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Abstract

Background

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:More intense tropical cyclones (TCs) are expected in the future under a warming climate

scenario, but little is known about their mortality effect pattern across countries and over

decades. We aim to evaluate the TC-specific mortality risks, periods of concern (POC) and

characterize the spatiotemporal pattern and exposure-response (ER) relationships on a

multicountry scale.

Methods and findings

Daily all-cause, cardiovascular, and respiratory mortality among the general population

were collected from 494 locations in 18 countries or territories during 1980 to 2019. Daily TC

exposures were defined when the maximum sustained windspeed associated with a TC

was�34 knots using a parametric wind field model at a 0.5˚ × 0.5˚ resolution. We first esti-

mated the TC-specific mortality risks and POC using an advanced flexible statistical frame-

work of mixed Poisson model, accounting for the population changes, natural variation,
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seasonal and day of the week effects. Then, a mixed meta-regression model was used to

pool the TC-specific mortality risks to estimate the overall and country-specific ER relation-

ships of TC characteristics (windspeed, rainfall, and year) with mortality. Overall, 47.7 mil-

lion all-cause, 15.5 million cardiovascular, and 4.9 million respiratory deaths and 382 TCs

were included in our analyses. An overall average POC of around 20 days was observed for

TC-related all-cause and cardiopulmonary mortality, with relatively longer POC for the

United States of America, Brazil, and Taiwan (>30 days). The TC-specific relative risks (RR)

varied substantially, ranging from 1.04 to 1.42, 1.07 to 1.77, and 1.12 to 1.92 among the top

100 TCs with highest RRs for all-cause, cardiovascular, and respiratory mortality, respec-

tively. At country level, relatively higher TC-related mortality risks were observed in Guate-

mala, Brazil, and New Zealand for all-cause, cardiovascular, and respiratory mortality,

respectively. We found an overall monotonically increasing and approximately linear ER

curve of TC-related maximum sustained windspeed and cumulative rainfall with mortality,

with heterogeneous patterns across countries and regions. The TC-related mortality risks

were generally decreasing from 1980 to 2019, especially for the Philippines, Taiwan, and

the USA, whereas potentially increasing trends in TC-related all-cause and cardiovascular

mortality risks were observed for Japan.

Conclusions

The TC mortality risks and POC varied greatly across TC events, locations, and countries.

To minimize the TC-related health burdens, targeted strategies are particularly needed for

different countries and regions, integrating epidemiological evidence on region-specific

POC and ER curves that consider across-TC variability.

Author summary

Why was this study done?

• Tropical cyclones (TCs), among the most destructive and costliest climate extreme

events, are expected to be more intense due to climate change.

• Despite the widely acknowledged hazards, a consistent and quantitative assessment of

the mortality risks of TC across countries is lacking. Such quantitative and comparable

evidence across countries is urgently required to better understand the health effects

and respond to the potentially increasing hazards.

• No previous studies have characterized the periods of concern (POC), exposure-

response (ER) relationship, and temporal trends of the TC health risks, directly relevant

to more precise and effective preparedness and mitigation strategies.

What did the researchers do and find?

• Using mortality data from 494 TC-exposed locations in 18 countries or territories, we

quantified the TC-specific mortality risks and POC of the 382 TC events that affected
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these locations. The ER relationships and temporal trends were then characterized for

each country or territory.

• TC exposure was associated with a prolonged elevated risk of all-cause, cardiovascular,

and respiratory mortality, with an overall average POC of around 20 days.

• The TC mortality risks and POC varied greatly across TC events, locations, and

countries.

• Overall, the mortality risks increased approximately linearly with increasing TC-related

maximum sustained windspeed or cumulative rainfall.

• Most studied countries or territories witnessed a decreasing TC-related mortality risks

from 1980 to 2019, especially for the Philippines, Taiwan, and the USA, while potentially

increasing TC-related all-cause and cardiovascular mortality risks were observed for

Japan.

What do these findings mean?

• TC events can exhibit significant variations in their risk patterns, and future risk assess-

ments may need to better account for this large across-TC variability.

• Targeted and evidence-based disaster management and preparedness strategies need to

be developed for different countries to more effectively mitigate the TC hazards.

