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A B S T R A C T

Background

The ability to detect disease outbreaks early is important in order to minimize morbidity and
mortality through timely implementation of disease prevention and control measures. Many
national, state, and local health departments are launching disease surveillance systems with
daily analyses of hospital emergency department visits, ambulance dispatch calls, or pharmacy
sales for which population-at-risk information is unavailable or irrelevant.

Methods and Findings

We propose a prospective space–time permutation scan statistic for the early detection of
disease outbreaks that uses only case numbers, with no need for population-at-risk data. It
makes minimal assumptions about the time, geographical location, or size of the outbreak, and
it adjusts for natural purely spatial and purely temporal variation. The new method was
evaluated using daily analyses of hospital emergency department visits in New York City. Four
of the five strongest signals were likely local precursors to citywide outbreaks due to rotavirus,
norovirus, and influenza. The number of false signals was at most modest.

Conclusion

If such results hold up over longer study times and in other locations, the space–time
permutation scan statistic will be an important tool for local and national health departments
that are setting up early disease detection surveillance systems.
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Introduction

The World Trade Center and anthrax terrorist attacks in
2001, as well as the recent West Nile virus and SARS
outbreaks, have motivated many public health departments
to develop early disease outbreak detection systems using
non-diagnostic information, often derived from electronic
data collected for other purposes (‘‘syndromic surveillance’’)
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]. These include sys-
tems that monitor the number of emergency department
visits, primary care visits, ambulance dispatches, nurse hot
line calls, pharmaceutical sales, and West Nile–related dead
bird reports. The establishment of such systems involves
many challenges in data collection, analytical methods, signal
interpretation, and response. Important analytical challenges
include dealing with the unknown time, place, and size of an
outbreak, detecting an outbreak as early as possible, adjusting
for natural temporal and geographical variation, and dealing
with the lack of suitable population-at-risk data.

Most analytical methods in use for the early detection of
disease outbreaks are purely temporal in nature [18,19,20,
21,22]. These methods are useful for detecting outbreaks that
simultaneously affect all parts of the geographical region
under surveillance, but may be late at detecting outbreaks
that start locally. While purely temporal methods can be used
in parallel for overlapping areas of different sizes in order to
cover all possible outbreaks, that approach leads to a severe
problem of multiple testing, generating many more false
signals than the nominal statistical significance level would
indicate.

First studied by Naus [23], the scan statistic is an elegant way
to solve problems of multiple testing when there are closely
overlapping spatial areas and/or time intervals being eval-
uated. Temporal, spatial, and space–time scan statistics
[24,25,26,27] are now commonly used for disease cluster
detection and evaluation, for a wide variety of diseases
including cancer [28,29], Creutzfeldt-Jakob disease [30],
granulocytic ehrlichiosis [31], sclerosis [32], and diabetes [33].
The basic idea is that there is a scanning window that moves
across space and/or time. For each location and size of the
window, the number of observed and expected cases is
counted. Among these, the most ‘‘unusual’’ excess of observed
cases is noted. The statistical significance of this cluster is then
evaluated taking into account the multiple testing stemming
from the many potential cluster locations and sizes evaluated.

To date, all scan statistics require either a uniform
population at risk, a control group, or other data that provide
information about the geographical and temporal distribu-
tion of the underlying population at risk. Census population
numbers are useful as a denominator for cancer, birth defects,
and other registry data, where the expected number of cases
can be accurately estimated based on the underlying
population. They are less relevant for surveillance data such
as emergency department visits and pharmacy sales, since the
catchment area for each hospital/pharmacy is undefined. Even
if it were available, the catchment area population would not
be a good denominator since there can be significant natural
geographical variation in health-care utilization data, due to
disparities in disease prevalence, access to health care, and
consumer behavior [34]. One option when evaluating data
that are affected by utilization behavior is to use total volume
as the denominator. For example, one may use total

emergency department visits as a denominator when evaluat-
ing diarrhea visits [7], or similarly, all pharmacy sales as the
denominator when evaluating diarrhea medication sales [4].
This may or may not work depending on the nature of the
data. For example, changes in total drug sales due to sales
promotions or the allergy season could hide a true signal or
create a false signal for the drug category of interest.
In this paper we present a prospective space–time permu-

tation scan statistic that does not require population-at-risk
data, and which can be used for the early detection of disease
outbreaks when only the number of cases is available. The
method can be used prospectively to regularly scan a geo-
graphical region for outbreaks of any location and any size. For
each location and size, it looks at potential one-day as well as
multi-day outbreaks, in order to quickly detect a rapidly rising
outbreak and still have power to detect a slowly emerging
outbreak by combining information from multiple days.
The space–time permutation scan statistic was gradually

developed as part of the New York City Department of Health
and Mental Hygiene (DOHMH) surveillance initiatives, in
parallel with the adaptation of population-at-risk-based scan
statistics for dead bird reports (for West Nile virus) [13],
emergency department visits [7], ambulance dispatch calls [6],
pharmacy sales [4], and student absentee records [3]. In this
methodological paper, the space–time permutation scan
statistic is presented and illustrated using emergency depart-
ment visits for diarrhea, respiratory, and fever/flu-like illnesses.

