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Research into the etiology of 
schizophrenia has never been 
as interesting or as provocative 

as in the past three years. There has 
been progress on several fronts, but 
particularly regarding the molecular 
genetics of this complex disorder of 
mind and brain. At the same time, a 
number of critically important and 
unresolved issues remain that qualify 
the ultimate clinical and scientifi c 
validity of the results. However, the 
recent progress in this historically 
diffi cult area of inquiry does not seem 
to be widely appreciated. The purpose 
of this article is to provide a high-level 
review of progress, its limitations, and 
the implications for clinical research 
and clinical practice. 

The public health importance of 
schizophrenia is clear. The median 
lifetime prevalence of schizophrenia 
is 0.7–0.8% [1], with onset typically 
ranging from adolescence to early 
adulthood and a course of illness 
typifi ed by exacerbations, remissions, 
and substantial residual symptoms and 
functional impairment [2]. Morbidity 
is substantial, and schizophrenia ranks 
ninth in global burden of illness [3]. 
In addition, schizophrenia is often 
comorbid with drug dependence 
(principally alcohol, nicotine, cannabis, 
and cocaine) and important medical 
conditions (obesity, Type 2 diabetes 
mellitus) [4]. Mortality due to natural 
and unnatural causes is considerable, 
and the projected lifespan for 
individuals with schizophrenia is 
some 15 years less than the general 
population [5]. The personal, familial, 
and societal costs of schizophrenia are 
enormous. 

Etiological Clues

A substantial body of epidemiological 
research has established a set of risk 
factors for schizophrenia. A subset of 
this work is summarized in Figure 1. 
Of a large set of pre- and antenatal 

risk factors [6], having a fi rst-degree 
relative with schizophrenia is associated 
with an odds ratio of almost ten. The 
general impact of some of the risk 
factors in Figure 1 remains uncertain, 
and, additionally, migrant status, 
urban residence, cannabis use, and 
biological sex are supported as risk 
factors for schizophrenia. Although 
the attributable risk of some of these 
risk factors may be greater (e.g., place 
and season of birth) [7], the size 
of the odds ratio for family history 
suggests that searching for the familial 
determinants of schizophrenia is 
rational for etiological research. 

Unpacking the Family History 
Risk Factor

Studies of families, adoptees, and twins 
have been widely used to attempt to 
understand the relative contributions 
of genetic and environmental effects 
upon risk for schizophrenia. These 
“old genetics” approaches use 
phenotypic resemblance of relatives 
as an indirect means by which to infer 
the roles of genes and environment. 
There are many important 
assumptions and methodological 
issues with these studies [8]; however, 
genetic epidemiological studies 
of schizophrenia have yielded a 

remarkably consistent set of fi ndings, 
as summarized in Table 1 [9, 10]. 

To summarize this literature briefl y, 
schizophrenia is familial, or “runs” 
in families. Both adoption and twin 
studies indicate that the familiality 
of schizophrenia is due mainly to 
genetic effects. Twin studies suggest 
the relevance of small but signifi cant 
shared environmental infl uences 
that are likely prenatal in origin. 
Thus, schizophrenia is best viewed 
as a complex trait resulting from 
both genetic and environmental 
etiological infl uences. These results 
are only broadly informative, as 
they provide no information about 
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Figure 1. Comparison of a Selected Set of Relatively Well-Established Risk Factors for Schizophrenia, 
Focusing Mainly on Pre- and Antenatal Factors [6] (abbreviations: CNS, central nervous system; depr, 
depression; Rh, Rhesus)
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the location of the genes or the 
identity of the environmental factors 
that predispose or protect against 
schizophrenia. Searching for genetic 
infl uences that mediate vulnerability 
to schizophrenia is rational, given the 
larger overall effect size and lesser 
error of measurement in comparison 
to typical assessments of environmental 
effects. Note that high heritability is 
no guarantee of success in efforts to 
identify candidate genes. 

Genomewide Linkage Studies 
of Schizophrenia

Modern genotyping technologies and 
statistical analyses have enabled the 
discovery of genetic loci related to 
the etiology of many complex traits 
[11], such as Type 2 diabetes mellitus, 
obesity, and Alzheimer’s disease. These 
“discovery science” approaches have 
been applied to schizophrenia, and 
are summarized in Figure 2. The 27 
samples shown here included from 
one to 294 multiplex pedigrees (see 
Glossary) (median 34) containing 
32 to 669 (median 101) individuals 
affected with a narrow defi nition of 
schizophrenia. There were 310 to 950 
(median 392) genetic markers in the 
fi rst-stage genome scans. 

