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Abstract

Background

There has been rapid expansion in the development of machine learning
algorithms to predict suicidal behaviours. To test the accuracy of these algo-
rithms for predicting suicide and hospital-treated self-harm, we undertook a
systematic review and meta-analysis. The study was registered (PROSPERO
CRD42024523074).

Methods and findings

We searched PubMed, PsycINFO, Scopus, EMBASE, IEEE, Medline, CINALH and
Web of Science from database inception until 30 April 2025 to identify studies using
machine learning algorithms to predict suicide, self-harm and a combined suicide/
self-harm outcome. Studies were included if they examined suicide or hospital-
treated self-harm outcomes using a case-control, case-cohort or cohort study design.
Studies were excluded if they used self-reported outcomes or examined outcomes
using other study designs. Accuracy was assessed using statistical methods appro-
priate for diagnostic accuracy studies. Fifty-three studies met the inclusion criteria.
The area under the receiver operating characteristic curves ranged from 0.69 to
0.93. Sensitivity was 45%—82% and specificity was 91%—95%. Positive likelihood
ratios were 6.5-9.9 and negative likelihood values were 0.2—-0.6. Using in-sample
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prevalence values, the positive predictive values ranged from 6% to 17%. Using
out-of-sample prevalence values at an LR+ value of 10, the positive predictive value
was 0.1% in low prevalence populations, 17% in medium prevalence populations and
66% in high prevalence populations. The main study limitations were the exclusion of
relevant studies where we could not extract sufficient information to calculate accu-
racy statistics and between-study differences in the follow-up time over which the
outcomes were observed.

Conclusions

The accuracy of machine learning algorithms for predicting suicidal behaviour is too
low to be useful for screening (case finding) or for prioritising high-risk individuals for
interventions (treatment allocation). For hospital-treated self-harm populations, man-
agement should instead include three components for all patients: a needs-based
assessment and response, identification of modifiable risk factors with treatment
intended to reduce those exposures, and implementation of demonstrated effective
aftercare interventions.

Author summary

Why was this study done?

» + Numerous risk assessment scales have been developed over the past 50 years
to identify patients at high risk of suicide or self-harm. These scales classify
patients as either at high or low risk, and treatment pathways are frequently
based on the results of this assessment.

* < |n general, these scales have poor predictive accuracy, and this is one of the
reasons why many clinical practice guidelines strongly discourage risk assess-
ment for suicide and self-harm.

 « The availability of modern machine learning methods and access to electronic
health record and registry data has re-focussed attention on developing new
algorithms to predict suicide and self-harm.

What did the researchers do and find?

» We undertook a systematic review and meta-analysis to summarise the predictive
properties of machine learning algorithms to predict suicide and self-harm.

 The overall quality of the research in this area was poor, with most studies at
either high or unclear risk of bias.

» We found that the predictive properties of these machine learning algorithms
were poor and no better than traditional risk assessment scales.
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What do these findings mean?

* Machine learning algorithms incorrectly classify more than half the people who subsequently present to hospital for
self-harm or die by suicide as low risk.

* A classification of high risk poorly forecasts who will engage in suicide or self-harm.

* There is insufficient evidence to warrant changing recommendations in current clinical practice guidelines about risk
assessment.

* The findings are limited by the exclusion of studies where we could not extract the information required to undertake a
meta-analysis and by the included studies assessing the outcomes over different time periods.

Introduction

Numerous studies have sought to identify patients at high risk of suicide or self-harm so that treatment can be provided spe-
cifically to them [1,2]. The risk assessment scales that have been developed stratify patients into high or low risk categories,
with treatment pathways based on the classification [3]. The main clinical group that has been the focus of risk stratification
is patients treated for self-harm (self-poisoning or self-injury) in the general hospital setting. Patients classified as high risk
are typically prioritised for more intensive aftercare interventions than patients classified as low risk. Immediate interventions
are classically psychiatric inpatient admission, close nurse observation or more urgent, frequent or intense community-based
treatment (supervision). A high-risk classification, however, is not necessary to allocate effective, longer-term therapy-based
interventions for suicidal behaviours like cognitive behavioural therapy in unselected self-harm populations [4], dialectical
behaviour therapy in selected populations [5] or for suicide prevention in various clinical populations [6].