Methods

New York City Emergency Department Syndromic
Surveillance System
The New York City Emergency Department syndromic

surveillance system is described in detail elsewhere [7]. In
brief, participating hospitals transmit electronic files to the
DOHMH seven days per week. Files contain data for all
emergency department patient visits on the previous day,
including the time of visit, patient age, gender, home zip
code, and chief complaint—a free-text field that captures the
patient’s own description of their illness. As of November
2002, 38 of New York City’s 66 emergency departments were
participating in the system, covering an estimated 75% of
emergency department visits in the city.
Data are verified for completeness and accuracy, con-

catenated into a single dataset, and appended to a master
archive using SAS [35]. To categorize visits into ‘‘syndromes’’
(e.g., ‘‘diarrhea syndrome’’), a computer algorithm searches
the free-text chief complaint field for character strings
indicating symptoms consistent with that syndrome.
The goal of data analysis, which is carried out seven days

per week, is to detect unusual increases in key syndrome
categories. To run the space–time permutation scan statistic
we have written a SAS program that generates the necessary
case and parameter files, invokes the SaTScan software [36],
and reads the results back into SAS for reporting and display.
Two sets of analyses are performed, one based on assigning

each individual to the coordinates of their residential zip
code and the other based on their hospital address. With 183
zip codes versus 38 hospitals, the former utilizes more
detailed geographical information, while the latter may be
able to pick up outbreaks not only related to place of
residence but also to place of work or other outside activities
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(if people go to the nearest hospital when they feel sick).
Residential zip code is not recorded by the hospital for about
3% of patients, and for the analyses described here, these
individuals are only included in the hospital-based analyses.

The performance of the prospective space–time permuta-
tion scan statistic was evaluated using both hospital and
residential analyses. We used historical diarrhea data to
mimic a prospective surveillance system with daily analyses
from 15 November 2001 to 14 November 2002. For each of
these days, the analysis only used data prior to and including
the day in question, ignoring all data from subsequent days.
This corresponds to the actual data available at the DOHMH
8–12 h after the end of that day, when that analysis would
have been conducted if the system has been in place at that
time. We also present one week of daily prospective analyses
conducted in November 2003, where the daily analysis was
run about 12 h after the conclusion of each day, as part of the
regular syndromic surveillance activities at the DOHMH.

The Space–Time Permutation Scan Statistic
As with the Poisson- and Bernoulli-based prospective

space–time scan statistics [27], the space–time permutation
scan statistic utilizes thousands or millions of overlapping
cylinders to define the scanning window, each being a
possible candidate for an outbreak. The circular base
represents the geographical area of the potential outbreak.
A typical approach is to first iterate over a finite number
geographical grid points and then gradually increase the
circle radius from zero to some maximum value defined by
the user, iterating over the zip codes in the order in which
they enter the circle. In this way, both small and large circles
are considered, all of which overlap with many other circles.
The height of the cylinder represents the number of days,
with the requirement that the last day is always included
together with a variable number of preceding days, up to
some maximum defined by the user. For example, we may
consider all cylinders with a height of 1, 2, 3, 4, 5, 6, or 7 d. For
each center and radius of the circular cylinder base, the
method iterates over all possible temporal cylinder lengths.
This means that we will evaluate cylinders that are geo-
graphically large and temporally short, forming a flat disk,
those that are geographically small and temporally long,
forming a pole, and every other combination in between.

What is new with the space–time permutation scan sta-
tistic is the probability model. Since we do not have
population-at-risk data, the expected must be calculated
using only the cases. Suppose we have daily case counts for
zip-code areas, where czd is the observed number of cases in
zip-code area z during day d. The total number of observed
cases (C ) is

C ¼
X
z

X
d

czd ð1Þ

For each zip code and day, we calculate the expected
number of cases lzd conditioning on the observed margin-
als:

lzd
1
C
ð
X
z

czdÞð
X
d

czdÞ ð2Þ

In words, this is the proportion of all cases that occurred in zip-
code area z times the total number of cases during day d. The

expected number of cases lA in a particular cylinder A is the
summation of these expectations over all the zip-code-days
within that cylinder:

lA ¼
X
ðz;dÞ2A

lzd ð3Þ

The underlying assumption when calculating these expected
numbers is that theprobabilityof acasebeing inzip-codearea z,
given that it was observed on day d, is the same for all days d.
Let cA be the observed number of cases in the cylinder.

