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Abstract 

Background

Exposure to fine particles (PM
2.5

) from wildfires is known to cause deaths and chronic 

diseases, but its effect on respiratory infections, especially in children and adoles-

cents, is not well characterized. We aimed to comprehensively assess the associ-

ation between short-term exposure to wildfire-related PM
2.5

 and the incidence and 

mortality of respiratory transmitted diseases in children and adolescents.

Methods and findings

Data on daily counts of incident and mortality cases of respiratory transmitted dis-

eases in persons aged 4–24 years old were collected from China Information System 

for Disease Control and Prevention, covering 501 cities from 2008 to 2019. Daily 

concentrations of wildfire-related PM
2.5

 were estimated using machine learning and 

chemical transport models at a 0.25°×0.25° spatial resolution. We used time-stratified 

case-crossover design with conditional logistic regression to estimate the association 

between short-term exposures to wildfire-related PM
2.5

 and incidence and mortality of 

respiratory transmitted diseases, adjusting for temperature, relative humidity, pre-

cipitation, and total PM
2.5

. There were 6,089,271 incident cases and 1,034 mortality 

cases of 10 respiratory transmitted diseases included in our analyses. Each 5 μg/m3  
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increase in the lag 0–28-day (average of current day and previous 28 days) for 

wildfire-related PM
2.5

 was associated with a 6.8% (95%CI: 5.0%, 8.7%) increase in 

the daily incidence rate of respiratory transmitted diseases, which is greater than that 

of a 1.2% (1.0%, 1.4%) increase associated with the same increase of non-wildfire-

related PM
2.5

. A 5 μg/m3 increase in wildfire-related PM
2.5

 was associated with a 

28.6% (21.0%, 36.8%), 5.2% (2.3%, 8.3%), 12.6% (9.5%, 15.8%), and 13.6% (5.6%, 

22.2%) increase in the incidence of seasonal influenza, scarlet fever, rubella, and 

measles, respectively. Although wildfire-related PM
2.5

 constitutes only 2.7% of the 

total PM
2.5

, it contributes significantly to respiratory transmitted diseases, accounting 

for 10.8% of all PM
2.5

-associated cases. In areas where the annual concentration of 

wildfire-related PM
2.5

 is lower than 1.5 μg/m3, the proportion of cases associated with 

wildfire-related PM
2.5

 reached 29.7%. Study limitations include potential exposure 

misclassification from using city-average wildfire PM
2.5

 as a proxy for individual expo-

sure and an inability to adjust for some potential confounders.

Conclusions

Short-term exposure to wildfire-related PM
2.5

 was associated with increased inci-

dence of respiratory transmitted diseases, surpassing the impact observed with 

non-wildfire-related PM
2.5.

 This phenomenon is not restricted to regions with high 

pollutant concentrations; even populations residing in areas with lower concentra-

tions of wildfire-related PM
2.5

 are at an increased risk of these respiratory conditions. 

Consequently, there emerges a pressing global imperative to confront the escalating 

challenges presented by climate change and the intensifying menace of wildfires.

Author summary

Why was this study done?

•	 The health effects of wildfire smoke on respiratory infections, especially among 
children and adolescents, remain poorly understood.

•	 Previous research focused mainly on chronic diseases or COVID-19, with limited 
data on broader respiratory transmitted diseases.

•	 As climate change intensifies wildfires globally, understanding their impacts on 
infectious disease burden is urgently needed.

What did the researchers do and find?

•	 We analyzed national surveillance data from 501 Chinese cities (2008–2019), 
covering 6 million respiratory transmitted disease cases in individuals aged 4–24 
years.
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•	 Short-term exposure to wildfire-related PM
2.5

 significantly increased the incidence of respiratory transmitted diseases 
(e.g., influenza, scarlet fever, rubella, measles), with stronger effects than non-wildfire PM

2.5
.

•	 Even in areas with low wildfire pollution, a large proportion of cases was attributable to wildfire-related PM
2.5

.

What do these findings mean?

•	 Wildfire-related PM
2.5

 is a potent contributor to respiratory transmitted diseases in children and adolescents, beyond 
regions with obvious wildfire events.

•	 Findings highlight the need for global climate action and stronger public health responses during wildfire seasons.

•	 Main limitations: exposure estimates were based on city-level averages, which may not reflect individual exposure; 
the study was conducted in China, so generalizability to other settings requires caution.

Introduction

Wildfires, intensifying in both frequency and intensity due to climate change-induced increases in environmental temperature 
and the frequency of extreme heat days, have posed a serious threat to human health [1–5]. In contrast to the direct ther-
mal exposure experienced during wildfires, the resultant smoke has the capacity to traverse extensive distances, spanning 
hundreds to thousands of kilometers, driven by atmospheric wind currents [1]. This far-reaching dispersion extends the impact 
of wildfires beyond the immediate vicinity, encompassing a significantly larger geographical area and consequently affecting 
a more substantial demographic [6]. Wildfire smoke is a complex mixture containing particulate, gaseous pollutants [7], and 
microbes [8], with fine particulate matter (PM

2.5
) being of paramount concern due to its capacity to deeply penetrate the lungs 

and reach the alveoli, thus posing a severe threat to the human respiratory system [9,10]. Relative to PM
2.5

 originating from 
other sources, wildfire-related PM

2.5
, characterized by heightened toxicity—a consequence of its distinct chemical composition 

and reduced particle size—heightens the propensity for inducing respiratory diseases and other health complications [6,11].
Recent estimations indicate that wildfire-related PM

2.5
 exposure is responsible for approximately 0.62% of all-cause 

mortality in 749 communities across the world each year [12]. Beyond the increased risk of mortality, short-term acute 
exposure to wildfire smoke significantly escalates the risk of respiratory and cardiovascular diseases [6,13]. Children and 
adolescents can be more susceptible to environmental hazards than the general adult population. The health impacts of 
wildfire-related PM

2.5
 are more pronounced in children and adolescents, affecting a spectrum of health outcomes including 

respiratory illnesses, birth outcomes, ocular diseases, skin inflammation, cephalalgia, and a decrease in physical activity 
levels [14]. The vulnerability of this demographic is further compounded by the underdevelopment of their respiratory and 
immune systems, rendering them more susceptible to the deleterious effects of wildfire-related PM

2.5
.