“Hard” replication—implication 
of the same markers, alleles, and 
haplotypes in the majority of samples—
is elusive. It is evident from Figure 2 
that these studies are inconsistent, and 
no genomic region was implicated in 
more than four of the 27 samples. The 
Lewis et al. meta-analysis [12] included 
most of the studies in Figure 2 and 
found that one region on Chromosome 
2 was stringently signifi cant and several 

additional regions neared signifi cance. 
Our focus on fi rst-stage genome 
scans does not adequately capture 
the evidence supporting replication 
for certain regions (e.g., 6p) [13–18]. 
However, there appears to be “soft” 
replication across studies. 

It is unlikely that all of these 
linkage fi ndings are true. The regions 
suggested by the Lewis et al. meta-
analysis implicate more than 3,000 
genes (18% of all known genes). 
For the 27 samples in Figure 2, the 
percentages of all known genes 
implicated by 0, 1, 2, 3, and 4 linkage 
studies were 42%, 35%, 14%, 6%, and 
3%, respectively. This crude summation 
suggests that linkage analysis is an 
imprecise tool—implausibly large 
numbers of genes are implicated and 
few genes are consistently identifi ed in 
more than a small subset of studies. 

There are several potential reasons 
why clear-cut or “hard” replication was 
not found. With respect to the teams 
that conducted these enormously 
effortful studies, it is possible that no 
study possessed suffi cient statistical 
power to detect the subtle genetic 
effects suspected for schizophrenia. 
For example, it would require 4,900 
pedigrees to have 80% power to 
detect a locus accounting for 5% of 
variance in liability to schizophrenia 
at α = 0.001. These calculations make 
highly optimistic assumptions, and 
less favorable assumptions can lead to 
sample size requirements above 50,000 
sibling pairs. For comparison, the total 
number of pedigrees in Figure 2 is less 
than 2,000. 

In addition, it is possible that 
etiological heterogeneity (different 

combinations of genetic and 
environmental causes between 
samples) and technical differences 
(different ascertainment, assessment, 
genotyping, and statistical analysis 
between samples) contributed; 
however, their impact is uncertain, 
whereas insuffi cient power is clear. If 
correct, the implication is that Figure 2 
contains a mix of true and false positive 
fi ndings. 

Association Studies 
of Schizophrenia

Schizophrenia—like most other 
complex traits in biomedicine—has 
had a large number of genetic case-
control association studies [19]. 
Although research practice is changing, 
interpretation of many studies is 
hindered by small sample sizes and a 
tendency to genotype a single genetic 
marker of the hundreds that might 
be available in a gene. For example, 
a widely studied functional genetic 
marker in COMT (rs4680) is probably 
not associated with schizophrenia [20], 
but nearby genetic markers assessed in 
a minority of studies may be [21]. 

However, as discussed in the next 
section, a number of methodologically 
adequate association studies of 
schizophrenia appear to support the 
role of several candidate genes in the 
etiology of schizophrenia. Similar 
to the linkage study data, “hard” 
replication remains elusive. 

Synthesis

Despite the limitations of the 
accumulated linkage and association 
studies, there are good suggestions that 
these studies have identifi ed plausible 
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Table 1. Summary of Studies of the Genetic Epidemiology of Schizophrenia

Study Type Conceptual Basis Studies Findings

Family Risk of schizophrenia in fi rst-degree relatives 

of cases with schizophrenia vs. controls

11 10/11 studies show familiality of schizophrenia

Signifi cant familial aggregation of schizophrenia; odds ratio: 9.8 (95% 

CI 6.2–15.5)

Adoption Risk of schizophrenia in adoption cluster 

(offspring of one set of parents raised from 

early in life by unrelated strangers)

5 Effect of postnatal environment negligible

Adoptees with schizophrenia: increased risk in biological vs. adoptive 

parents (OR = 5.0; 95% CI 2.4–10.4)

Parents with schizophrenia: increased risk in biological vs. control 

offspring 3.5 (95% CI 1.9–6.4)

Twin Risk of schizophrenia in monozygotic 

vs. dizygotic twins

12 Heritability in liability to schizophrenia: 81% (95% CI 73–90%)

Environmental effects shared by members of a twin pair: 11% (95% 

CI 3–19%)

DOI: 10.1371/journal.pmed.0020212.t001
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candidate genes for schizophrenia. 
Table 2 summarizes the evidence in 
support of a set of possible candidate 
genes for schizophrenia. Reports 
supporting the role of many of these 
genes have appeared in top-tier 
international journals known for 
rigorous peer review. The evidence 
for several genes is encouraging but 
currently insuffi cient to declare any a 
clear-cut cause of schizophrenia. 