• Key study limitations include potential exposure misclassification errors, residual con-

founding, and limited generalizability.

Introduction

Tropical cyclones (TCs), including hurricanes, typhoons, and tropical storms, dominate

weather-related disaster damages [1] and pose a major threat to our society and health [2]. It

has been estimated that TCs exposed 150 million people [3] and caused billions of US dollars

in damages [4,5] annually worldwide. With continued growth in coastal populations and

global warming, the impacts of TCs are expected to worsen due to the increasing exposed pop-

ulation and proportion of very intense TCs (e.g., the warmer surface ocean is likely fueling

more powerful TCs with higher windspeed and precipitation) [6–8]. These indicate that TCs

will likely remain an important public health concern. Quantifying their spatiotemporal health

risks has important implications for understanding the health effects and helps develop strate-

gies to mitigate and respond to the foreseen health burden.

Emerging evidence suggests an increased risk of adverse health outcomes, mostly all-cause

hospitalizations or mortality, associated with TC exposure [9–16]. Except for the immediate

physical impacts such as drowning and injuries, TCs also have been found to introduce persist-

ing or delayed elevated mortality and morbidity risks, partially attributable to medical support

disruptions, environmental contamination, and psychosocial stress [17]. These indirect and

longer-term effects of TC could increase the cardiovascular and respiratory mortality and mor-

bidity, which consist of a major and important part of the disease burden indirectly
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attributable to TCs. However, previous studies on TC epidemiology largely focused on a single

TC event (mostly Hurricane Katrina, Sandy) restricted to a single year or area (mostly in the

United States of America [USA]) [13] and focused on all-cause mortality. For example, 8 stud-

ies assessed the excess mortality in Puerto Rico after Hurricane Maria [18–25], but varied

greatly in the estimated number of excess mortality (point estimates of all-cause excess mortal-

ity ranged from 514 to 4,645) due to the different utilized designs (e.g., various timeframes)

and tools (e.g., survey versus mortality registration). Therefore, the results of single-TC studies

may not be comparable and generalize well given the high heterogeneity in TC and population

characteristics, study period/design, infrastructure, and modeling approaches across studies.

To compensate for the limitation on generalizability, several more recent studies have

included multiple TCs spanning more than a decade and estimated the average health effects

of TC exposures at county level in the USA [9–11,26]. While these studies revealed fundamen-

tal features of TC epidemiology in the USA, the multi-TC average health effects do not account

for the across-TC variability [27]. The TC-specific health effects can vary greatly depending on

the characteristics of the TC events and the population’s social structure and vulnerabilities.

Additionally, very few studies have estimated the temporal trends in TC-related health risks,

the exposure-response (ER) relationships, as well as the periods of concern (POC) of TCs,

which were important aspects of strategic disaster management and resource allocation. For

example, identifying patterns in the risk magnitude and the concerned periods after TCs with

diverse characteristics across regions offers valuable evidence for efficiently allocating

resources, optimizing preparedness efforts, and better understanding TC health effects. How-

ever, there is an overall knowledge gap in consistently exploring the spatiotemporal mortality

risks associated with TCs across countries over a long timeframe.

To address these knowledge gaps, we aim to employ a recently proposed flexible statistical

framework within the framework of a two-stage analysis based on a global dataset of multiple

TCs and locations over long timeframes [24]. This advanced approach could account for the

TC-specific POC and mortality risks, and has been shown higher accuracy and statistical

power (i.e., stronger ability to detect small and persistent increases in mortality) compared to

the Farrington model currently implemented by the US Center for Disease Control and Pre-

vention (CDC) [24]. Specifically, we aim to consistently estimate the TC-specific POC and

mortality risk across TCs, locations and countries, and characterize the spatiotemporal pattern

of ER relationships of mortality risk with TC characteristics. Beyond all-cause mortality, we

also included 2 other leading mortality outcomes, cardiovascular and respiratory mortality, to

comprehensively capture and understand the health effects of TC, including the indirect effects

that were largely unclear.

Method

Data collection

Based on the most updated Multi-Country Multi-City (MCC) Collaborative Research Network

database, we integrated a global dataset of 1,914 locations from 44 countries or territories.