There is clear evidence that the traditional risk assessment scales used to predict suicide or self-harm have modest
sensitivity and low positive predictive values [7-9]. In keeping with these findings, clinical guidelines do not recommend
using risk stratification to allocate treatment in hospital-treated self-harm populations, and the US Preventive Services
Task Force does not recommend screening for suicide risk in primary care [10—12], although conversely, the US Joint
Commission recommends screening for suicide ideation for all patients over 12 years of age in all behavioural health
services [13].

Efforts to improve risk prediction have recently focussed on using machine learning to develop algorithms that can pre-
dict suicide and self-harm. Machine learning is a branch of artificial intelligence in which prediction algorithms are devel-
oped by automatically and iteratively testing for complex associations between many factors in a dataset. Many studies
emphasise the improved accuracy of their algorithms [14], suggesting that the poor accuracy of the traditional instruments
has been overcome. But an important limitation of some of these studies, is a reliance on a case-control data to develop
and evaluate algorithms. The use of the case-control design in diagnostic accuracy studies has previously been criti-
cised as this design overestimates accuracy [15]. This overestimate occurs because the prevalence of the outcome is
determined by the study design, and it is common in case-control studies to use a sample comprising half cases and half
controls (meaning the apparent prevalence is 50%). The positive and negative predictive values of any risk score, how-
ever, are closely related to the prevalence of the outcome [16]. Suicide and self-harm are rare events, even in populations
where the prevelence of these behaviours is high [14]. Thus, the high positive predictive values reported in some studies
may be an artefact of the case-control design. This criticism is less likely to apply to cohort studies, although the retro-
spective nature of many cohort studies, where exposure data are collected when the outcome is already known, may be
another potential source of bias.

To test the predictive accuracy of risk prediction algorithms developed using machine learning techniques, we under-
took a systematic review and meta-analysis, paying particular attention to study design issues and their implications for
prevalence. Our goal was to estimate a range of accuracy statistics of algorithm performance, namely, the area under
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the curve, sensitivity, specificity, likelihood ratios and positive and negative predictive values. We focused on studies that
predict either hospital-treated self-harm or suicide mortality as these are clinically relevant outcomes used by clinicians
to differentially allocate treatment for high-risk patients and which usually rely on the same institutional data sources to
identify outcomes for all participants.

Methods

We report our study using the Preferred Reporting ltems for Systematic Reviews and Meta-Analyses (PRISMA 2020)
statement [17] (S1 PRISMA Checklist). The study was registered (PROSPERO: CRD42024523074). Screening, full text
review, data extraction and quality assessment were undertaken using Covidence.

Search strategy and selection criteria

We searched PubMed, PsycINFO, Scopus, EMBASE, IEEE, Medline, CINALH and Web of Science from database incep-
tion until 30 April 2025 with the following search terms (“suicid*” OR “self?harm”) AND (“risk” OR “predict*” OR “class*”)
AND (“machine learning”). No language restrictions were applied. We screened reviews, editorials and commentaries for
further references. Titles and abstracts were screened independently by two authors. These studies were then assessed
for eligibility in full-text review by the same authors. Disagreements were resolved by consensus.

Studies were eligible for inclusion if (a) the outcome was suicide or hospital-treated self-harm or a composite of these
two; (b) the study involved primary research using a case-control, case-cohort or cohort design; (c) the study reported on
a machine learning algorithm resulting in two or more risk factors measured at the individual level; (d) the study reported
outcomes for any population or subgroup within the population (e.g., psychiatric treatment populations, people treated for
self-harm); and (e) the study reported sufficient data to extract the number of true positives, false positives, false nega-
tives and true negatives.

We excluded studies if (a) they only used suicidal ideation as the outcome; (b) used self-reported outcomes (e.g.,
self-reported suicide attempt or self-reported suicide risk); (c) the outcome was a specific suicide method (e.g., suicide by
firearm); or (d) they only used aggregate predictors such as the number of firearm stores in an area.