Conditioned on the marginals, and when there is no space–
time interaction, cA is distributed according to the hyper-
geometric distribution with mean lA and probability
function

PðCAÞ ¼

X
z2A

czd

cA

 ! C �
X
z2A

czdX
d2A

czd � cA

0
B@

1
CA

CX
d2A

czd

 ! ð4Þ

When both Rz2A czd and Rd2A czd are small compared to C, cA is
approximately Poisson distributed withmean lA [37]. Based on
this approximation, we use the Poisson generalized likelihood
ratio (GLR) as a measure of the evidence that cylinder A
contains an outbreak:

cA
lA

� �cA C � cA
C � lA

� �ðC�cAÞ
ð5Þ

In words, this is the observed divided by the expected to the
power of the observed inside the cylinder, multiplied by the
observed divided by the expected to the power of the observed
outside the cylinder. Among the many cylinders evaluated, the
one with themaximumGLR constitutes the space–time cluster
of cases that is least likely to be a chance occurrence and,
hence, is the primary candidate for a true outbreak. One
reason for using the Poisson approximation is that it is much
easier to work with this distribution than the hypergeometric
when adjusting for space by day-of-week interaction (see
below), as the sum of Poisson distributions is still a Poisson
distribution.
Since we are evaluating a huge number of outbreak

locations, sizes, and time lengths, there is serious multiple
testing that we need to adjust for. Since we do not have
population-at-risk data, this cannot be done in any of the
usual ways for scan statistics. Instead, it is done by creating a
large number of random permutations of the spatial and
temporal attributes of each case in the dataset. That is, we
shuffle the dates/times and assign them to the original set of
case locations, ensuring that both the spatial and temporal
marginals are unchanged. After that, the most likely cluster is
calculated for each simulated dataset in exactly the same way
as for the real data. Statistical significance is evaluated using
Monte Carlo hypothesis testing [38]. If, for example, the
maximum GLR is calculated from 999 simulated datasets, and
the maximum GLR for the real data is higher than the 50th
highest, then that cluster is statistically significant at the 0.05
level. In general terms, the p-value is p = R/(Sþ 1) where R is
the rank of the maximum GLR from the real dataset and S is
the number of simulated datasets [38]. In addition to p-values,
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we also report null occurrence rates [8], such as once every
45 d or once every 23 mo. The null occurrence rate is the
expected time between seeing an outbreak signal with an
equal or higher GLR assuming that the null hypothesis is true.
For daily analyses, it is defined as once every 1/p d. For
example, under the null hypothesis we would at the 0.05 level
on average expect one false alarm every 20 d for each
syndrome under surveillance.

Because of the Monte Carlo hypothesis testing, the
method is computer intensive. To facilitate the use of the
methods by local, state, and federal health departments, the
space–time permutation scan statistic has been implemen-
ted as a feature in the free and public domain SaTScan
software [36].

Implementation for New York City Syndromic Surveillance
Depending on the application, the method may be used

with different parameter settings. For the syndromic surveil-
lance analyses we set the upper limit on the geographical size
of the outbreak to be a circle with a 5-km radius, and the
maximum temporal length to be 7 d. This means that we are
evaluating outbreaks with a circle radius size anywhere
between 0 km (one zip code only) and 5 km, and a time
length (cylinder height) of 1 to 7 d. The latter restriction is a
reflection of the belief that the main purpose of this
syndromic surveillance system is early disease outbreak
detection, and if the outbreak has existed for over 1 wk, it
is more likely to be picked up by reporting of specific disease
diagnoses by clinicians or laboratories.

Another practical choice is the total number of days to
include in the analysis. One option is to include all previous
days for which data are available. We chose instead to analyze
the last 30 d of data, adding one day and removing another
for each daily analysis. We believe this time frame provides
enough baseline beyond the 1- to 7-d scanning window to
establish the usual pattern of visits while avoiding inclusion of
data that may no longer be relevant to the current period.

To reduce the computational load, we limited the centers
of the circular cylinder bases to be a collection of 446 zip-
code area centroids and hospital locations in New York City
and adjacent areas. This ensures, among other things, that
each zip-code area may constitute an outbreak on its own.