The association between exposure to wildfire-related PM
2.5

 and infectious diseases remains an under-researched area. 
Although preliminary studies suggest a potential increase in influenza cases related to wildfire-related PM

2.5
 [15], there 

is a scarcity of comprehensive research in this field. Additionally, research targeting COVID-19 has found that wildfires 
amplified the effect of short-term exposure to PM

2.5
 on COVID-19 cases and deaths [16]. Furthermore, wildfire smoke 

contains both PM
2.5

 and microbes [8], with early studies suggesting microbes may act as potential infectious agents [8]. 
Exposure to wildfire-related PM

2.5
 also increases exposure to microbes. Therefore, the biological plausibility [17,18] and 

simultaneous exposure to microbes and wildfire-related PM
2.5

 [8] lead to a research hypothesis that short-term exposure 
to wildfire-related PM

2.5
 will increase the incidence of respiratory transmitted diseases.

To comprehensively understand the impact of wildfire smoke on the incidence and mortality risks of respiratory trans-
mitted diseases in children and adolescents, we untilized a large-scale China national surveillance among children and 
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adolescents aged 4–24 years during 2008–2019 to thoroughly assess the relationship between short-term exposure 
to wildfire-related PM

2.5
 and non-wildfire-related PM

2.5
 and the incidence and mortality risk of respiratory transmitted 

diseases.

Methods

Health outcome data

Data pertaining to incident cases and death cases among children and adolescents aged 4–24 years, spanning from 2008 
to 2019, were procured from the China Information System for Disease Control and Prevention (CISDCP) [19]. The CIS-
DCP is a nationwide, real-time, internet-based surveillance platform managed by the China CDC. All notifiable infectious 
diseases are required to be diagnosed according to national diagnostic guidelines issued by the National Health Com-
mission and reported by certified clinicians within 24 hours of confirmation. Reported cases undergo multi-tiered verifi-
cation at local, provincial, and national CDC levels to ensure diagnostic accuracy and data integrity [20]. Routine audits 
and quality assurance procedures make consistency across regions. This dataset encompassed comprehensive details 
on each case, including their place of residence, age, sex, as well as dates of onset of symptoms, diagnosis, and clinical 
outcomes, inclusive of death where applicable. The data specifically focused on 10 notified distinct respiratory transmitted 
diseases: seasonal influenza, mumps, tuberculosis, scarlet fever, rubella, pertussis, measles, meningococcal meningitis, 
leprosy, and diphtheria. A summary of the diagnostic criteria is provided in S1 Text. In this study, incidence was defined as 
the daily number of newly diagnosed cases—capturing both outpatient and inpatient encounters—reported to the CISDCP 
in accordance with national surveillance protocols. Each report reflected a clinician-confirmed diagnosis following stan-
dardized national criteria. Recurrent infections were considered distinct events if they occurred beyond the same disease 
episode duration and were reported as new cases. Multiple encounters within a single disease episode were recorded as 
a single event. Mortality was defined as cause-specific death attributed to the diagnosed infectious disease, as recorded in 
the CISDCP. All deaths were certified by licensed clinicians and reported through the national notifiable disease reporting 
system. The cause of death corresponds to the primary diagnosis that initiated the reporting, in accordance with national 
surveillance protocols. The rationale behind selecting the age range of 4–24 years was twofold: it commenced from the typ-
ical kindergarten enrollment age of 4 years, thereby encapsulating the educational monitoring phase, and extended to the 
upper boundary of 24 years, a threshold consistent with the United Nations’ definition of “youth” (15–24 years old) [21]. This 
demarcation was strategically chosen to ensure a comprehensive inclusion of the educational age range within our study—
based on practical considerations of data accessibility and nationwide comparability—thereby enhancing the relevance of 
our findings to the specific context of China and potentially extending its applicability to analogous nations. Cases emanat-
ing from Hong Kong, Macao, Taiwan China, and other nations lacking authenticated records were excluded from our study.

The research encompassed an aggregate of 501 Chinese prefecture-level cities (S1 Fig), exceeding the 333 officially 
designated prefecture-level divisions. This broader definition incorporated urban districts of centrally administered munici-
palities (Beijing, Shanghai, Tianjin, and Chongqing), provincial sub-prefecture units (such as special economic zones), and 
county-level cities under direct provincial administration. These administrative units were treated as distinct cities to match 
the spatial resolution of both the disease surveillance data and the population-weighted exposure estimates. This was 
contingent upon the accessibility of incidence and mortality data pertaining to legally notified infectious diseases. Data on 
daily incident and mortality counts, encompassing respiratory-related cases, were aggregated across the 501 Chinese 
prefecture-level regions. Ethical approval was not required for this analysis of anonymous data.

Data sources and exposure assessment

As detailed previously [22], we estimated global daily landscape fire-sourced outdoor fine particulate matter (PM
2.5

) 
at 0.25°×0.25° spatial resolution (about 28 km × 28 km at the equator) during 2000–2019 using a combination of the 
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GEOS-Chem chemical transport model and machine learning calibration. Briefly, wildfire-specific PM
2.5

 was estimated 
as the difference between two GEOS-Chem simulations—one including wildfire emissions and one excluding them. 
Total PM

2.5
 outputs from GEOS-Chem (original resolution 2.0° × 2.5°) were downscaled to 0.25° × 0.25° resolution using 

inverse distance weighting to match meteorological and auxiliary data grids. A random forest machine learning model 
was then trained to calibrate GEOS-Chem total PM

2.5
 estimates against ground-based daily PM

2.5
 measurements, using 

meteorological variables (temperature, relative humidity (RH), wind speed, precipitation, pressure, UV radiation) and 
spatiotemporal factors (longitude, latitude, day of year, day of week, month, year). The calibrated wildfire-specific PM