Data extraction

The following data were extracted for each study: the lead author and publication year, title, country where the study was
conducted, study population, study design (case-control, case-cohort, cohort), data source, study outcomes (suicide,
self-harm, or a combined suicide/self-harm endpoint), machine learning method, time frame over which the outcome was
assessed (30 days, 60 days, 90 days, 180 days, 1 year, other), and for each outcome, the number of true positives, false
positives, false negatives and true negatives. If multiple thresholds were reported, diagnostic values were extracted at the
95th percentile as this is a commonly used threshold in this literature. If diagnostic values were reported at multiple time
points, the longest time point was selected as this will give the most optimistic positive predictive value. Where possible,
results from validation samples were extracted. For studies reporting multiple diagnostic values from different algorithms,
we prioritised extracting results for the best-fitting model as identified by the authors. If this was unclear, results from the
algorithm with the highest sensitivity was instead prioritised. Where results were stratified by sex, these were combined
into an overall count. If data from different cohorts were reported, we extracted results from mental health service cohorts.
Data were independently extracted by two authors with disagreements resolved by consensus.

Quality and risk of bias

The quality of each study was assessed in two ways. We examined if there was an explicit statement that the study
reported against a relevant guideline (e.g., Transparent Reporting of a Multivariable Prediction Model for Individual
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Prognosis or Diagnosis (TRIPOD) [18] or Standards for Reporting of Diagnostic Accuracy Studies (STARD) [19]). We
then examined adherence to the TRIPOD checklist. Risk of bias was assessed using the second revision of the Quality
Assessment of Diagnostic Accuracy Studies instrument (QUADAS 2) [20]. Assessment was done by two authors with
disagreements resolved by a third author.

Statistical analyses

We conducted our meta-analyses in four stages. First, we estimated the pooled area under the receiver operating char-
acteristic curve (AUROC) [21]. Next, we estimated the pooled sensitivity and specificity using a bivariate random effects
meta-analysis [22]. This method, also known as a Reitsma model, jointly estimates the pooled sensitivity and specificity
after a logit transformation by also estimating the negative correlation between these two estimates. We estimated hetero-
geneity at this stage using the adjusted F? statistic [23] and plotted the summary receiver operating characteristic curves
(sROC). The adjusted P statistic was developed for the meta-analyses of diagnostic accuracy studies and adjusts for sam-
ple size, the largest source of heterogeneity in these types of studies. The sROC is similar to a forest plot except that it
plots study-specific estimates on two dimensions, sensitivity and the false positive rate (i.e., 1 — specificity). Third, we esti-
mated the pooled positive and negative likelihood ratios (LR+ and LR-) using the method proposed by Zwinderman and
Bossuyt [24]. They recommend estimating these measures by sampling the sensitivities and specificities derived from the
analysis described above using the bivariate normal distribution and then calculating the LR values in each sample. We
therefore drew 100,000 samples using a Monte Carlo Markov chain. For each sample, we calculated LR+ and the LR-
and then estimated the sample mean and 95% credible intervals (the 2.5 and 97.5 percentiles of the samples). Fourth,

we used Bayes’ rule to estimate the in-sample positive and negative predictive values. Under Bayes’ rule, the positive

and negative predictive values are a function of the baseline prevalence of the outcome and the likelihood ratios [25]. We
estimated the baseline prevalence from the cohort studies and applied these to both cohort and case-control likelihood
ratios. Baseline prevalence was calculated using a random effects meta-analysis, where the proportions were transformed
using the standard arcsine transformation prior to analysis. The back-transformed prevalences were therefore used as the
pre-test probabilities. We report the median positive and negative predictive values and their 2.5 and 97.5 percentiles. All
these analyses were stratified by outcome (suicide, self-harm, suicide/self-harm) and study design (case-control, cohort).
Case-cohort and cohort studies were grouped together because case-cohort studies are a subset of cohort studies. We
only undertook meta-analysis when data from five or more studies were available for analysis.

To examine how a hypothetical algorithm with indicative accuracy would perform in different clinical populations, we
estimated out-of-sample positive predictive values using 1-year baseline prevalences from six different populations for
varying LR+ values. These populations (and outcomes) were suicide in general population (0.01%), suicide after dis-
charge from inpatient psychiatric facility (0.5%), self-harm in general population (1.5%), suicide after discharge for self-
harm (2.0%), self-harm after discharge from inpatient psychiatric facility (6.5%) and self-harm after discharge for self-harm
(16%). These prevalence estimates were drawn from the literature [26—-30].

All analyses were undertaken in R version 4.4.2, with the meta-analyses undertaken using the mada and metafor pack-
ages [21,31].