The accumulated data provide 
particular support for DISC1, DTNBP1, 
NRG1, and RGS4. Each of these genes 
has received support from multiple 
lines of evidence with imperfect 
consistency: 1) The case for each 
of these as a candidate gene for 
schizophrenia is supported by linkage 
studies; 2) The preponderance of 
association study fi ndings provides 
further support; 3) mRNA from each 
gene is expressed in the prefrontal 
cortex as well as in other areas 
of the brain; and 4) Additional 
neurobiological data link the functions 
of these genes to biological processes 
thought to be related to schizophrenia. 
For example, DISC1 modulates neurite 
outgrowth, there is an extensive 
literature on the involvement of NRG1 
in the development of the CNS, and 
RGS4 may modulate intracellular 

Table 2. Evidence Supporting 12 Potential Candidate Genes for Schizophrenia

Gene1 Description OMIM2 Cytogenetic 
Band

Cytogenetic 
Abnormalities

Genome 
Scan Meta-
Analysis3

Linkage
Evidence4

Association 
Study Support5

Expression 
in PFC6

Functional 
Studies: 
Plausibility?

AKT1 V-AKT murine thymoma 

viral oncogene homolog 1

164730 14q32.33 No No No 2+ & 1− studies ++ Yes

COMT Catechol-O-

methyltransferase

116790 22q11.21 Yes Yes Yes Some studies + ++ Yes

DISC1 Disrupted in 

schizophrenia 1

605210 1q42.2 Yes No Yes Multiple studies + + Yes

DRD3 Dopamine receptor D3 126451 3q13.31 No No Inconsistent Meta-analysis + − Yes

DTNBP1 Dystrobrevin binding 

protein 1

607145 6p22.3 No Yes Yes Multiple studies + ++ Yes

G30/G72 Putative proteins LG30 

& G72

607415 13q33.2 No No Inconsistent Multiple studies + Insuffi cient 

data

HTR2A Serotonin receptor 2A 182135 13q14.2 No No Inconsistent Meta-analysis + ++ Yes

NRG1 Neuregulin 1 142445 8p12 No Nearby Yes Multiple studies + + Yes

PRODH Proline dehydrogenase 1 606810 22q11.21 Yes Yes Yes - ++ Yes

RGS4 Regulator of G-protein 

signaling 4

602516 1q23.3 No Yes Yes Multiple studies + ++ Yes

SLC6A4 Serotonin transporter 182138 17q11.2 No Nearby Inconsistent Meta-analysis + + Yes

ZDHHC8 Zinc fi nger/DHHC domain 

protein 8

608784 22q11.21 Yes Yes Yes 2+ & 1− studies ++ Yes

1Standard gene name (http://www.gene.ucl.ac.uk/nomenclature). 
2Online Mendelian Inheritance in Man (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM). 
3Gene lies in a genomic region (“bin”) implicated at a suggestive level in the Lewis et al. meta-analysis [12]. 
4Evidence here includes studies not found in Figure 2 (e.g., fi ne-mapping studies or studies targeted to a particular region). 
5+, positive study; −, negative study. 
6From the Novartis Research Foundation (http://symatlas.gnf.org). +, expression above median over all tissues; ++, expression above 75th percentile. 

DOI: 10.1371/journal.pmed.0020212.t002
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Figure 2. Summary of Genomewide Linkage Studies of Schizophrenia
The x-axis shows the location on the genome, from the telomere of the short arm of 
Chromosome 1 to the telomere of the long arm of Chromosome 22 (bottom row) along 
with 303 band chromosomal staining on the second-to-bottom row. The y-axis shows the 
27 primary samples that reported fi rst-stage genome scans for schizophrenia (i.e., excluding 
fi ne-mapping or partial reports) along with the results of a meta-analysis including most of 
the primary samples [12] (studies not included are shown with asterisks). Within each row, the 
height and color of the bars are proportional to the –log

10
(P-value), and the width of the bar 

shows the genomic location implicated by a particular sample. A selected set of candidate 
genes for schizophrenia are also shown. All genomic locations are per the hg16 build (http://
genome.ucsc.edu). The physical positions of an inclusive set of the markers showing the best 
fi ndings in the primary samples were plotted (assuming a confi dence interval of ± 10 cM or, 
if mapping was uncertain, ± 10 megabases; seven markers from the primary samples did not 
map). 
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signaling for many G-protein-coupled 
receptors. Moreover, DTNBP1 and 
RGS4 have been reported to be 
differentially expressed in postmortem 
brain samples of individuals with 
schizophrenia. 