Among these 1,914 locations, 494 locations from 18 countries or territories that experienced at

least 1 TC during the data collection period were included in the study (Table A in S2 Text).

The details of the MCC dataset have been described in our previous work [28,29].

Specifically, for each location in the MCC network, daily counts of all-cause mortality were

collected and non-external causes (International Classification of Diseases [ICD], 9th Revision

codes 0–799 or ICD-10 codes A0–R99) mortality were alternatively collected when all-cause

mortality was unavailable. Two major and distinct causes of death, cardiovascular (ICD-10

codes I00–I99) and respiratory (ICD-10 codes J00–J99) mortality were also collected for each
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location. Cardiovascular and respiratory mortality, largely attributable to the indirect conse-

quences of TCs, such as property loss, resource depletion, and disruptions in medical support,

constitute a major part of the TC-associated mortality burden [17]. Except for the MCC data,

we also collected data on all individual deaths (date, cause, and location of death) in Australia

between 2009 and 2017 from the Australian Cause of Death Unit Record File [30], in New Zea-

land between 2000 and 2018 from the New Zealand Ministry of Health [31], in Brazil between

1996 and 2019 from the Brazil Mortality Information System (Sistema de Informação sobre

Mortalidade, SIM) [32], and in Canada between 1986 and 2015 from the Vital Statistics Deaths

Database of Statistics Canada [33]. For a time-series analysis, we aggregated these individual

death data at location and daily level based on the administrative boundary with a proper area

size for each country (Statistical Area Level 3 [SA3] for Australia [n = 316], territorial authority

[TA] for New Zealand [n = 63], immediate region for Brazil [n = 510], and second-level

administrative divisions [regions or districts within the provinces and territories] for Canada

[n = 288]). MCC locations in Australia, New Zealand, Brazil, and Canada were thus excluded

to avoid duplication. Consequently, the integrated global dataset covers 1,914 locations from

44 countries or territories, of which 494 locations from 18 countries or territories that experi-

enced at least 1 TC during the data collection period were included. Among these 494 loca-

tions, the all-cause mortality data in 13 locations (2.6%) was represented by non-external

mortality.

To estimate the annual population for each location, the annual gridded population per 10

years between 1980 and 2100 at a spatial resolution of 0.5˚ × 0.5˚ (about 55 km grid), derived

by ensemble learning technique and models (R-squared values ranged from 0.81 to 0.84), was

also collected from the Global Carbon Project [34]. The population data were first interpolated

with a natural spline function of the available values to each year for each grid [29]. The annual

population of each location was then calculated as the sum of the population of the grid cells in

that year covered by that location.

Exposure assessment

We used the improved Holland wind field model [35] to estimate the global historical tempo-

ral dynamics of the windspeed associated with TCs, which has been successfully applied in pre-

vious studies [8,36,37]. The methodology of this model has been described in detail in our

previous work [3]. Briefly, we first obtained historical information on TCs including the posi-

tion (i.e., center latitude and longitude coordinates), surface central pressure, radius, and the

maximum sustained windspeed from the International Best Track Archive for Climate Stew-

ardship (IBTrACS), a collection of best track data of TCs from sources worldwide [38]. The

above variables served as inputs for the Holland wind field model as implemented within the

CLIMADA Python package, an open-source impact modeling framework available on GitHub

(https://github.com/CLIMADA-project/climada_python) [39]. We generated the daily wind

profile (i.e., the grid-level daily 1-min sustained wind speeds associated with the cyclone) for

each cyclone event in IBTrACS from January 1st, 1980 to December 31st, 2019, at a spatial res-

olution of 0.5˚ × 0.5˚. The estimated global historical TC-related windspeed showed a good

agreement in the validation analysis of reported wind fields in the regional dataset (Pearson

correlation of r = 0.86). For each location, we defined TC exposure days as days with a TC-

related maximum sustained wind speed�34 knots (17.5 m/s, 63 km/h, 39 mph; gale-force

wind on the Beaufort scale) for the grid cell of the location [9,10]. For each TC in each location,

we defined the TC hit day, t0, as the first day with a sustained wind speed�34 knots for that

TC in that location. We obtained the cumulative rainfall (mm) at t0 for each location from the

ERA-5 reanalysis data, which is created by assimilating historical weather data from numerous
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platforms (e.g., satellite, ground-based stations, radar, boats, airplanes, buoys) using sophisti-

cated data assimilation models [40] and has been widely used in previous studies [41–45], as

an additional metric of TC exposure besides the maximum sustained windspeed.