The last parameter that we need to set is the number of
Monte Carlo replications used for each analysis. For the daily
prospective analyses we chose 999, which meant that the
smallest p-value we could get was 0.001, so that the smallest
null occurrence rate possible for a signal was once every 2.7 y.
In our system, signals of that strength clearly merit
investigation. For the historical evaluation, in order to obtain
more precise null occurrence rates, we set the number of
replications to 9,999.

Adjusting for Space by Day-of-Week Interaction
The space–time permutation scan statistic automatically

adjusts for any purely spatial and purely temporal variation.
For many syndromic surveillance data sources, there is also
natural space by day-of-week interaction in the data that is
not due to a disease outbreak but to consumer behavior, store
hours, etc. For example, if a particular pharmacy has an
exceptionally high number of sales on Sundays because
neighboring pharmacies are closed, we might get a signal for
this pharmacy every Sunday unless we adjust for this space by

day-of-week interaction. This can be done through a stratified
random permutation procedure.
The first step is to stratify the data by day of week: Monday,

Tuesday,. . ., Sunday. The space–time permutation random-
ization step is then done separately for each day of the week.
For each zip code and day combination, the expected is then
calculated using only data from that day of the week. For each
cylinder, both the observed and expected number of cases is
summed over all day-of-week strata, zip code, and day
combinations within that cylinder. The same technique can
be used to adjust for other types of space–time interaction.
The underlying assumption when calculating these expected
numbers is now that the probability of a case being in zip-
code area z, given that it was observed on a Monday, is the
same for all Mondays, etc.
All our analyses were adjusted for space by day-of-week

interaction.

Missing Data
Daily disease surveillance systems require rapid trans-

mission of data, and it may not be possible to get complete
data from each provider every single day. When we first tried
the new method in New York City, a number of highly
significant outbreak signals were generated that were artifacts
of previously unrecognized missing or incomplete data from
one or more hospitals. This is a good reflection on the
method, since it should be able to detect abnormalities in the
data no matter what their cause, but it also illustrates the
importance of accounting for missing data in order to create
an early detection system that is useful on a practical level.
Depending on the exact nature of the missing data, there

are different ways to handle it. We used a combination of
three different approaches. (1) If a hospital had missing data
for all of the past 7 d (all possible days within the cylinder),
we completely removed that hospital from the analysis, in-
cluding all previous 23 d. (2) If a hospital had no missing data
during the last 7 d, but one or more missing days during the
previous 23 baseline days, then we completely removed the
baseline days with some missing data, for all of the hospitals.
(3) If a hospital had missing data for at least one but not all
of the last 7 d, then we removed those missing days together
with all previous days for the same hospital and the same day
of week. That is, if Monday was missing during the last week,
then we removed all Mondays for that hospital. This removal
introduces artificial space by day-of-week interaction, so this
approach only works if it is implemented in conjunction
with the stratified adjustment for space by day-of-week
interaction.
For some analyses, more than one of these approaches were

used simultaneously. Note that, since the missing data depend
on the hospital, the solution is to remove specific hospitals
and days rather than zip codes and days, even when we are
doing the zip-code-based residential analyses. If there are
many hospitals with missing data, then the second approach
could potentially remove all or almost all of the baseline days.
To avoid this, one could sometimes go further back in time
and add the same number of earlier days to compensate.
Another option is to impute into the cells with missing data a
Poisson random number of cases generated under the null
hypothesis. Given the completeness of our data, neither of
these methods were employed (94% of analyses were
conducted with four or fewer baseline days removed).
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Results

Evaluation Using Historical Data: Diarrhea Surveillance
We first tested the new method by mimicking daily

prospective analyses of hospital emergency department data
from 15 Nov 2001 to 14 Nov 2002, looking at diarrhea visits.
Signals with p � 0.0027 are listed in Table 1 and depicted on
the map in Figure 1. That is, we only list those signals with a
null occurrence rate of once every year or less often.

For the residential zip-code analyses, there were two such
signals. For the hospital analyses, there were six, two of which
occurred in the same place on consecutive days. It is worth
noting that at the false alarm rate chosen, none of the
residential signals correspond to any of the hospital signals.