2.5
 

was obtained by multiplying the calibrated total PM
2.5

 by the GEOS-Chem wildfire-to-total PM
2.5

 ratio in each grid cell. 
Model validation was conducted using 10 well-documented large wildfire events across the USA, Australia, Portugal, 
Chile, and South Africa, demonstrating strong agreement between predicted wildfire PM

2.5
 and observed PM

2.5
 peaks and 

temporal trends, particularly during fire episodes. Non-wildfire PM
2.5

 was calculated as the difference between calibrated 
total PM

2.5
 and wildfire-specific PM

2.5
. We derived hourly meteorological data at 0.25° × 0.25° spatial resolution from the 

fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis [23]. Hourly records were used to 
calculate daily metrological parameters according to local time zone of each grid. These daily metrological parameters 
included daily mean 2 m (i.e., at 2 m above the surface of the earth) ambient temperature (T

mean
 was calculated from 24 

hourly records of 2 m ambient temperature), daily mean 2 m dew point temperature (T
dew_mean

), daily total precipitation, 
daily mean surface air pressure. Daily mean RH was calculated from T

mean
 and T

dew_mean
 using the humidity R package [24]. 

We collected annual population counts data at 30 arc seconds (about 1 km2) spatial resolution across the globe during 
2000–2019 from the WorldPop project [25]. We aggregated the gridded population counts to 0.25° × 0.25° spatial resolu-
tion to match the air pollution data. For each day, city-level daily PM

2.5
 and weather variables were calculated by averaging 

the daily exposure of all 0.25° × 0.25° grids within the city boundary weighted by population size of each grid.

Statistical analysis

Assessing the wildfire-related PM2.5-incidence/mortality association

The time-stratified case-crossover design was employed to explore the potential association between short-term wildfire-
related PM

2.5
 exposure and incidence and mortality of all respiratory transmitted diseases and specific respiratory diseases. 

This design involved comparing the daily average wildfire-related PM
2.5

 levels during the risk period with corresponding con-
trol periods within the same city [26–28]. Control periods were meticulously identified, ensuring alignment with the day of 
the week in the identical calendar month and year corresponding to the observed incidence and mortality cases. Each case 
was systematically paired with three to four control periods, facilitating a comprehensive analysis that accounted for both 
time-varying elements such as temporal trends and weekdays, and time-invariant factors including individual demographics 
(e.g., sex, age, lifestyles), disease types, and the socio-environmental fabric of the respective cities.

We utilized a conditional logistic regression model to examine the relationship between wildfire-related PM
2.5

 concen-
tration and incidence/mortality rates. Wildfire-related PM

2.5
 concentration served as the independent variable, while the 

dependent variable was a binary indicator (1 = case, 0 = control) distinguishing observations as either cases or controls. 
To examine the lag structure of the association between wildfire-related PM

2.5
 exposure and respiratory transmitted dis-

eases, a distributed lag nonlinear model (DLNM) was used. Preliminary analysis indicated that this association persisted 
for up to 28 days. We employed both linear and non-linear (B-spline with 3 degrees of freedom, df = 3) function in the 
exposure–response dimension and a natural cubic spline with three degrees of freedom for the lag–response relationship 
over a period of 0–28 days. This lag window aligns with the incubation periods of most included diseases, such as sea-
sonal influenza (1–7 days), mumps (2–4 weeks), scarlet fever (1–12 days), rubella (14–21 days), measles (7–14 days), 
pertussis (7–14 days), and meningococcal meningitis (2–10 days), supporting its biological plausibility.

The placement of knots in the lag–response dimension was determined by equally spaced values on a logarithmic 
scale, as per the “logknots” function in the “dlnm” package. The number of knots was set to the degrees of freedom minus 
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one. In the DLNM framework, odds ratio (ORs) were estimated using a linear exposure–response function, relative to 
a reference value of 0 μg/m³ wildfire-related PM

2.5
, which served as the centering value in the cross-prediction function. 

Cumulative ORs were computed across the lag period with this same reference. The model also accounted for mean 
temperature, daily RH, and daily precipitation (all at lag 0 days) by incorporating them with a natural cubic spline of three 
degrees of freedom, to control for their potential nonlinear impacts. Additionally, total PM

2.5
 concentrations on lag 0 days 

were adjusted in the model.
The model is formalized as:

	

logit
(
P (case = 1

∣∣Wildfire PM2.5, temp, RH, precipitation, total_PM2.5)
)
= αstratumij

+ cb (Wildfire PM2.5) + ns(tmean, df = 3) + ns(RH, df = 3) + ns(precipitation, df = 3)

+ β× total_PM2.5 	

Here, αstratumij: stratum-specific intercept, accounting for the matched design in the time-stratified case-crossover anal-
ysis. cb (Wildfire PM2.5): cross-basis function combining a linear exposure–response function and a natural cubic spline 
(df = 3) for lag–response over a 0–28 day lag period. ns(tmean, df = 3), ns(RH, df = 3), ns(precipitation, df = 3): natural 
cubic splines controlling for potential non-linear effects of temperature, RH, and precipitation. total_PM2.5: daily mean total 
PM

2.5
 concentration at lag 0.

Our investigation incorporated stratified analyses to assess the impact of wildfire-related PM
2.5

 across diverse demo-
graphics and environmental conditions. The stratification criteria included gender (female and male), age categories 
(4–9, 9–12, 12–15, 15–18, and 18–24 years), the four meteorological seasons (spring, summer, autumn, and winter), 
and regions categorized by high or low levels of wildfire-related PM

2.5.
 Regions with an annual mean wildfire-related PM

2.5
 

concentration of 1.5 μg/m3 or higher during 2008–2019 were classified as high exposure areas, while those with concen-
trations below this threshold were classified as low exposure areas. The selection of the 1.5 μg/m3 threshold primarily 
derives from the distributional analysis conducted within the scope of the present study. Specifically, this threshold delin-
eates regions wherein approximately 50% of the area exhibits exposure levels to wildfire-related PM

2.5
 surpassing the 

aforementioned concentration. We applied separate conditional logistic regression models for each subgroup to derive 
subgroup-specific ORs estimates, thus facilitating a nuanced understanding of the differential impacts of wildfire-related 
PM

2.5
 exposure across various population segments and environmental contexts.