Statistical analysis

We adopted a two-stage analytical approach to characterize the association between TC expo-

sure and mortality. In the first stage, we implemented a flexible statistical framework that per-

mitted both the surveillance of concerning increases in mortality rates and careful

characterization of the effect of a past event to estimate the POC and excess mortality for each

TC in each location [24,46,47]. The theoretical framework and methodological details have

been well described elsewhere [24]. Briefly, the daily death counts were modeled with the fol-

lowing mixed Poisson model with a log-link:

Yitjεit � Poissonðmit½1þ fiðtÞ�εitÞ ð1Þ

mit ¼ offsetðNiyÞe
aiðtÞþsiðtÞþwiðtÞ ð2Þ

In the core formula of Eq (1), Yit and μit represent the observed and expected deaths on day

t in location i, respectively; (t) refers to the relative increase in mortality on day t in location i
due to a TC and (t)*100 is the percent increase; and εit is a time series of auto-correlated ran-

dom variables representing natural variability on day t in location i. The expected deaths, μit,
can be further decomposed according to Eq (2), where Niy is the population on year y in loca-

tion i and the log of population is treated as an offset to account for the change in population

size; αi(t) is a smooth function of time that accounts for the secular changes (i.e., a slow-mov-

ing trend); and wi(t) and si(t) are day-of-week effects and a yearly periodic function represent-

ing a seasonal trend, respectively. During the periods without TC exposure (i.e., the control

periods), we assumed (t) = 0. When different from 0, (t) was assumed to be smooth enough to

be represented by a smoothing cubic spline that provides enough flexibility to detect unusual

mortality fluctuation due to an extreme event like a TC. To estimate the component of interest,

(t), the μit and correlation structure of εit were first estimated based on the mortality during

the control periods. Then, the fi(t) and the standard error (SE) were estimated using the Cen-

tral Limit Theorem approximation that assumed f̂iðtÞ followed a normal distribution and

accounts for the uncertainty in the expected mortality rate. Using estimates of f̂iðtÞ and the SE,

the POC was defined as a post-TC period during which a percent increase of 0 is not in the

95% confidence interval (CI) for f̂iðtÞ (i.e., the lower limit of the 95% CI of the estimated excess

mortality is greater than 0).

We permitted a discontinuity on the TC hit day, t0, to account for a sudden direct effect

and fitted a smoother spline, with 6 knots per year in the main model, to provide more power

to detect subtle indirect effects [24]. If a location was exposed to multiple TCs during the data

collection period, we excluded the two-month (60 days) post-TC periods to exclude the effects

of other TCs. The final results for the first stage were presented as the POC and excess mortal-

ity (with 95% CI) for each TC in each location. The relative risk (RR) was also calculated as the

observed deaths divided by the expected deaths (i.e., observed deaths minus excess deaths) for

each TC. Sensitivity analyses by excluding a different length of post-TC period (30 days, 90

days) were conducted to test the robustness of the results.

In the second stage, with the TC-specific RRs (with 95% CI) from the first stage, we further

used a mixed meta-regression model, accounting for the hierarchical structure of the RRs (a

location could have several TC-specific RRs for multiple TCs, i.e., TCs nested within
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locations), to characterize the ER relationships of TC-related mortality risks with TC charac-

teristics. Specifically, we built a univariate meta-regression model between the TC-specific RRs

and the TC-related maximum sustained wind, cumulative rainfall, and the calendar year of TC

hit, respectively, to examine the univariate ER relationship. All of these terms were included in

the meta-regression models with a natural spline function of 2 degrees of freedom (df), as

determined by a minimum Akaike information criterion (AIC), to allow for nonlinear ER

relationships.

All data organization and analyses were conducted in R software, version 4.0.3 (Foundation

for Statistical Computing, Vienna, Austria) [48]. The first- and second-stage analysis were con-

ducted using the “excess_model” function from the “excessmort” package [49] and the “mix-

meta” function from the “mixmeta” package [50], respectively.