For the residential analysis, the strongest signal was on 9
February 2002, covering 17 zip-code areas in southern Bronx
and northern Manhattan. This signal had 63 cases observed
over 2 d when 34.7 were expected (relative risk = 1.82). With a

null occurrence rate of once every 5.5 y, a spike in cases of this
magnitude is unlikely to be due to random variation. The sig-
nal immediately preceded a sharp increase in citywide diar-
rheal visits from 10 February to 20 March (Figure 2). In both
the localized 9 February cluster and the citywide outbreak, the
increase was most notable among children less than 5 y of age.
The weaker 26 February hospital signal and the 7 March
residential signal that were centered in northern Manhattan
occurred at the peak of this citywide outbreak. Laboratory
investigation of the citywide increase in diarrheal activity
indicated the rotavirus as the most likely causative agent.
The two hospital signals on 1 November and 2 November

2002, were at the same three hospitals in southern Bronx and
northern Manhattan, with null occurrence rates of 1.6 and
3.4 y, respectively. These signals immediately preceded an-
other sharp increase in citywide diarrheal activity, this time
among individuals of all ages (Figure 2). This citywide out-
break lasted approximately 6 wk and coincided with a
number of institutional outbreaks in nursing homes and on
cruise ships. Laboratory investigation of several of these
outbreaks revealed the norovirus as the most likely causative
agent. A similar citywide outbreak of norovirus in 2001 began
shortly before the 21 November 2001 hospital signal in
northern Bronx, which had a null occurrence rate of once
every 3.4 y.
For the hospital analyses, the strongest signal was a 1-d

cluster at a single hospital in Queens on 11 January 2002, with
ten diarrhea cases when only 2.3 were expected, which one
would only expect to happen once every 3.9 y. Being very
local in both time and space, it is different from the
previously described signals preceding citywide outbreaks.
While examination of individual-level data revealed a
predominance of infants under the age of two, this cluster
could not be associated with any known outbreak, and
retrospective investigation was not feasible.
As shown in Table 1, at the p= 0.0027 threshold there were

six and two signals for the hospital and residential analyses,
respectively, compared to one expected in each. Figure 3
shows the number of days on which the p-value of the most
likely cluster was within a given range. Had the null hypothesis
been true on all 365 d analyzed, the p-values would have been
uniformly distributed between zero and one. The fact that in
our data there were more days with low rather than high p-
values is an indication that there may be additional true

Table 1. Analyses of Emergency Department Visits from 15 November 2001 to 14 November 2002 Due to Diarrhea

Analysis Type Signal

ID

Outbreak

Signal Date

Number of Days

in Signal

Number of Hospitals

or Zip Codes

Observed

Cases

Expected

Cases

Relative

Risk

p Null Occurrence

Rate

Hospital analyses A 21 Nov 2001 6 1 101 73.6 1.37 0.0008 Every 3.4 y

B 11 Jan 2002 1 1 10 2.3 4.35 0.0007 Every 3.9 y

D 26 Feb 2002 4 2 97 66.9 1.45 0.0018 Every 1.5 y

F 31 Mar 2002 2 1 38 19.2 1.98 0.0017 Every 1.6 y

G 1 Nov 2002 6 3 122 86.6 1.41 0.0017 Every 1.6 y

G 2 Nov 2002 7 3 135 98.3 1.37 0.0008 Every 3.4 y

Residential analyses C 9 Feb 2002 2 17 63 34.7 1.82 0.0005 Every 5.5 y

E 7 Mar 2002 2 8 63 37.3 1.69 0.0027 Every 1.0 y

This historical analysis mimics a real-time surveillance system with daily analyses. Geographical coordinates of the patient’s residence and the visited hospital, respectively, were used in separate analyses. Only signals with p � 0.0027 are listed,

corresponding to a null occurrence rate of one expected false signal per year.

DOI: 10.1371/journal.pmed.0020059.t001

Figure 1. Locations and Dates of Detected Diarrhea Outbreak Signals,

Using Historical Data from 15 November to 14 November 2002

The three stronger hospital-based signals are depicted with thicker
lines/circles. The stronger residential-based signal was signal C. Note
that all the zip-code areas in the residential signal E are also part of
signal C.
DOI: 10.1371/journal.pmed.0020059.g001
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‘‘outbreaks’’ that are indistinguishable from random noise.
These could be very small disease outbreaks, for example, due
to spoiled food eaten by only a few people, or they could be
artifacts caused by, for example, changes in the hours of
operation at an emergency department or coding differences
between the emergency department triage nurses.

Daily Prospective Surveillance
Since 1 November 2003, the space–time permutation scan

statistic has been used daily in parallel with the population-

at-risk-based space–time scan statistics [7] as part of the
DOHMH Emergency Department surveillance system. For
respiratory symptoms, fever/flu, and diarrhea, the results for
the last week of November are listed in Tables 2 and 3. For
diarrhea or respiratory symptoms there were no strong
signals warranting an epidemiological investigation, and all
had null occurrence rates of more often than once every
month. This reflects a very typical week.
For fever/flu there was a strong 7-d hospital signal in

southern Bronx and northern Manhattan on 28 November
with a null occurrence rate of once every 2.7 y. On each of the
following 2 d, there were again strong hospital signals in the
same general area as well as residential zip-code signals of
lesser magnitude. These signals started 12 d into a gradual
citywide increase in fever/flu that continued to grow through
the end of December, driven by an unusually early influenza
season in New York City.