Results

Our search identified 7,319 studies, together with 15 additional studies which were identified from citation searching and
other sources (Fig 1). After removing duplicates, we screened the titles and abstracts of 2,853 studies. 2,613 of these
were excluded (including three for which we could not obtain a full text version of the article) leaving 240 studies that were
assessed for eligibility using full text screening. 187 of these were excluded: 98 because they did not examine suicide or
hospital-treated self-harm, 48 because of insufficient data, 21 because they were not primary research, 15 because of the
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Fig 1. PRISMA flow diagram.

https://doi.org/10.1371/journal.pmed.1004581.9g001

wrong study design, and five for other reasons. This left 53 studies [32—84]. These studies analysed 35 million records
and 249,000 occurrences of suicide and self-harm.

The study characteristics are summarised in Table 1. 30 studies were conducted in the United States, five studies in
Denmark, five studies in the United Kingdom, three studies in Canada, two studies in South Korea, two studies in Swe-
den, and one study each in China, France, Iran, the Netherlands, Spain and Turkey. All studies were published between
2015 and 2025 with 44 of these from 2020 onwards.
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Thirty-six studies used a retrospective cohort design and 17 used a case-control design. Thirteen studies predicted
suicide, 30 predicted hospital-treated self-harm, 7 predicted suicide/self-harm and three studies developed algorithms
separately for suicide and self-harm. The time frame over which these predictions were made were 30 days (3 studies),
90 days (12 studies), 180 days (3 studies), 1 year (11 studies) and >1 year (15 studies). In nine studies, the prediction
window was not reported. There was considerable variation in the study populations. Twenty-four studies developed their
algorithms in general population or general patient populations. Twenty-two studies developed algorithms in patients
treated for psychiatric problems. Six studies developed algorithms in patients presenting to hospital for self-harm or with
a history of self-harm. One study used data from another population (patients with multiple sclerosis). The data were
predominately drawn from electronic health records, insurer claims data and registry data. The studies used a variety of
machine learning methods, including random forests (10 studies), gradient boosted trees (8 studies), classification and
regression trees (5 studies), LASSO models (5 studies) naive Bayes classifiers (3 studies) and ensemble learning (3
studies).

The findings of nine studies were reported using TRIPOD or STARD guidelines. Of the 31 items in the TRIPOD check-
list, three items were judged to be not relevant for most studies and were removed from the quality assessment. Of the
remaining 28 items, the mean number of checklist items that were adhered to across the studies was 20. Checklist items
with low adherence were explaining how the sample size had been arrived at (11 studies), describing how missing data
was handled (19 studies), reporting unadjusted associations between candidate predictors and the outcome (10 studies)
and providing details about how the risk groups were created (11 studies) (S1 Table).

For patient selection, 18 studies were judged as having low risk of bias, 24 were at high risk of bias with the remaining
11 studies at unclear risk of bias (Fig 2 and S2 Table). For choice of index test, 6 studies were at low risk of bias, three

Patient selection

Index test

Reference standard

Flow and timing

Overall risk of bias

Low . Unclear . High

Fig 2. Risk of bias assessments.

https://doi.org/10.1371/journal.pmed.1004581.g002
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were at high risk of bias and 44 studies were at unclear risk of bias. For the reference standard, 17 studies were at low
risk of bias, 5 studies were at high risk of bias and 31 studies were at unclear risk of bias. For flow and timing of patients,
19 studies were at low risk of bias, 4 were at high risk of bias and 30 studies were at unclear risk of bias. Overall, three
studies were judged to be at low risk of bias, 26 studies at high risk of bias, and 24 studies at unclear risk of bias.

The pooled AUROCSs ranged from 0.69 to 0.93 with the lowest value for the prediction of suicide from cohort studies
and the highest for predicting self-harm from case-control studies (Table 2). The pooled sensitivities ranged from 45% to
82% and the specificities from 91% to 95%. The LR+ values ranged from 6.5 to 9.9 and the LR- from 0.2 to 0.6. Using
baseline 1-year prevalence values of 0.7% for suicide, 2.1% for self-harm and 1.6% for suicide/self-harm, the positive
predictive values were 6% for suicide (in cohort studies), 16% and 17% for self-harm (in case-control and cohort studies,
respectively) and 9% for suicide/self-harm (in cohort studies). The corresponding negative predictive values were 99% for
suicide, 90% and 96% for self-harm and 97% for suicide/self-harm.