Calculating the attributable fraction (AF) of incidence cases due to wildfire-related PM
2.5

For AF calculations only, the OR obtained from our case-crossover analysis is interpretable as a relative risk (RR), as 
the control selection scheme based on density sampling leads to control times that represent the average exposure in 
the study population [29,30]. The RR quantified the likelihood of an incidence or mortality event happening for each 5-unit 
increase in the daily mean concentration, which aligns with previous studies and ensures comparability across exposure 
contexts, including during high-exposure wildfire events [31,32]. The RRs were further represented as percent change 
(PC): PC = (RRs − 1) * 100%.

To determine the annual number of attributable incidence cases/deaths of infectious diseases asso-
ciated with wildfire-related PM

2.5
, we used the formula to calculate the attributable cases (AC) of day i: 

ACi = [(exp(β ×△x) – 1)/exp(β ×△x)] × Ci. Here, β represents the log(RR) denoting the cumulative RR over 
specific lag days associated with a unit increase in wildfire-related PM

2.5
 on each day. Ci represents the city-

specific average of incidence cases from the day to the day with specific lag days. Δx represents the differences 
between the mean daily wildfire PM

2.5
 concentration across the cities and the 0 μg/m3. The total number of AC was 

obtained by summing the ACi values over the study period. Then, we calculated the attributable annual incidence 
rate by dividing the total AC by the mean population and the number of years covered by the study period specific 
to each city.



PLOS Medicine | https://doi.org/10.1371/journal.pmed.1004613  December 5, 2025 7 / 19

We also applied the same modeling process to PM
2.5

 originating from non-wildfire sources (non-wildfire-related PM
2.5

). 
We calculated the annual number of attributable incidence cases and deaths from infectious diseases associated with 
non-wildfire-related PM

2.5
 using 0 μg/m³ as the counterfactual (reference) concentration. Furthermore, we estimated the 

total number of cases attributable to PM
2.5

 (including non-wildfire-related PM
2.5

 and wildfire-related PM
2.5

) in general and 
specifically discerned the proportion of these cases that could be uniquely attributed to wildfire-related PM

2.5
 exposure.

Sensitivity analyses

To test whether 28 days were sufficient to capture the lag effects of wildfire-related PM
2.5

, our study implemented sensi-
tivity analyses that varied the maximum lag for wildfire-related PM

2.5
. These analyses included adjustments to the initial 

28-day period, shortening it to 14 days and extending it from 21 to 35 days. Additionally, to test the robustness of our 
results, we modified the degrees of freedom for meteorological variables to 4, 5, and 6. Furthermore, the meteorological 
variables at lag 0 were compared with the moving averages of these variables during the 0–28 day lag period.

To mitigate potential exposure misclassification arising from the spatial resolution of the exposure grid, we performed 
a sensitivity analysis restricted to large cities, defined as those with both a geographic area >500 km2 and a population 
>1 million. To determine the statistical significance of differences in the estimated ORs across these varied sensitivity 
analyses, we implemented a univariate fixed-effects meta-regression. This technique was crucial in identifying any poten-
tial statistical discrepancies among the results. Essentially, our approach entailed constructing models that incorporated 
effect estimates from different sensitivity analyses alongside their respective standard errors (SEs), correlated with meta-
predictors. The meta-regression model then facilitated the assessment of differences in effect estimates between strata 
using the likelihood ratio test.

We used R software (version 4.2.2) to perform all data analyses. The packages “gnm,” “dlnm,” and “mvmeta” were 
used to fit conditional logistic regression, distributed lag linear or non-linear model, and meta-regression model, respec-
tively. A two-sided p value less than 0.05 was considered to be statistically significant.

Results

Descriptive statistics

This study included 6,089,271 incident cases (female, 65.6%; male, 34.6%) and 1,034 death cases (female, 47.1%; 
male, 52.9%) during 2008–2019. Among these incident cases, seasonal influenza was identified as the predominant 
infectious disease, with the largest number of cases at 2,255,929 and a median age of 9.6 years, followed by mumps 
(2,155,598 cases with a median age of 9.8), tuberculosis (1,074,814 cases with a median age of 19.1), scarlet fever 
(294,059 cases with a median age of 7.3), rubella (256,061 cases with a median age of 13.8), measles (45,278 cases 
with a median age of 12.0), pertussis (5,722 cases with a median age of 7.6), meningococcal meningitis (1,405 cases 
with a median age of 13.0), and leprosy (405 cases with a median age of 18.0). Among mortality cases, tuberculosis was 
the most common cause of death, with 708 cases and a median age of 19 years, followed by seasonal influenza, menin-
gococcal meningitis, measles, mumps, and scarlet fever, each contributing to the overall mortality figures with varying 
case numbers (Tables 1 and S1 Table). The spatial distribution of the incident cases and death cases is visualized in 
Figs 1 and S2.

In China, the average total PM
2.5

 concentration was measured at 49.6 μg/m3, with wildfire-related PM
2.5

 contributing 
approximately 1.3 μg/m3, equating to about 2.7% of the total. Observing the long-term yearly mean distributions, there is 
a notable divergence in the trends of wildfire-related and non-wildfire-related PM

2.5
 (S3 Fig and S2 Table). The areas most 

impacted by wildfire-related PM
2.5

 include the northeastern and southwestern regions, along with select coastal zones 
within China. Conversely, the central regions of China are predominantly affected by higher concentrations of non-wildfire-
related PM

2.5
 (Fig 1).
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Associations by different respiratory transmitted diseases

We observed that exposure to wildfire-related PM
2.5

 was associated with a lower incidence of overall respiratory diseases 
in the first 6 days, and the risk of incidence increased from day 6 to 28. Thereafter, the associations gradually attenuated 
and became statistically nonsignificant after 28 days (S4 Fig). Consequently, we decided to use the duration of 0 to 28 
days to derive the risk estimates. Similarly, for mortality, we utilized the same lag duration to determine the risk estimates.