Discussion

In this paper we have presented a new method for
prospective infectious disease outbreak surveillance that uses
only case data, handles missing data, and makes minimal
assumptions about the spatiotemporal characteristics of an
outbreak. When using historical emergency department chief
complaint data to mimic a prospective surveillance system
with daily analyses, we detected four highly unusual clusters
of diarrhea cases, three of which heralded citywide gastro-
intestinal outbreaks due to rotavirus and norovirus. Three of
four weaker signals also occurred immediately preceding or
concurrent with these citywide outbreaks. If we assume that
all of these clusters were associated with the citywide disease
outbreaks, then the method generated at most two false
alarms at a signal threshold where we would have expected
one by chance alone.
For disease outbreak detection, the public-health com-

munity has historically relied on the watchful eyes of
physicians and other health-care workers. However, the
increasing availability of timely electronic surveillance data,

Figure 2. The Daily Temporal Pattern of Emergency Department Diarrhea Syndrome Visits in New York City, 1 November to 14 November 2002

For the citywide line (blue), daily counts are provided for the whole year. For each local area with a signal, daily counts are provided for the 1-mo
period leading up to and including the day of the signal. The four stronger signals are depicted with thicker lines.
DOI: 10.1371/journal.pmed.0020059.g002

Figure 3. The Number of Days from 15 November 2001 to 14 November

2002 when the p-Value of the Most Likely Emergency Department

Diarrhea Cluster Fell within the Interval Indicated for Both the Hospital

(Top) and Residential (Bottom) Analyses

DOI: 10.1371/journal.pmed.0020059.g003
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both reportable diagnoses and pre-diagnostic syndromic
indicators, raises the possibility of earlier outbreak detection
and intervention if suitable analytic methods are found.
While it is still unclear whether systematic health surveillance
using syndromic or reportable disease data will be able to
quickly detect a bioterrorism attack [39,40], the methods de-
scribed here can also be applied to early detection of out-
breaks of other, more common infectious diseases.

There are other alternative ways to calculate expected
counts from a series of case data. One naive approach is to
use the observed count 7 d ago in a zip-code area as the
expected count for that same area today, and then apply the
regular Poisson-based space–time scan statistic. When ap-
plied to the New York City diarrhea data described above,
such an approach generated at least one ‘‘statistically sig-
nificant’’ outbreak signal on each of the 365 d evaluated. The

Table 2. Real-Time Analyses of Emergency Department Visits Due to Diarrhea, Fever/Flu, and Respiratory Syndromes on Selected Days
in November 2003, Using the Geographical Coordinates of the Hospital

Date Syndrome Number of Days

in Signal

Number of Hospitals

in Signal

Observed

Cases

Expected

Cases

Relative

Risk

p Null Occurrence

Rate

Monday, 24 Nov 2003 Respiratory 2 3 80 57.4 1.4 0.13 Every 8 d

Fever/flu 3 1 24 14.8 1.6 0.68 Every 1 d

Diarrhea 2 4 18 8.2 2.2 0.038 Every 26 d

Tuesday, 25 Nov 2003 Respiratory 7 1 45 30.4 1.5 0.46 Every 2 d

Fever/flu 1 5 50 31.5 1.6 0.043 Every 23 d

Diarrhea 3 4 22 11.5 1.9 0.17 Every 6 d

Wednesday, 26 Nov 2003 Respiratory 5 2 233 199.4 1.1 0.63 Every 2 d

Fever/flu 7 7 299 252.1 1.2 0.046 Every 22 d

Diarrhea 4 4 23 12.6 1.8 0.22 Every 5 d

Thursday, 27 Nov 2003 Respiratory 1 4 41 26.9 1.5 0.45 Every 2 d

Fever/flu 6 4 181 142.9 1.3 0.028 Every 36 d

Diarrhea 5 3 24 14.1 1.7 0.50 Every 2 d

Friday, 28 Nov 2003 Respiratory 2 4 98 78.8 1.2 0.82 Every 1 d

Fever/flu 7 5 228 178.0 1.3 0.001 Every 1,000 d

Diarrhea 6 3 29 17.5 1.7 0.26 Every 4 d

Saturday, 29 Nov 2003 Respiratory 7 2 146 123.6 1.2 0.95 Every 1 d

Fever/flu 7 4 253 195.7 1.3 0.001 Every 1,000 d

Diarrhea 7 4 44 29.4 1.5 0.21 Every 5 d

Sunday, 30 Nov 2003 Respiratory 1 1 19 10.7 1.8 0.69 Every 1 d

Fever/flu 6 9 429 364.1 1.2 0.002 Every 500 d

Diarrhea 1 5 12 4.4 2.7 0.06 Every 17 d

DOI: 10.1371/journal.pmed.0020059.t002

Table 3. Real-Time Analyses of Emergency Department Visits Due to Diarrhea, Fever/Flu, and Respiratory Syndromes on Selected Days
in November 2003, Using the Geographical Coordinates of the Patient’s Residence