Table 3 shows the positive predictive values for a hypothetical algorithm with LR+ values ranging from 1 to 50 alongside
indicative 1-year probabilities of suicidal behaviours in different populations. In a low prevalence population, for example,
predicting suicide in the general population (baseline prevalence 0.01% per year [30]), in the LR+ values we observed
(LR+=6-10), the positive predictive values ranged from 0.06% to 0.10%. In a medium prevalence population, for exam-
ple, predicting suicide after discharge from hospital for the treatment of self-harm (baseline prevalence 2% per year [29]),
positive predictive values ranged from 11% to 17%. In a high prevalence population, for example, predicting self-harm
after discharge from hospital for self-harm (baseline prevalence 16% per year [29]), the positive predictive values ranged
from 53% to 66%. Positive predictive values improved at higher LR+ values than we observed in our pooled analysis. At
LR+=20, the positive predictive value was 29% in a medium prevalence population (79% in a high prevalence popula-
tion), and at LR+=50, it was 51% (91% in a high prevalence population).

The sROCs are contained in S1 Fig. The figure shows that the estimates are generally clustered close together on the
two dimensions (sensitivity and the false positive rate). /> estimates ranged from 1.6% to 11.4%.

Table 2. Pooled diagnostic accuracy statistics of machine learning instruments to predict suicide, self-harm and suicide/self-harm.

Outcome | Study design | Number of AUROC | Sensitivity, % Specificity, % | LR+, LR-, Positive Negative
estimates (95% Cl) (95% Cl) (95% Crl) (95% Crl) predictive | predictive
value, % value, %
(95% Crl) | (95% Crl)
Suicide
Case-control 4 - - - - - - -
Cohort 12 0.69 45 (35, 55) 95 (87, 98) 9.9(3.8,21.9) |0.6(0.5,0.7) 6(3,14) 99 (99, 99)
Self-harm
Case-control 13 0.93 82 (66, 92) 91 (82, 96) 9.2(4.8,16.2) |0.2(0.1,0.4) 16(9,26) |90 (81, 94)
Cohort 20 0.80 46 (35, 58) 95 (90, 97) 9.4 (5.6,14.8) |0.6(0.5,0.7) 17 (11,24) |96 (95, 97)
Suicide/self-harm
Case-control 0 -- -- -- -- -- -- --
Cohort 7 0.80 46 (29, 63) 93 (84, 97) 6.5(3.6,11.0) 0.6 (0.4,0.7) |9 (5, 15) 97 (96, 98)

Notes: Analyses only undertaken when there are at least five studies available for meta-analysis. All pooled sensitivity and specificity estimates calculat-
ed using the binomial-normal model that jointly estimates both (logit transformed) pooled values and adjusts for the negative correlation between them.
Pooled LR values calculated by sampling sensitivity and specificity values from the bivariate normal distribution using a Monte Carlo Markov chain with
100,000 samples. Positive and negative predictive values calculated using Bayes rule with the following baseline prevalence estimates (suicide 0.7%,
self-harm 2.1%, suicide/self-harm 1.6%). Cl, confidence intervals. Crl, credible intervals.

https://doi.org/10.1371/journal.pmed.1004581.t002
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Table 3. Positive predictive values by 1-year base prevalences and positive likelihood ratios.

Base 0.01% 0.5% 1.5% 2.0% 6.5% 16%
prevalence

Example Suicide in Suicide after discharge Self-harm Suicide after Self-harm after Self-harm after
outcome and general from inpatient psychiatric in general discharge discharge from discharge for
population population facility population for self-harm psychiatric facility self-harm
LR+ Positive predictive values