Every 5 μg/m3 increase in the concentrations of wildfire-related PM
2.5

 was associated with a 6.8% increase (95% CI: 
5.0%, 8.7%) in the incidence of overall respiratory transmitted diseases. Additionally, this increase in wildfire-related 
PM

2.5
 was associated with a 28.6% (95% CI: 21.0%, 36.8%), 5.2% (95% CI: 2.3%, 8.3%), 12.6% (95% CI: 9.5%, 15.8%), 

and 13.6% (95% CI: 5.6%, 22.2%) increase in the incidence of seasonal influenza, scarlet fever, rubella, and measles, 
respectively.

Conversely, every 5 μg/m3 increase in non-wildfire-related PM
2.5

 was linked to a 1.2% (95% CI: 1.0%, 1.4%) incre-
ment in the overall incidence of respiratory transmitted diseases. This increase in non-wildfire-related PM

2.5
 also showed 

correlations with specific diseases: a 2.3% (95% CI: 2.0%, 2.6%) increase for seasonal influenza, a 0.4% (95% CI: 0.2%, 
0.7%) rise for mumps, an 8.9% (95% CI: 2.6%, 15.6%) augmentation for meningococcal meningitis, and a 20.5% (95% 
CI: 0.3%, 44.0%) escalation for leprosy. Null associations were observed between death cases and exposure to both 
wildfire-related and non-wildfire-related PM

2.5
 (Fig 2).

We evaluated the non-linear relationship between exposure to wildfire-related PM
2.5

 and the incidence of overall 
respiratory transmitted diseases, as depicted in Fig 3. This evaluation highlighted concentration–response associations, 
demonstrating positive non-linear curves between daily levels of wildfire-related PM

2.5
 and the incidence of respiratory 

transmitted diseases. These curves consistently showed an increase in incidence rates with no apparent thresholds. 
Notably, the slope of these curves varied in response to different concentrations of wildfire-related PM

2.5
 during short-term 

exposures. Specifically, at wildfire-related PM
2.5

 levels below 3 μg/m3, the slope was observed to be steeper, whereas it 
became more gradual at higher concentration ranges. Given the rarity of wildfire-related PM

2.5
 concentrations >5 μg/m³, 

estimates in this range reflect sparse data and should be interpreted as indicative of extreme exposure scenarios only.

Stratified analyses for the estimated associations

We examined whether the estimated association between non-wildfire-related and wildfire-related PM
2.5

 and overall respi-
ratory transmitted diseases differed among subpopulations. Our findings indicated a pronounced gender-based suscepti-
bility, with males exhibiting a higher susceptibility (19.9% [95% CI: 14.8%, 25.2%]) to the adverse effects of wildfire-related 

Table 1.  Descriptive of specific-cause respiratory transmitted diseases counts in China.

Incidence case Incidence case

Number Female Male Age Number Female Male Age

Min Median Max Min Median Max

Overall respiratory transmitted diseases 6,089,271 3,996,589 2,092,682 – – – 1,034 487 547 – – –

Seasonal influenza 2,255,929 1,252,309 1,003,620 4.9 9.6 23.0 214 134 80 6 17 23.0

Mumps 2,155,598 1,525,348 630,250 4.2 9.8 23.0 3 1 2 6 13.5 22.4

Tuberculosis 1,074,814 762,876 311,938 4.9 19.1 23.0 708 311 397 5.9 19 23

Scarlet fever 294,059 199,347 94,712 5.0 7.3 23.0 3 1 2 6 12 13

Rubella 256,061 209,991 46,070 4.8 13.8 23.0 – – – – – –

Measles 45,278 41,613 3,665 5.0 12.0 23.0 15 5 10 6.3 8 22.3

Pertussis 5,722 3,693 2,029 5.3 7.6 22.9 – – – – – –

Meningococcal meningitis 1,405 1,132 273 5.7 13.0 23.0 91 35 56 5.7 12 21.8

Leprosy 405 280 125 6.0 18.0 22.8

https://doi.org/10.1371/journal.pmed.1004613.t001

https://doi.org/10.1371/journal.pmed.1004613.t001
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Fig 1.  Annual spatial distribution of incidence cases and concentrations of wildfire-related vs. non-wildfire-related PM
2.5

, with temporal trends. 
Panel A presents the mean number of incident cases from 2008 to 2019; Panel B shows the population-weighted means of wildfire-related PM

2.5
; 

Panel C displays the population-weighted means of non-wildfire-related PM
2.5

; and Panel D illustrates the monthly population-weighted means of both 
wildfire-related (the lower line) and non-wildfire-related PM

2.5
 (the higher line). PM

2.5
 refers to particulate matter with a diameter of less than 2.5 microm-

eters. Notes; Spatial boundaries were retrieved from Natural Earth (https://www.naturalearthdata.com/) using the “rnaturalearth” package (https://github.
com/ropenscilabs/rnaturalearth).

https://doi.org/10.1371/journal.pmed.1004613.g001

https://www.naturalearthdata.com/
https://github.com/ropenscilabs/rnaturalearth
https://github.com/ropenscilabs/rnaturalearth
https://doi.org/10.1371/journal.pmed.1004613.g001
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Fig 2.  Estimated associations between respiratory infectious cases and death and wildfire-related or non-wildfire-related PM
2.5

 exposure 
(every 5 μg/m3 increase). Notes: Subfigure A presents the estimated association between incident cases of respiratory infections and wildfire-related 
PM

2.5
; Subfigure B presents the estimated association between incident cases of respiratory infections and non-wildfire-related PM

2.5
; Subfigure C pres-

ents the estimated association between death cases of respiratory infections and wildfire-related PM
2.5

; Subfigure D presents the estimated association 
between death cases of respiratory infections and non-wildfire-related PM