Results

Deaths, TC, and periods of concern

The spatial distribution of the included 494 locations and a summary of these locations (e.g.,

study periods, number of deaths, and TCs) are shown in Fig 1 and Table A in S2 Text, respec-

tively. In total, 47.7 million all-cause deaths, 15.5 million cardiovascular deaths, and 4.9 million

respiratory deaths were included in the analyses. Each location contributed an average of 21

years (standard deviation [SD]: 9.4) of data. A total of 382 TC events that hit these 494 loca-

tions during the study period were included, with an average of 7 TC events for each location

(Fig 1). The number of exposed TCs per decade varied substantially by location, ranging from

1 to 55. Locations in Taiwan (e.g., Taipei, Kaohsiung), Japan (e.g., Naha, Okinawa), the Philip-

pines (e.g., Manila, Valenzuela) experienced TC most frequently (average number of TC per

Fig 1. The spatial distribution and number of exposed TCs of the 494 study locations. AU : AbbreviationlistshavebeencompiledforthoseusedinFigs1to6:Pleaseverifythatallentriesarecorrect:. The base layer of the world map was imported from the public

domain Natural Earth project (source: https://www.naturalearthdata.com/downloads/; terms of use: www.naturalearthdata.com/about/terms-of-use/). TC,

tropical cyclone.

https://doi.org/10.1371/journal.pmed.1004341.g001
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decade�14), whereas the lowest number (1–2) were mainly observed in locations from Brazil,

New Zealand, and Canada. Overall, the average length of POC after a TC for all-cause mortal-

ity was 22 days (SD: 51.3), with great variations across and within countries (Table A in S2

Text). The average POC were relatively longer for the study locations in the USA, Brazil, and

Taiwan (>30 days), while shorter for the study locations in Vietnam, Mexico, Australia, and

New Zealand (�10 days). Similar overall average POC and great variations across and within

countries were also observed for TC-related cardiovascular and respiratory mortality (Table A

in S2 Text). The estimated overall and country-specific POC were robust to sensitivity analy-

ses by excluding a different length of post-TC period (30, 60, and 90 days) (Table B in S2

Text).

TC-related excess mortality and risk

The TC-location-specific excess mortality for the 100 TCs with the highest excess deaths is

shown in Fig 2, with each point indicating a location and each tick on the x-axis representing a

TC (a TC with a unique ID recorded in the IBTrACS). Large variations are observed for the

TC-related excess deaths within and across TCs. For example, the TC of “1999253N17124”

had the highest TC-related excess deaths, which hit 1 location (Hong Kong) in China Main-

land in 1999 with a maximum sustained windspeed of 40 to 45 knots and caused around 1,076

deaths (Fig 2). Despite that the TC events that contributed most respiratory and cardiovascular

deaths were different from those contributed most all-cause deaths, similar patterns of large

inter- and intra-TC variability were also observed (Fig 2). The TC-specific RRs varied substan-

tially, with a point estimate ranging from 1.04 to 1.42, 1.07 to 1.77, and 1.12 to 1.92 among the

100 TCs with highest RRs for all-cause, cardiovascular, and respiratory mortality, respectively

(Fig 3). A maximum RR of 1.42 (95% CI [1.09, 1.86], p = 0.009), 1.77 (95% CI [1.76, 1.78],

p< 0.001), and 1.92 (95% CI [1.07, 3.44], p = 0.028) for all-cause, cardiovascular, and respira-

tory mortality were observed for TC “2011023S16147” (Australia, 2011), “2014209N16134”

(Japan and South Korea, 2014), and “2011020S13182” (New Zealand, 2011), respectively. At

country level, relatively higher and statistically significant TC-related mortality risks were

observed in Guatemala for all-cause mortality, Brazil, Vietnam, and South Korea for cardiovas-

cular mortality, and New Zealand and Australia for respiratory mortality (Fig 4). The country-

specific RR was generally robust to sensitivity analyses by excluding a different length of post-

TC period (Table C in S2 Text).