1 0.01% 0.5% 1.5% 2.0% 6.5% 16.0%

2 0.02% 1.0% 3.0% 3.9% 12.2% 27.6%

3 0.03% 1.5% 4.4% 5.8% 17.3% 36.4%

4 0.04% 2.0% 5.7% 7.5% 21.8% 43.2%

5 0.05% 2.5% 7.1% 9.3% 25.8% 48.8%

6 0.06% 2.9% 8.4% 10.9% 29.4% 53.3%

7 0.07% 3.4% 9.6% 12.5% 32.7% 57.1%

8 0.08% 3.9% 10.9% 14.0% 35.7% 60.4%

9 0.09% 4.3% 12.1% 15.5% 38.5% 63.2%

10 0.10% 4.8% 13.2% 16.9% 41.0% 65.6%

15 0.15% 7.0% 18.6% 23.4% 51.0% 74.1%

20 0.20% 9.1% 23.3% 29.0% 58.2% 79.2%

50 0.50% 20.1% 43.2% 50.5% 77.7% 90.5%

Note: LR+ is defined as sensitivity/(1 — specificity). Shaded region refers to the range of pooled LR+ values observed in the meta-analysis.

https://doi.org/10.1371/journal.pmed.1004581.t003

Discussion

In this systematic review and meta-analysis of algorithms developed using machine learning tools to predict suicidal
behaviour, we found these algorithms had good accuracy when assessed using a global measure, the area under the
curve, but poor accuracy when assessed against more clinically relevant individual measures. We found that the algo-
rithms had modest sensitivity and high specificity. This combination of sensitivity and specificity meant that while the
algorithms are good at identifying people who will not re-present for self-harm or die by suicide, they are generally poor at
identifying those who will. The modest sensitivity observed in the cohort studies indicates that more than half of those who
repeat self-harm or die by suicide are misclassified as low risk.

The sensitivity and specificity values we observed translate into LR+ values that are just under the clinically meaning-
ful minimal threshold of LR+ = 10 [85]. However, the low baseline prevalence of suicidal behaviour, taken either from the
cohort studies included in our review or from externally derived prevalence estimates [26—30], meant that the positive
predict values of these algorithms were also very low. To illustrate, the in-sample positive predictive values were 6% for
suicide, 16%—17% for self-harm and 9% for suicide/self-harm. When an LR+ value of 10 was applied to low, medium
and high prevalence populations, the positive predictive values were 0.10%, 17% and 66%. The only theoretical scenar-
ios where the positive predictive values were high enough to be clinically useful would be when the LR+ was 250 and
the base prevalence was 26.5% per year (equivalent to an event rate of 6,500 per 100,000 person years) or when LR+
was 220 and the base prevalence was 216% per year (16,000 per 100,000 person years). These high positive predic-
tive values are unlikely to be realised in real-world clinical settings for two reasons. First, predictions in high prevalence
populations, such as in patients who have been discharged from a psychiatric facility or received treatment in hospital for
self-harm, will be most clinically useful over a shorter window than the 1-year prevalence estimates used here (for exam-
ple, 24 or 48 h after discharge through to 30 days). Prevalence will therefore be much lower than the values we used,
and consequently, the positive predictive values will also be lower. To illustrate, while the 1-year baseline probability of
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self-harm after discharge from a psychiatric facility is 6.5%, the 4-week estimate is only 2.1% [28]. At this value, the posi-
tive predictive value is only 30% for an LR+ value of 20. Second, it is difficult to develop an algorithm with high LR+ values
as it requires identifying a threshold with both high sensitivity and high specificity. In practice, there is a trade-off between
sensitivity and specificity. Finding a threshold that increases the value of one of these measures will result in decreasing
the value of the other. Most ways of getting a high LR+ value require very high specificity values (297%) which means
sensitivity is likely to be corresponding low, leading to most cases being misclassified as low risk.

There appear to be two reasons for the recent focus on the development of new algorithms to predict suicide and self-
model, the algorithm flags high-risk patients in the electronic medical record and these patients then undergo a further risk
assessment. Most studies have focussed on this two-stage process being applied to psychiatric inpatients and outpa-
tients, but it has also been suggested that this be applied to general practice patients [76]. If these algorithms are to be
used for automatically screening medical records then they should meet the criteria set down for a viable, effective and
appropriate screening programme [86]. Yet against the 12 consolidated screening principles [87] the algorithms for suicide
and self-harm appear to meet one criterion: the epidemiology of the disease or condition is adequately understood; and
another partially: that there is an agreed-upon course of action for screening participants with a positive test result. The
algorithms do not appear to meet the other criteria, namely: the natural history of the disease or condition is clearly under-
stood; the target population for screening is clearly defined; the screening test has sufficient performance characteristics;
the screening test results are clearly interpretable; there is adequate infrastructure to allow for timely access to all com-
ponents of the screening programme; the screening programme is coordinated with the broader healthcare system; the
screening programme is acceptable and ethical; the overall benefits of the screening programme outweigh the harms; the
full costs of the screening programme have been assessed in an economic evaluation; and the screening programme has
clear goals and it is evaluated against these goals. On this basis, none of the algorithms we studied appear to be suitable
as a screening tool for suicide or self-harm in unselected clinical populations.