2.5
. SI, Seasonal influenza; TB, Tuberculosis; SF, Scarlet fever; MM, Menin-

gococcal meningitis. Models are time-stratified case-crossover (conditional logistic regression) adjusted for daily mean temperature, relative humidity, 
precipitation, and total PM

2.5
.

https://doi.org/10.1371/journal.pmed.1004613.g002

Fig 3.  Estimated nonlinear associations between wildfire-related PM
2.5

 and respiratory transmitted diseases. Notes: The figure above illustrates 
the estimated non-linear association between wildfire-related PM

2.5
 and respiratory transmitted disease. The figure below depicts the population density 

of wildfire-related PM
2.5

 in the current study. Models are time-stratified case-crossover (conditional logistic regression) adjusted for daily mean tempera-
ture, relative humidity, precipitation, and total PM

2.5
.

https://doi.org/10.1371/journal.pmed.1004613.g003

https://doi.org/10.1371/journal.pmed.1004613.g002
https://doi.org/10.1371/journal.pmed.1004613.g003
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PM
2.5

 compared to females (4.7% [95% CI: 3.1%, 6.4%]). Among the different age groups, children and adolescents aged 
9–12 years showed the greatest vulnerability to the adverse effects of wildfire-related PM

2.5,
 with an increase of 8.9% 

(95% CI: 5.9%, 11.9%). Additionally, the age groups of 4–9 years and 12–15 years also demonstrated heightened suscep-
tibility to these effects, with increases of 7.3% (95% CI: 4.8%, 10.0%) and 7.7% (95% CI: 4.5%, 11.0%), respectively (S5 
Fig). The stratified analysis for the seasonal influenza, scarlet fever, rubella, and measles shown in S6 Fig.

Our analysis incorporated stratified assessments based on the four meteorological seasons to evaluate the impact of 
PM

2.5.
 The findings indicated that the adverse effects of wildfire-related PM

2.5
 were most pronounced during the autumn 

season, with the highest OR value of 1.519 (95%CI: 1.431, 1.612), as illustrated in S5A Fig. Notably, this occurred despite 
the concentration of wildfire-related PM

2.5
 being the lowest among the four seasons (as shown in Fig 1D). In contrast, the 

impact of non-wildfire-related PM
2.5

 during the autumn and summer seasons displayed similar patterns of adverse effects, 
as depicted in S5B Fig.

The stratified analysis, differentiated by regions with high or low levels of wildfire-related PM
2.5

, revealed that the 
adverse effects of wildfire-related PM

2.5
 were more pronounced in regions with low levels of this pollutant, exhibiting an 

OR of 1.284 (95% CI: 1.239, 1.331). In contrast, the adverse effects of non-wildfire-related PM
2.5

 were greater in regions 
with high levels of wildfire-related PM

2.5
, with an OR of 1.021 (95% CI: 1.016, 1.027).

Comparative impacts from wildfire-related and non-wildfire-related PM2.5

Fig 4 illustrated the comparative analysis of the impacts attributed to wildfire-related PM
2.5

 versus non-wildfire-
related PM

2.5
. It was discerned that wildfire-related PM

2.5
 bears a greater significance in public health, despite the 

fact that high-concentration exposure to wildfire-related PM
2.5

 is less common compared to non-wildfire-related 
PM

2.5
 (as indicated in Fig 1B and 1C). The analysis underscores that while wildfire-related PM

2.5
 constitutes only 

2.7% of the total PM
2.5

, it contributes significantly to respiratory transmitted diseases, accounting for 10.8% of all 
PM

2.5
-associated cases. Particularly for seasonal influenza, the proportion of cases associated with wildfire-related 

PM
2.5

 reaches 14.3% of the total PM
2.5

-associated respiratory transmitted diseases. Furthermore, the incidence of 
cases associated with wildfire-related PM

2.5
 varies across different genders and age groups. In regions with lower 

levels of wildfire-related PM
2.5

 29.7%), the proportion of associated cases is greater than that in regions with higher 
levels (3.7%). The distribution of the proportion of cases related to wildfire-related PM

2.5
 was calculated based on 

the regional variations in wildfire-related PM
2.5

 levels. The distribution of the proportion based on the national esti-
mated association shown in S7 Fig.

The robustness of the findings was demonstrated through sensitivity analyses, which involved changing the maximum 
lag time for wildfire-related PM

2.5
 to 27, 29, 30, and 31 days. We also adjusted the degrees of freedom for meteorologi-

cal variables to 4, 5, and 6, and compared meteorological variables at lag 0 with their averages over a 0–28 day period. 
These analyses, detailed in S3 Table, ensured the reliability of our findings and for assessing the potential variability in our 
results under different analytical conditions.

Discussion

Principal findings

Leveraging a comprehensive nationwide surveillance dataset spanning 12 years, our study established a significant 
correlation between exposure to wildfire-related PM

2.5
 and an elevated incidence of respiratory transmitted diseases. How-

ever, no significant association with mortality was observed. We found that exposure to wildfire-related PM
2.5

 was signifi-
cantly associated with increased incidence in respiratory transmitted diseases, and specific diseases including seasonal 
influenza, scarlet fever, rubella, and measles at a national level, but the associations varied across different demograph-
ics, seasons, and geographical regions.
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Fig 4.  Health impacts of PM
2.5

 from wildfire and non-wildfire sources. Notes: Proportion indicates the contribution of wildfire-related PM
2.5

 to PM
2.5

-
linked respiratory transmitted diseases. Subfigure A displays the proportion of wildfire-related PM

2.5
 and non-wildfire-related PM

2.5
 in total PM

2.5
. Subfig-

ure B illustrates the number of respiratory transmitted diseases and specific diseases (e.g., seasonal influenza), along with the proportion of attributable 
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By comparison, we found that wildfire-related PM
2.5

 had stronger effects on the respiratory transmitted diseases than 
other source PM

2.5
, with a 6.8% increase in incidence of overall infectious diseases for wildfire-related PM

2.5
 and a 1.2% 

increase in incidence of overall infectious diseases for non-wildfire-related PM
2.5

. And compared with non-wildfire-related 
PM

2.5
, wildfire-related PM

2.5
 only accounted 2.7% of total PM

2.5
, while accounting for 14.7% of all PM

2.5
-associated cases. 

