Approximately 120 users were entering over
6,000 orders per week, 40% of which were for medications. As
providers selected medications in the ordering process, a rule
processed information on the five drug–laboratory interac-
tions listed above. If rule criteria were met for a drug–
laboratory interaction, an alert screen was presented to the
provider with a message containing patient name, type of rule
alert, name of medication that triggered the alert, and a
message with laboratory results, if available, and suggestions
to consider deleting or changing the medication or to
consider ordering a rule-associated laboratory test. Providers
did not need to respond to the alert, but needed to select
‘‘Continue’’ to proceed with the ordering session. They were
free to make any changes in their ordering process.
No specific provider education was given to the staff

concerning the importance and types of drug–laboratory
interactions contained within this study.

Analytical Approach
A nonrandomized pre- and postcomparison of the inter-

vention clinic was accomplished by turning rules on in the
background without displaying any message to providers
during the preintervention time period. Because the rules
were processing in the background, the provider did not
receive any alerts recommending changes in their orders.
This baseline ordering behavior was then compared to
ordering behavior after alerts were presented to the provider.
Medications prescribed and laboratory ordering volume

and type were measured at intervention clinics from
automated computerized order entry log files. Rules perform-
ance was measured by looking at total rules triggered, and
further subdividing into rules triggered with no alert
provided, rules triggered with alert for missing laboratory
tests, and rules triggered with alert for abnormal laboratory
values. Provider order behavior was monitored focusing on
the number of medication orders not completed after alert
display, and the number of rule-associated laboratory test
orders initiated after alert display. ADEs were assessed by
doing a random sample of chart reviews using the Naranjo
scoring scale [15]. The chart audit was limited to a sample of
charts for which the most recent rule-associated laboratory
value was abnormal within the last 6 mo. The Naranjo criteria
has four categories for ADEs; ‘‘definite,’’ ‘‘probable,’’ ‘‘possi-
ble,’’ and ‘‘doubtful.’’ This analysis used the combination of
‘‘definite’’ and ‘‘probable’’ as being a potential ADE.

Table 2. Example of Medications Used in Rules for Associated
Lab Abnormalities

Hyper-

kalemia

Hypo-

kalemia

Thrombo-

cytopenia

Elevated

Creatinine

Elevated

Transaminase

Captopril Chlorthalidone Ranitidine Amiloride Atorvastatin

Lisinopril Furosemide Chlorthalidone Citalopram

Spironolactone Hydrochloro-

thiazide

Enalapril Fluoxetine

Enalapril Metolazone Furosemide Fluvastatin

Ethacryrinic acid Hydrochloro-

thiazide

Paroxetine

Lisinopril Rosiglitazone

Metolazone Sertraline

Spironolactone

DOI: 10.1371/journal.pmed.0020255.t002
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Statistical comparisons were made using Fisher’s exact test or
Generalized Estimating Equations, as appropriate, using a
SAS statistical package (SAS Institute, Cary, North Carolina,
United States).

Results

The rule processed 16,291 times during the study period:
7,017 during the preintervention period and 9,274 during the
postintervention period (see Table 3) During the time span of

the study there were 54,206 patient visits; medications were
ordered on 17,444 (32%) of the visits. The rule processed on
49% of all medication orders. During the postintervention
period, an alert was displayed to the care provider for 11.8%
(1,093 out of 9,274) of the times the rule processed. Among
these alerts, 5.6% were for only ‘‘missing laboratory values,’’
6.0% were for only ‘‘abnormal laboratory values,’’ and 0.2%
were for both types of alerts (see Figure 2). The rule did not
have an appreciable negative effect on system performance.
On average, the rule delayed processing of the screens in the

Figure 1. Rules Output Screen for ‘‘Recommended Laboratory Value Not Done in Last Six Months’’

DOI: 10.1371/journal.pmed.0020255.g001

Table 3. Drug–Laboratory Interaction Rules Performance Summary

Variable Preintervention

(08/01/02–11/29/02)

Postintervention

(12/01/02–4/30/03)

Percentage

Change

p-Value

N % N %

Visits 23,468 30,738

Visits in which any medications were ordered 7,576 9,868

Medication orders 14,634 18,684

Medication orders that trigger a rule 7,017 9,274

Medication orders that trigger rule, but did not

meet criteria to display a messagea
6,116 8,181

Order not completed 415 6.80% 486 5.90% �13.24% 0.5502

Rule lab ordered 1,042 17% 1,322 16.20% �4.71% 0.3836

Medication orders that trigger rule and met

criteria to display a message*

901 1,093

Order not completed 49 5.40% 91 8.30% 53.70% 0.1662

Rule lab ordered 347 38.50% 559 51.10% 32.73% ,0.0001*

Medication orders that trigger rule and met

criteria to display the message: ‘‘Abnormal Labs’’a
450 576

Order not completed 25 5.60% 63 10.90% 94.64% 0.0338*

Rule lab ordered 152 33.80% 240 41.70% 23.37% 0.0771

Medication orders that trigger rule met criteria

to display the message: ‘‘No Labs Available’’a
461 534

Order not completed 24 5.20% 30 5.60% 7.69% 0.8925

Rule lab ordered 198 43.00% 331 62.00% 44.19% ,0.0001*

aMessages were displayed to the provider only during the postintervention phase.