The second reason machine learning algorithms have been developed is to prioritise the highest risk individuals for
expensive or high-intensity interventions (for example, psychiatric hospitalisation or intensive case management by

speciality visits, those in the top 5% of risk accounted for 43% of suicide attempts and 48% of suicides over a 90-day pre-
diction window [71]. The problem with this approach is that it results in algorithms with modest sensitivity and poor positive
predictive values [3,89]. As the threshold that defines a positive test result is raised, the number of cases of suicide or self-
harm detected by the algorithm (the true positives) decreases and the number of undetected cases increases (the false
negatives). At a very high threshold (for example, the top 5% of risk continuum), it is likely that the number of undetected
cases outnumber the detected cases (i.e., sensitivity will be <560%). Regarding the specificity, increasing the threshold will
benefit the specificity of the algorithms because the number of non-cases that fall below the threshold (the true negatives)
will increase. This is the pattern of results we see in our meta-analysis. The pooled sensitivities were generally below 50%
and the specificities above 90%, and when combined with the low case prevalence, meant the positive predictive values
were very low (because of the large proportion of false positives). The implication of using a high threshold to allocate
treatment is that most cases of suicide and self-harm will be misclassified as low risk, and most people who test positive
will receive an intervention they may not need. In other words, these intensive and expensive services will largely be deliv-
ered to the wrong people.

One argument in favour of using risk prediction algorithms is that it may be a cost-effective way of allocating expensive
interventions. This strategy could be appealing to third-party payers and public health providers in an environment where
healthcare resources are scarce. Some research has examined the circumstances under which a suicide risk prediction
test might be cost-effective [88]. In a simulation study, the authors found an active contact and follow-up intervention
could be cost-effective when people were allocated to this intervention using a test with sensitivity of 17% or greater when
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specificity was 95%. Similarly, the same study showed cognitive behavioural therapy could be cost-effective when the test
used for allocation had sensitivity of 36% or greater when specificity was 95%. However, there are important caveats to
these findings. First, the low sensitivity implies that a high threshold was being used to allocate treatment in these simu-
lations, but a high threshold means that only a small number of people are allocated to these interventions. Second, and
as discussed above, when sensitivity is less than 50%, there are more undetected cases at that threshold than detected
cases. Many of these people could have benefited from the intervention, but would not have received it as they scored
below the threshold on the risk assessment.

The diagnostic accuracy of machine learning algorithms for suicide and self-harm is similar to that of traditional risk
assessment instruments [7,9]. The poor accuracy of these traditional instruments was one of the factors that led to clin-
ical guidelines in several countries recommending that risk stratification not be undertaken in order to allocate aftercare
services and that alternatives, such a needs-based psychosocial assessment be offered to patients instead in order to
foster and focus aftercare interventions [10,12]. The National Institute of Clinical and Health Care Excellence guidelines
[12] recommend that after an episode of self-harm, a mental health professional should carry out a psychosocial assess-
ment to develop a therapeutic relationship with the patient and a shared understanding of why they have self-harmed,
undertake needs assessment, ensure the patient is offered the care they need, and give family and carers information
about the patient’s condition and diagnosis. Ideally, mental health clinicians should develop a therapeutic alliance with
the patient that is organised around four components: predisposing factors (their history of self-harm, mental health and
other relevant events), modifiable factors (things that are changeable, such as relationship issues, substance use, mood
and mental health and access to means), future factors (anticipated events such as anniversaries, discharge from hos-
pital or criminal proceedings) and protective factors (problem-solving skills, social and family support, engagement with
services, insight and hope) [90]. Given that machine learning algorithms, including those that use dynamic risk formulation
[68,70,77], appear to be no better at predicting suicide or self-harm than traditional risk assessment instruments, we see
no compelling new evidence to warrant a change to these guidelines.