These findings likely reflect both the episodic nature and higher toxicity of wildfire-related PM
2.5

, consistent with prior 
evidence [12,32,33]. Wildfire-related PM

2.5
 differs in chemical composition from urban background PM

2.5
; it contains higher 

fractions of organic carbon, polycyclic aromatic hydrocarbons, black carbon, and reactive oxygen species, which have 
been shown to induce stronger oxidative stress, inflammation, and immune dysfunction [34,35]. Previous studies have 
demonstrated that wildfire PM

2.5
 is associated with disproportionately higher health risks per unit exposure compared with 

other PM
2.5

 sources, including greater impacts on respiratory and cardiovascular outcomes [34–36].
Previous studies have also reported the deleterious effects of PM

2.5
’s on various respiratory diseases, including COPD 

[37,38], asthma [39,40], lung cancer [41], idiopathic pulmonary fibrosis [42,43], acute respiratory infections [44,45], 
bronchiectasis [46], and tuberculosis [47,48]. However, most of this research has focused on chronic non-communicable 
conditions. Our study expands this evidence base by highlighting the impact of PM

2.5
—particularly from wildfires—on 

respiratory infections. Notably, recent studies have shown that wildfire-related PM
2.5

 exacerbates COVID-19 incidence 
and mortality [16,49]. Given that both COVID-19 and influenza are icosahedral respiratory viruses sharing similar trans-
mission routes and immune vulnerabilities, air pollution may amplify risks through shared mechanisms. Evidence from 
wildfire-prone regions such as California and Brazil supports this association [50–53]. Our findings align with this literature 
and suggest that even short-term wildfire PM

2.5
 exposure can impair host defenses and promote viral spread, underscor-

ing the need for coordinated air quality and epidemic control strategies during wildfire seasons.
We also assessed the nonlinear exposure–response between the wildfire-related PM

2.5
 and incidence of respiratory 

transmitted diseases, which suggests that there is no safe threshold of the wildfire-related PM
2.5

 exposure. Although 
the national analysis indicates a non-linear association between the concentration of wildfire-related PM

2.5
 and the inci-

dence of respiratory transmitted diseases, it is noteworthy that majority of the sample are concentrated within the 0–5 
μg/m3 range of wildfire-related PM

2.5
 concentration. Within this concentration range, the association between wildfire-

related PM
2.5

 and the incidence of respiratory transmitted diseases tends to be linear. Additionally, as the concentration of 
wildfire-related PM

2.5
 increases, the confidence interval correspondingly expands. Compared to previous studies on the 

non-linear association of the total PM
2.5

, our study finds that the effects are more pronounced at lower concentrations, with 
the slope becoming gentler at higher concentrations, similar to previous findings [54–58]. The difference lies in the fact 
that a large portion of the population is actually exposed to lower concentrations of wildfire-related PM

2.5
.

Wildfire-related PM
2.5

 may promote the onset of respiratory infections through several biological mechanisms. Wildfire 
smoke, represented by wildfire-related PM

2.5
, has a more complex composition than non-wildfire PM

2.5
, including microbes 

[8]. Due to the lack of assessment of wildfire-related microbes, a direct evaluation of the association between microbes 
and infectious diseases cannot be conducted. This suggests that the influence of wildfire smoke on infectious diseases is 
more complex than PM

2.5
 alone, involving the interaction between microbes in wildfire smoke and wildfire PM

2.5
. One sup-

porting piece of evidence is the increased risk of fungal infections following exposure to wildfire smoke [59]. In the areas 
with lower level of wildfire-related PM

2.5
 concentrations, up to 42.6% of respiratory transmitted disease cases associated 

with PM
2.5

 can be specifically attributed to wildfire exposure. This may be due to the smaller particle size of particulates 

cases from wildfire-related PM
2.5

, defined as [attributable to wildfire-related PM
2.5

] ÷ ([attributable to wildfire-related PM
2.5

] + [attributable to non-wildfire 
PM

2.5
]). Subfigure C presents the number of respiratory transmitted diseases and their proportions attributed to wildfire-related PM

2.5
 and non-wildfire-

related PM
2.5

, categorized by gender groups, age groups, and high or low exposure areas. Subfigure D shows the proportion of respiratory transmitted 
diseases attributed to wildfire-related PM

2.5
 by provinces. “NA” denotes provinces/diseases with unavailable data. Spatial boundaries were retrieved from 

Natural Earth (https://www.naturalearthdata.com/) using the “rnaturalearth” package (https://github.com/ropenscilabs/rnaturalearth).

https://doi.org/10.1371/journal.pmed.1004613.g004

https://www.naturalearthdata.com/
https://github.com/ropenscilabs/rnaturalearth
https://doi.org/10.1371/journal.pmed.1004613.g004


PLOS Medicine | https://doi.org/10.1371/journal.pmed.1004613  December 5, 2025 14 / 19

from wildfires compared to those from urban sources. After long-distance transport, these smaller particles may possess 
greater oxidative capacity [60,61]. Furthermore, despite lower concentrations after long-distance transport and particu-
late settling, the remaining particles could potentially pose a greater health hazard. Such properties may contribute to 
greater biological activity and increased incidence of infectious diseases, even at lower ambient concentrations. Currently, 
research on the mechanisms by which PM

2.5
 impacts the incidence of infectious diseases is limited. Nevertheless, we 

hypothesize several potential pathways. First, PM
2.5

 may increase the risk of infection by impairing the respiratory tract 
and lung barrier function, thereby facilitating pathogen invasion and increasing the likelihood of disease onset [62,63]. 
Second, PM

2.5
 could exacerbate infection-related symptoms by inducing oxidative stress and inflammatory responses, 

disrupting the immune system’s equilibrium, and thereby increasing the risk and severity of infectious diseases [62–64]. It 
is important to note that current research on these mechanisms is relatively limited, necessitating further comprehensive 
investigations to fully understand the impact of PM

2.5
 on infectious diseases.