*p , 0.05.

DOI: 10.1371/journal.pmed.0020255.t003
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CPOE application by less than 2 sec. There were no
complaints from providers about slow system performance
related to the rules processing during this study.

Comparing the pre- and postintervention periods for when
any type of alert was presented, there was not a statistical
difference in the rate of the provider not completing the
medication order (5.4% vs. 8.3%, p ¼ 0.17). However, when
the alert was for an abnormal laboratory value, the
percentage of times the medication order was not completed
increased from 5.6% at baseline to 10.9% during the
intervention (p ¼ 0.03).

Comparing the pre- and postintervention periods for
medication orders for which no alert was displayed shows
no significant change in the percentage of time the provider
ordered the rule-associated laboratory test (17.0% during
preintervention period vs. 16.2% during the postintervention
period, p ¼ 0.38). This indicates that there was no trend, in
general, to increased laboratory test ordering during the
study period. Focusing on medication orders for which an
alert was presented shows an increase in the percentage of
time the provider ordered the rule-associated laboratory test
(38.5% vs. 51.1%, p , 0.001). The largest effect was noticed
when the alert was triggered for a missing laboratory test: the
percentage of times the provider ordered the rule-associated
laboratory test increased from 43.0% at baseline to 62.0% (p
, 0.001).

One investigator (JW) reviewed a random sample of charts.
The study focused on medication orders for which an alert
was displayed indicating that the patient had a rule-
associated abnormal laboratory value. A total of 163 charts
were reviewed: 116 from the preintervention period and 47
from the postintervention period (Table 4). Overall, by
combining ‘‘definite’’ and ‘‘probable’’ categories within the
Naranjo scoring criteria, 12 (10.3%) of charts in the
preintervention group had a potential ADE, and 2 (4.3%) of
charts in the postintervention group had a potential ADE (p¼
0.35 by Fisher’s exact test).

Discussion

Health-care organizations are struggling with methods to
improve the quality of care provided in a cost-efficient
manner. Patient safety issues are primary concerns for
health-care institutions and providers. Numerous examples
have been published assessing the role of technology in
assisting in these efforts [16–19]. The vast majority of data on
technological interventions is focused on the inpatient

hospital setting, often at tertiary care institutions, usually
with house staff (physicians in training) programs, and rarely
looks at commercially available applications [17,20–22].
Among geriatric patients, studies have shown a rate of 13.8
preventable ADEs per 1,000 person-years [23]. At Brigham
and Women’s Hospital, Boston, Massachusetts, implementa-
tion of inpatient CPOE led to an 81% decline in non-missed-
dose medication error rates overall, and an 86% reduction in
the intensive care units [24]. In an emergency department
setting, computer-assisted prescriptions were more than
three times less likely to contain errors than handwritten
prescriptions [25].
In contrast, this study at Denver Health looked at a very

specific type of clinical-decision support system: the use of a
rules technology to prevent drug–laboratory adverse drug
events. The clinical-decision support application and rule
knowledge were both obtained from commercial vendors,
and the CPOE application was a commercially available
application. The setting was unique in that it was a primary-
care outpatient setting. Furthermore, faculty physicians, as
compared to training physicians, entered the majority of
orders.
The clinical outcome portions of the study focused on

assessing the effect of clinical-decision support systems on
changing ordering behavior and, ultimately, in reducing
ADEs among the patients. The study was not designed to have
an adequate sample size to detect statistical difference in
ADEs, although there were non-statistically fewer ADEs
during the intervention phase. The rules did demonstrate a
significant ability to change the ordering behavior of the
provider. The effect was modest in halting the ordering of the
medication and appeared to be limited to occasions in which
the alert presented an abnormal laboratory value, with almost
a doubling in order cessation. Still, the provider continued
with ordering the medicine despite a warning message in the
vast majority (91.7%) of the orders. This may be due to the
providers deciding that the benefits of the medication far
outweighed potential adverse effects on the associated
laboratory abnormalities. In contrast, across all medication
orders, and all categories of rules, ordering of the appro-
priate rule-associated laboratory test increased significantly
(33% increase) with the presentation of an alert. The

Table 4. Adverse Drug Events Identified through Chart Review
(Naranjo Scoring)

ADE Probability

Category

Preintervention

(08/01/02–

11/29/02)

Postintervention

(12/01/02–

04/30/03)

Percentage

Change

N Percent N Percent

Definite and

probable (score � 5)

12 10.3% 2 4.3% �58.25%

Possible and doubtful

(score , 5)

104 89.7% 45 95.7% 6.69%

Total 116 100.0% 47 100.0%

p-Value by Fisher’s

exact testa
0.35

aThe p-value compares the categories ‘‘definite and probable’’ versus ‘‘possible and doubtful’’ for pre- and

postintervention, using the two-tailed Fisher’s exact test.