ER curve of TC-related windspeed with mortality by country or territories

When characterizing the associations of TC-related maximum sustained windspeed with mor-

tality risk, we observed an overall monotonically increasing and non-threshold curve with

approximately linear shape for the ER relationships for all-cause, cardiovascular, and respira-

tory mortality (Fig 5). At country level, we found generally significant, positive linear or

supra-linear ER curves of TC-related maximum sustained windspeed with mortality in Japan,

South Korea, Taiwan, and the USA for all-cause mortality; Japan, Taiwan, and the USA for

cardiovascular mortality; and Japan, Taiwan, and the USA for respiratory mortality (Fig 5).

The positive ER curves were consistently observed for Japan, Taiwan, and the USA. However,

there is insufficient evidence to support significant and positive ER curves between TC-related

maximum sustained windspeed and mortality in other countries or regions including China

Mainland, Mexico, and Thailand (Fig 5). Sensitivity analysis by excluding a different length of

post-TC period showed robust overall and country-specific ER relationships of TC-related

maximum sustained windspeed with mortality, with a similar shape to that in the main model

(Fig A in S2 Text).
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ER curve of TC-related precipitation with mortality by country or

territories

We observed similar patterns for the overall ER relationships of TC-related cumulative rainfall

with mortality, with consistently significant and positive linear curves for all-cause, cardiovas-

cular, and respiratory mortality (Fig B in S2 Text). Positive linear or supra-linear and mono-

tonically increasing ER curves were detected in Japan, the Philippines, South Korea, Taiwan,

and the USA for all-cause mortality; the Philippines, Taiwan, and the USA for cardiovascular

Fig 2. The top 100 TCs with highest excess deaths from all-cause, CVDs, and RDs. Each point in the figure indicates a location, and each tick on the X-axis

represents a TC, which is identified by its IBTrACS event ID. A boxplot was fitted for the location-specific TC-related excess deaths within each TC. Each

box represents the IQR of the excess deaths of each TC, with the middle bolded black line in the box representing the median value. The whiskers extending

from the box indicate a range of 1.5 times the IQR. CVD, cardiovascular disease; IQR, interquartile range; RD, respiratory disease; TC, tropical cyclone.

https://doi.org/10.1371/journal.pmed.1004341.g002
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mortality; and Taiwan and the USA for respiratory mortality. Consistent monotonically

increasing ER curves were consistently observed for Taiwan and the USA. No sufficient evi-

dence of a significant and positive ER curve between TC-related cumulative rainfall and mor-

tality in other countries or regions including China Mainland, Vietnam, Mexico, and

Thailand. The estimated overall and country-specific ER relationships were robust to sensitiv-

ity analyses by excluding a different length of post-TC period (Fig C in S2 Text).

Temporal trends of TC-related mortality by country or territories

When considering the temporal variations of the TC-related mortality, an overall decreasing

trend was found for all-cause and respiratory mortality, while not for cardiovascular mortality

(Fig 6). At country level, an overall slightly increasing trend in TC-related all-cause mortality

Fig 3. The top 100 TCs with highest RR for all-cause, CVDs, and RDs mortality. The RRs were estimated by comparing the deaths on TC-exposed days with

those on non-exposed days, after adjusting for population changes, natural variation, seasonal, and day of the week effects. CVD, cardiovascular disease; RD,

respiratory disease; RR, relative risk; TC, tropical cyclone.

https://doi.org/10.1371/journal.pmed.1004341.g003

PLOS MEDICINE Tropical cyclone-specific mortality risks and the periods of concern

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1004341 January 22, 2024 10 / 20

https://doi.org/10.1371/journal.pmed.1004341.g003
https://doi.org/10.1371/journal.pmed.1004341


risk was observed in Japan and Taiwan, while decreasing trends in the Philippines, South

Korea, and the USA; an increasing trend in TC-related cardiovascular mortality risk was

observed in Japan and Mexico, while overall decreasing trends were observed in the Philip-

pines, South Korea, and the USA; a decreasing increasing trend in TC-related respiratory mor-

tality risk was observed in Japan, New Zealand, the Philippines, and the USA, while a

potentially increasing trend was found for Taiwan (Fig 6). For the remaining countries includ-

ing Australia, Canada and Vietnam, Thailand, Mexico and New Zealand, no sufficient