Date Syndrome Number of Days

in Signal

Number of Zip Codes Observed

Cases

Expected

Cases

Relative

Risk

p Null Occurrence

Rate

Monday, 24 Nov 2003 Respiratory 2 50 59 38.0 1.6 0.26 Every 4 d

Fever/flu 6 1 25 12.8 2.0 0.18 Every 6 d

Diarrhea 7 9 22 10.7 2.1 0.20 Every 5 d

Tuesday, 25 Nov 2003 Respiratory 2 4 69 45.0 1.5 0.11 Every 9 d

Fever/flu 2 5 31 16.1 1.9 0.049 Every 20 d

Diarrhea 4 10 51 32.2 1.6 0.17 Every 6 d

Wednesday, 26 Nov 2003 Respiratory 3 18 289 244.2 1.2 0.62 Every 2 d

Fever/flu 5 13 180 143.6 1.3 0.24 Every 4 d

Diarrhea 5 10 59 36.9 1.6 0.06 Every 17 d

Thursday, 27 Nov 2003 Respiratory 5 23 79 56.9 1.4 0.68 Every 1 d

Fever/flu 5 21 237 195.0 1.2 0.20 Every 5 d

Diarrhea 5 33 52 32.6 1.6 0.27 Every 4 d

Friday, 28 Nov 2003 Respiratory 6 8 68 44.5 1.5 0.12 Every 8 d

Fever/flu 6 21 298 248.3 1.2 0.12 Every 8 d

Diarrhea 5 11 58 37.6 1.5 0.25 Every 4 d

Saturday, 29 Nov 2003 Respiratory 2 2 38 23.2 1.6 0.57 Every 2 d

Fever/flu 7 21 358 298.7 1.2 0.018 Every 56 d

Diarrhea 6 11 67 46.0 1.5 0.27 Every 4 d

Sunday, 30 Nov 2003 Respiratory 4 1 33 19.5 1.7 0.62 Every 2 d

Fever/flu 6 21 343 287.4 1.2 0.020 Every 50 d

Diarrhea 7 13 100 70.6 1.4 0.045 Every 22 d

DOI: 10.1371/journal.pmed.0020059.t003
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basic problem with this is that there is random variation in
the observed counts that are used to calculate the expected,
which is not accounted for in the Poisson-based scan statistic.
If we based the expected on the average of multiple prior
weeks of data, we would get less variability in the expected
counts and fewer false signals, but the problem would still
persist, and as the number of weeks increase beyond a few
months other problems may gradually arise due to, for
example, seasonal trends or population size changes.

Computing time depends on the size of the dataset and the
analysis parameters chosen. With 999 replications, the
hospital analyses with 38 data locations take 7 s to run on a
2.5-MHz Pentium 4 computer, while the residential analyses
using 183 zip-code area locations take 11 s. The same
numbers for 9,999 replications are 27 and 57 s, respectively.

There are a number of limitations with the proposed
method. The method is highly sensitive to missing or
incomplete data. Our first implementation of the method
resulted in a number of false alarms, and highlights the need
for systematic data quality checks and the analytic adjust-
ments described above. When excellent population-at-risk
data are available, we expect the Poisson-based space–time
scan statistic that utilizes this extra information to perform
better than the space–time permutation scan statistic. If,
however, the population-at-risk data are of poor quality or
nonexistent, which is often the case, then the space–time
permutation scan statistic should be used.

Since the space–time permutation scan statistic adjusts for
purely temporal clusters, it can only detect citywide out-
breaks if they start locally, but not if they occur more or less
simultaneously in the whole city. Hence, it does not replace
purely temporal surveillance methods, but rather comple-
ments them.

Finally, it is important to note that the geographical
boundary of the detected outbreak is not necessarily the same
as the boundary of the true outbreak. Since we used circles as
the base for the scanning cylinder, all detected outbreaks are
approximately circular. Other shapes of the scanning window
are also available [36], but it has been shown that circular scan
statistics are also able to detect noncircular outbreak areas
[41]. The less geographically compact the outbreak is, though,
the less power (sensitivity) there is to detect it. For example,
using circles we cannot expect to pick up an outbreak that is
very long and narrow such as a one-block area on each side of
Broadway, stretching from southern to northern Manhattan.