DOI: 10.1371/journal.pmed.0020255.t004

Figure 2. Medication Orders That Triggered Alerts

DOI: 10.1371/journal.pmed.0020255.g002
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strongest effect was when providers where alerted to
‘‘missing’’ laboratory results (42% increase). Similar results
have been found by Galanter et al. [26] when looking at
automated safety alerts interactions between digoxin and
potassium. In their study, checking for unknown potassium
values increase from 9% to 57% after implementation of
alerts. Likewise, in a community-based intervention by Hoch
et al. [27], computerized alerts for missing potassium values
sent the day after physicians had ordered a diuretic led to a
9.8% increase in potassium testing. Our study differed from
these studies in that we looked at numerous medications
across different therapeutic categories.

There was less of an effect on ordering behavior when the
alert informed the provider of the existence of an abnormal
laboratory value (23% increase in ordering of the test). This
may imply that the cutoff values for the ‘‘abnormal’’ trigger
were set too low, and that providers felt that repeating the
laboratory test was not warranted given the degree of the
abnormality. Further analysis, looking at the severity of the
laboratory abnormality and correlating that to ordering
behavior, may provide more insight to this issue.

There are various limitations to this study. The interven-
tion only focused on a group of select drug–laboratory
interactions and thus the results may not be generalizable to
other types of interventions focusing on other patient-care
issues. Further, the setting was in a single primary-care clinic
outpatient setting within a large public-health integrated
health-care delivery system and results may be different in
other settings such as hospitals and private physician offices.
The patient population served is primarily a lower income,
minority-dominated (;80% Hispanic), and medically under-
served population. Different results may be obtained with a
more affluent patient population. The study did not consider
alert effectiveness based on the role of the provider. Further
studies would be needed to determine if the provider role
(i.e., staff physician, house staff, or nurse practitioner) may
alter the effect of the alerts. Finally, as an evaluation of an
intervention, the intervention was not randomized. Changes
observed may have been occurring in the health-care
environment irrespective of the intervention. The investi-
gators are aware of no local or national initiatives to improve
the care of these patients for the rule-associated conditions.

We conclude that with private–public entity collaboration,
rules for drug–laboratory interactions can be encoded into
computerized clinical applications in primary-care clinics
within an integrated health-care delivery, safety-net institu-
tion. Further, with the use of clinical-decision support,
providers will more often stop the ordering of medications
when alerted to potential drug–laboratory interactions and
will order more appropriate medication-associated labora-
tory tests. There may be an effect on ADEs. Future larger,
more prolonged studies will help to determine the full
relationship between automated alerts for drug–laboratory
interactions and the related clinical outcomes of adverse drug
events.

Supporting Information
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Patient Summary

Background All drugs have unwanted side effects (also known as
adverse drug events), and when drugs are combined the chances of side
effects increase. It is almost impossible for individual physicians to keep
up to date with all possible drug effects. Increasingly, prescription orders
and patient records are transmitted and stored on computers rather than
being handwritten. As well as improving their legibility, computer
writing of prescriptions also makes it possible to design programs that
look at a patient’s record when the prescription is written and that check
for any possible problems.

Why Was This Study Done? The authors wanted to investigate whether
such a program could be used in an outpatient setting to change the
behavior of physicians and ultimately to reduce the number of adverse
drug reactions.

What Did the Researchers Do and Find? In a single outpatient facility
in Denver, Colorado, they designed a program to alert prescribers when
one of five possible adverse events was likely to occur, or when the
patient required further tests to establish whether the drug was likely to
be safe. They tested the effect of the program by looking at what
physicians did when the alerting system was switched off, and then
when it was switched on. They found that it was possible to alter the
behavior of prescribers by alerting them to possible problems;
prescribers were more likely to stop a prescription or to order more
tests when they were alerted. However, the study was too small to show
for sure whether there was any true effect on adverse drug reactions.

What Do These Findings Mean? Programs such as this one might be
useful in alerting prescribers to potential problems with the drugs they
are intending to prescribe. However, further work will need to be done
to see if these programs can reduce the adverse events that patients
experience, and whether they will work in other hospitals and clinics.

Where Can I Get More Information Online? The US Web site
MedlinePlus has a page of links on patient issues such as adverse
reactions:
http://www.nlm.nih.gov/medlineplus/patientissues.html
The US Agency for Healthcare Research and Quality (AHRQ) provides a
continuously updated, annotated, and carefully selected collection of
patient safety news, literature, tools, and resources, including the Patient
Safety Network:
http://psnet.ahrq.gov/
In the UK, the National Patient Safety agency site has information on
many aspects of patient safety:
http://www.npsa.nhs.uk/
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