Multiple studies indicates that climate change is poised to escalate both frequency and intensity of wildfires in the future 
[1,3,65,66]. Prior investigations have revealed that billions of people globally are exposed to substantial wildfire air pollu-
tion, especially in hotspot and underdeveloped regions [22]. However, our research extends these findings, showing that 
even populations in areas not directly afflicted by intense wildfire pollution experience substantial effects, underscoring 
the far-reaching, global ramifications of climate change. This highlights the necessity for extensive international cooper-
ation to curtail global temperature increases and mitigate wildfire incidents effectively [65]. Earlier research supports this 
approach, indicating that maintaining the global average temperature increase within 2.0 or 1.5 °C above pre-industrial 
levels could avert 60% or 80% of the projected escalation in wildfire exposure, respectively [6,65].

Strengths and limitations

The study leveraged a comprehensive national dataset, notable for its substantial sample size and extensive coverage 
across geographic regions. This dataset, comprising data from 6 million cases involving children and adolescents, pro-
vided a unique opportunity for a systematic and consistent evaluation of associations. Our study encompassed a wide 
range of wildfire-related pollution levels, allowing us to provide more representative estimates of the effects of short-term 
wildfire-related PM

2.5
 exposure on respiratory transmitted diseases. Several limitations of this study should be noted.

There is a potential for exposure measurement error due to the use of city average values as proxies for individual 
exposure levels. The average exposure calculations for larger geographic areas may not precisely reflect the individual 
exposure levels to wildfire-related air pollution, which can vary significantly within a city. Additionally, the 0.25° × 0.25° 
(~28 km) grid resolution of the exposure dataset may not capture fine-scale spatial heterogeneity, particularly in small or 
topographically complex cities. Additionally, the inability to access the specific address data of children and adolescents 
for privacy reasons might have introduced non-differential error, typically leading to an attenuation of effect estimates 
[67]. The average exposure calculations for larger geographic areas may not precisely reflect the individual exposure 
levels to wildfire-related air pollution, which can vary significantly within a city. Despite the CISDCP encompassing over 
95% of health facilities, there remains a possibility of omission or underreporting of some infectious and mortality cases. 
Such underreporting could introduce errors in the outcome measurement, potentially biasing the associations between 
wildfire-related PM

2.5
 and respiratory transmitted diseases towards null, under the assumption that these inaccuracies 

are not related to wildfire-related PM
2.5

 exposure. The data was sourced from China, implying that its conclusions might 
not be entirely applicable to other countries or regions with different wildfire patterns and air pollution components. How-
ever, to our knowledge, this study is the first to encompass all regions of China and include over 330 million children 
and adolescents aged 4–24 years, providing large-scale evidence for the association between wildfire-related PM

2.5
 and 

respiratory transmitted diseases. Although geographical and environmental differences may limit the generalizability of the 
study results, the large scale and comprehensiveness of this research make it a significant reference for understanding 
the impact of wildfire PM

2.5
 on human health. This study focused on individuals aged 4–24 years, aligning with the formal 
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education age range in China. However, several respiratory transmitted diseases—notably measles, pertussis, meningo-
coccal meningitis, and diphtheria—commonly affect children under 5 years of age. Excluding children younger than three 
may result in an underestimation of the real disease burden and limit the generalisability of our findings to early childhood. 
Further research is needed to evaluate the health impacts of wildfire-related PM

2.5
 exposure in younger children. Addition-

ally, the exposure window used in this study (lag 0–28 days) is more appropriate for acute infections with short incubation 
periods. Interpretations of associations for chronic infectious diseases, such as tuberculosis or leprosy, should therefore 
be made with caution. Finally, the limited number of mortality events in our dataset substantially constrained statistical 
power for detecting associations with mortality outcomes; as such, these results should be interpreted with caution and 
warrant further investigation in larger datasets. Although a linear exposure–response function was applied, the +5 µg/m³ 
increment may reflect an extreme value in some regions, potentially introducing instability in lag-specific estimates, partic-
ularly in early lags and low-exposure settings.

Employing an extensive national dataset and established statistical methodologies, our study identified a robust asso-
ciation between short-term exposure to wildfire-related PM

2.5
 and an increased incidence of respiratory transmitted dis-

eases, with greater impact compared with non-wildfire-related PM
2.5

. The high proportion of respiratory transmitted disease 
cases associated with wildfire-related PM

2.5
, out of all cases associated with total PM

2.5
 in areas with lower concentrations 

of wildfire-related PM
2.5

, confirms the extensive impact of wildfires on human health. Compared to the direct effects in 
high-concentration areas, populations in low-concentration areas also face a higher risk of respiratory transmitted diseases.
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S5 Fig.  Estimated associations between respiratory infectious cases and wildfire-related or non-wildfire-related 
PM2.5 exposure by subpopulation. Note: Low refers to areas with yearly wildfire-related PM

2.5
 concentrations <1.5 μg/

m3; High denotes areas with yearly wildfire-related PM
2.5

 concentrations ≥1.5 μg/m3. Subfigure A presents the estimated 
association between respiratory transmitted disease and wildfire-related PM

2.5
 by subgroups, while Subfigure B presents 

the estimated association between respiratory transmitted diseases and non-wildfire-related PM
2.5

 by subgroups.
(TIF)

S6 Fig.  Results of subgroup analysis 
(TIF)

S7 Fig.  Proportion that contributed to Wildfire-related PM2.5 of PM2.5-linked respiratory transmitted diseases 
based on the national estimated association. Notes; Spatial boundaries were retrieved from Natural Earth (https://
www.naturalearthdata.com/) using the “rnaturalearth” package (https://github.com/ropenscilabs/rnaturalearth).
(TIF)

S4 Table.  Respiratory infectious disease cases attributable to wildfire-related PM2.5 by province, China. 
(XLSX)
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