This encouraging summation of work 
in progress masks a critical issue—the 
lack or consistent replication for the 
same markers and haplotypes across 
studies. The literature supports the 
contention that genetic variation 
in these genes is associated with 
schizophrenia, but it lacks impressive 
consistency in the precise genetic 
regions and alleles implicated. In 
contrast, association studies of other 
complex human genetic diseases have 
produced unambiguous, consistent, 
and clear-cut (“hard”) replication. 
For example, 1) in Type 1 diabetes 
mellitus, the bulk of both the linkage 
and association data implicate the HLA 
region and INS [22]; 2) for Type 2 
diabetes mellitus, there are a number 
of fi ndings in the literature where the 
association evidence appears to be 
consistent and compelling (CAPN10, 
KCNJ11, and PPARG)—the data 
indicate that the same marker allele 
is signifi cantly associated and has an 
effect size of similar direction and 
magnitude [22] (the linkage data 
are less congruent, probably due to 
power considerations); and 3) for age-
related macular degeneration, at least 
fi ve studies show highly signifi cant 
association with the same CFH Y402H 
polymorphism [23–27] in a region 
strongly implicated by multiple linkage 
studies. For these fi ndings, the data are 
highly compelling and consistent and 
provide a solid foundation for the next 
generation of studies to investigate the 
mechanisms of the gene–phenotype 
connection. Power/type 2 error 
appears to be a major factor—if the 
genetic effect is suffi ciently large (HLA 
in Type 1 diabetes mellitus or CFH in 
age-related macular degeneration)—
or, if the sample size is large, then 
there appears to be a greater chance of 
“hard” replication. 

At present, the data for 
schizophrenia are confusing, and there 
are two broad possibilities. The fi rst 
possibility is that the current fi ndings 
for some of the best current genes are 
true. This implies that the genetics 
of schizophrenia are different from 
other complex traits in the existence 
of very high degrees of etiological 

heterogeneity: schizophrenia is hyper-
complex, and we need to invoke 
more complicated genetic models 
than other biomedical disorders. The 
alternative possibility is that the current 
fi ndings are clouded by Type 1 and 
Type 2 error. Schizophrenia is similar 
to other complex traits: it is possible 
that there are kernels of wheat, but 
it is highly likely that there is a lot of 
chaff. At present, the second and more 
parsimonious possibility has not been 
rigorously excluded. The impact of 
Type 1/Type 2 error is likely, and it is 
not clear why schizophrenia should be 
inherently more complex. At present, 
we cannot resolve these possibilities. 

Public Health Implications

The public health importance of 
schizophrenia is clear, and the 
rationale for the search for genetic 
causes is strong. Schizophrenia 
research has never been easy: the 
current epoch of investigation into the 
genetics of schizophrenia provides a 
set of tantalizing clues, but defi nitive 
answers are not yet fully established. 
Findings from the accumulated 
literature appear to be more than 
chance yet suffi ciently variable as to 
render “hard” replication elusive. The 
currently murky view of this literature 
may result from the competing fi lters of 
Type 1 and Type 2 error. The current 
literature could be a mix of true and 
false positive fi ndings; however, it 
would be a momentous advance for the 
fi eld if even one of the genes in Table 2 
were a true positive result. 

This body of work is not yet ready 
for wholesale translation into clinical 
practice. However, it is not premature 
to inform patients that this work is 
advancing and that it holds promise 
for new insights into etiology, 
pathophysiology, and treatment on the 
fi ve- to ten-year horizon. On a larger 
scale, the treatment of the mentally 
ill mirrors the humanity of a society; 
in many societies, the return image 
is not fl attering. If a specifi c genetic 
variation were proven to be causal to 
schizophrenia, this poor refl ection 
might improve [28]. �
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