More generally, there are a number of effective aftercare interventions suitable for people presenting to hospital for self-
harm that can be applied without first undertaking risk stratification to determine the allocation of treatment. Examples of
interventions that have been shown to be effective for reducing the repetition of self-harm include psychological and psy-
chosocial interventions (e.g., cognitive behavioural therapy or interventions with an interpersonal focus [4,91], brief con-
tact interventions [92], multilevel interventions for the reduction of suicide and suicide attempts in clinical populations [6],
and safety planning interventions [93]. All these interventions have financial and non-financial costs associated with them,
and decisions about whether to deploy them in a hospital setting should be made with due consideration of whether the
intrusiveness, burdensomeness and ethicality are proportionate to the benefits. Finally, we are concerned that the focus
on risk assessment can be falsely reassuring and a distraction from the delivery of basic clinical services like ensuring all
patients who present to the emergency department for self-harm are seen in a timely manner, are properly assessed and
receive appropriate follow-up care [94]. In the UK and Australian context, this is apparent in the concerns of patients and
service users about impersonal tick boxes rather than holistic assessments [95] and clinicians or health services being
preoccupied with potential blame rather than delivering high-quality care [96,97].

Instead of predicting suicide and self-harm, there may be other ways in which artificial intelligence could be used to
contribute to better outcomes for suicidal patients. Future research could consider how machine learning methods could
be used to augment existing collaborative psychosocial assessments. Specifically, can machine learning methods be used
to identify modifiable risk factors for suicide and self-harm for individual patients? This may be a more tractable problem
as the prevalence of many risk factors is likely to be higher than the prevalence of suicide or self-harm. If such modelling
can be done, then there are interesting follow-on questions about the acceptability of this approach for patients and clini-
cal staff, and whether such an approach is superior to gathering information directly from patients and caregivers. Another
interesting question for future research is to consider how artificial intelligence could be used to inform clinical decision
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support tools. This is distinct from using a risk classification to allocate treatment; rather, it is a question about whether
artificial intelligence, when combined with information about an individual patient, can make suggestions for treatment
pathways. Some work on this has been undertaken in other areas of medicine (e.g., in oncology to optimise drug dosage
for individual patients [98]), and it is an open question as to whether this approach can be applied to the treatment of indi-
viduals with psychiatric symptoms and disorders.

Our study has a number of strengths. We used a broad set of search terms to capture studies that have used machine
learning to predict suicidal behaviour. We searched eight databases that comprised a wide range of disciplines (e.g., med-
icine, psychology, health sciences, engineering and computer sciences). We focussed only on suicide and hospital-treated
self-harm as the outcomes, not self-reported behaviour or scores on an instrument. The included studies use a variety
of different machine learning methods. We were able to assess the quality of the literature, and we showed that at least
half the studies on this topic are at high risk of bias and a substantial number are at unclear risk of bias. We were able to
examine a range of diagnostic accuracy statistics, and we were able to recalibrate case-control studies to estimate posi-
tive and negative predictive values using the prevalence from cohort studies. Finally, we were able to estimate the positive
predictive values for different outcomes (suicide or self-harm) in different populations (the general population, psychiatric
patients, patients treated for self-harm).

Against this, our study had limitations. We had to exclude 48 studies because they did not present sufficient information
for data extraction. The period over which follow-up outcome data were gathered varied between studies, from 30 days
to 2 years for the majority of studies. Most of the included studies were judged to be at high or unclear risk of bias. We
were unable to estimate pooled values for two groups of studies: case-control studies of suicide and case-control studies
of suicide/self-harm. We were unable to assess publication bias as tools have not been developed to assess publication
bias of diagnostic and accuracy studies. We were unable to assess the potential biases in individual algorithms. Finally, a
number of studies used data collected from the same health system or data-linkage system. We were unable to adjust for
this in our analyses.

In conclusion, our systematic review and meta-analysis has shown that algorithms developed using machine learning tools
to predict suicide and self-harm suffer from the same problems as the traditional risk scales used to predict suicidal behaviour.
The algorithms have modest sensitivity and low positive predictive values, resulting in most cases of suicide or self-harm
occurring amongst those classified as low risk, and a large proportion of false positives in those classified as high risk.
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