The emergency department data used in this study also
have some limitations. In addition to the citywide outbreaks,
there were several institutional gastrointestinal outbreaks
reported to DOHMH during the historical 1-y period but not
detected in emergency department data using the space–time
permutation scan statistic. One reported outbreak involved
school children that went to the emergency department of a
nonparticipating hospital. Other outbreaks went undetected
because medical care was not sought in emergency depart-
ments. Most people with diarrhea do not go to the hospital
emergency department. Rather, they call or go to their
primary care physician, they visit the pharmacy to buy over-
the-counter medication, or they may have symptoms that are
so mild that they do not seek medical care. Further studies
are needed to evaluate the strengths and weaknesses of
different data sources.

The geographic units of analysis used were residential zip

code and hospital location. It may be hard to detect outbreaks
that affect only a small part of a single zip code, especially if
the background rate of the syndrome is fairly high. Where
available, the exact coordinates of a patient’s residence can
be used to avoid problems introduced when aggregating data.
Furthermore, some outbreaks may not be clustered by place
of residence, as in the case of an exposure occurring at the
place of work or in a subway. Using the location of the
hospital rather than residence may provide higher power to
detect workplace-related outbreaks, but the only way to fully
address this issue may be to conduct workplace surveillance.
In spite of these limitations, we have presented a new

method for the early detection of disease outbreaks and
illustrated its practical use. The primary advantages of the
method are that it is easy to use, it only requires case data, it
automatically adjusts for naturally occurring purely spatial
and purely temporal variation, it allows adjustment for space
by day-of-week interaction, and it is capable of handling
missing data.
While the method was developed and applied in the

context of syndromic surveillance, it may also be used for the
early detection of diagnosed disease outbreaks, or for
detecting changes in the pattern of chronic diseases, when
population census information is unavailable, unreliable, or
not available at the fine geographical resolution needed. The
ability to perform disease surveillance without population-at-
risk data is especially important in developing countries,
where these data may be hard to obtain. The space–time
permutation scan statistic could also be used for similar early
detection problems in other fields, such as criminology,
ecology, engineering, social sciences, and veterinary sciences.
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Patient Summary

Background. Detecting disease outbreaks early means that health
officials are better able to fight and contain them. Electronic patient
records that can be analyzed with statistical methods in computer
programs should help with disease surveillance and make it possible to
detect outbreaks early without raising too many false alarms.

Why Was This Study Done? The researchers who did this study have
developed and operated real-time disease surveillance systems. In any
such system, there will always be more disease cases in some places and
time periods than in others, for example, because there are more people
living there, or because there are more people of a certain type living
there, like older people or children, who are more prone to get sick. The
researchers were trying to develop a method that can discover outbreaks
without the need to know about the structure of the population under
surveillance.

What Did the Researchers Do? They modified an existing method to
make it work without data on the structure of the population under
surveillance. They also found a way to deal with incomplete data, when,
for example, one hospital did not report any data for a particular day.

What Did They Find? When they applied the method to emergency
room data from New York City, they found that it performs well: it seems
to be able to detect real outbreaks early and not result in many false
alarms.

What Are the Limitations of the Method? The method can detect only
outbreaks that start locally, not those that occur more or less
simultaneously in the whole surveillance area. For some outbreaks—
for example, those caused by exposure to an infectious agent in the
subway—patients will not necessarily live in the same neighborhood or
go to the same emergency room. The method will not detect outbreaks
with very few cases, such as one case of small pox or three cases of
anthrax, such as the anthrax bioterrorism attacks in the fall of 2001. And
the method only works for diseases with early symptoms severe enough
that people go to the emergency room. Efficient disease surveillance will
need the parallel use of different methods, each with their own strengths
and weaknesses.

What Next? The method was developed as part of the New York City
Department of Health and Mental Hygiene surveillance initiatives and is
now being used every day to analyze emergency department records
from 38 hospitals in the city. To facilitate wider use, the method has been
integrated into a more diverse software called SaTScan that is freely
available.

Where Can I Find Out More?
The following websites provide additional information on this and other
methods.
Details on SaTScan and software for downloading: http://www.satscan.
org/
United States Centers of Disease Control and Prevention Web page on
electronic disease surveillance: http://www.cdc.gov/od/hissb/act_int.htm
National Syndromic Surveillance Conference: http://www.syndromic.org/
index.html
National Bioterrorism Syndromic Surveillance Demonstration Program:
http://btsurveillance.org/
The Real-Time Outbreak and Disease Surveillance Open Source Project:
http://openrods.sourceforge.net/
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