Fig 4. Country or territory-specific overall RR with 95% CI for all-cause, CVDs, and RDs mortality associated with TC exposure. The RRs indicated the

mortality risks in TC days compared to non-TC days. CI, confidence interval; CVD, cardiovascular disease; RD, respiratory disease; RR, relative risk; TC,

tropical cyclone.

https://doi.org/10.1371/journal.pmed.1004341.g004

Fig 5. The exposure-response relationship of the RR for all-cause, CVDs, and RDs mortality with TC-related maximum sustained windspeed (knots) by

countries or territories. The RRs indicated the mortality risks in TC days compared to non-TC days. CVD, cardiovascular disease; RD, respiratory disease; RR,

relative risk; TC, tropical cyclone.

https://doi.org/10.1371/journal.pmed.1004341.g005
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evidence to detect a temporal trend. Generally, similar overall and country-specific temporal

trends were observed in sensitivity analyses by excluding a different length of post-TC period

(Fig D in S2 Text).

Discussion

Our large-scale population-based study estimated the TC-specific POC and mortality risks,

with substantial variations in TC-related mortality risk within and across TCs. Additionally,

we characterized the ER relationships and found an overall monotonically increasing, non-

threshold and approximately linear curve of TC-related maximum sustained windspeed and

cumulative rainfall with all-cause and cardiopulmonary mortality risks. An overall decreasing

trend was observed for TC-related all-cause and respiratory mortality risk from 1980 to 2019.

Further heterogeneous patterns of the ER relationships and temporal trends were revealed at

the country level, such as the increasing trend in TC-related all-cause mortality risk in Japan,

yet a decreasing trend in the Philippines, South Korea, and the USA.

As expected, we found that the TC-related mortality risks varied considerably across and

within TCs, evidencing the necessity to account for the across-TC variability when assessing

the health effects of TCs. However, among the limited epidemiological studies that systemati-

cally assessed the health effects of multiple TC events, most estimated the multi-TC average

effects [9–11,26,27]. These studies also utilized a wind field model to quantify the TC exposure

for a large number of TCs and found an elevated risk of mortality [9,27], hospitalization

[10,11], and preterm birth [26] associated with TCs in the USA for the past decades. To our

knowledge, only 1 study has estimated the TC-specific health risks, which included all TCs in

the USA from 1999 to 2015 and also observed large variations in the TC-related excess mortal-

ity across and within TCs [27]. However, this study did not estimate the TC-specific POC, but

instead used an 11-day post-TC period as a hypothetical POC and calculated the excess deaths

within this period for all TCs. TCs could impact public health through both direct and indirect

pathways. Direct impacts including physical trauma (e.g., injury and drowning) during expo-

sure could be more immediate, while indirect impacts such as the socio-psycho environmental

stress, poor or mal-nutrition due to TCs (e.g., loss of property and resources, evacuation, inter-

ruption of medical and social support) could manifest at a longer-term to increase the mortal-

ity and morbidity. Therefore, a POC of several days may not be able to sufficiently capture the

Fig 6. The temporal trends of the RR for all-cause, CVDs, and RDs mortality by countries or territories from 1980 to 2019. The RRs indicated the

mortality risks in TC days compared to non-TC days. CVD, cardiovascular disease; RD, respiratory disease; RR, relative risk; TC, tropical cyclone.

https://doi.org/10.1371/journal.pmed.1004341.g006
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health impacts of TCs, especially for the indirect impacts, as indicated by a POC of more than

1 month for some countries/TCs in our results. Additionally, TCs could vary substantially in

terms of their POC due to their different physical characteristics (e.g., windspeed, rainfall, and

duration), as well as the population vulnerability. Such variability was reflected in our findings

of a large standard deviation of the estimated POC across TCs, even within the same country.

The self-specified identical exposure window (i.e., hypothetical POC) commonly used in previ-

ous multi-TC studies may introduce potential exposure misclassification and not be able to

well capture the TC-related health effects.

To our knowledge, this study is the first to examine the ER relationships between TC char-

acteristics and risk of mortality on a multicountry and multi-TC scale. Based on the estimated

mortality risk and characteristics for each TC, we characterized the overall and country-spe-

cific ER curves of TC-related maximum sustained windspeed and cumulative rainfall with dif-

ferent mortality outcomes. We observed an overall monotonically increasing, non-threshold

and approximately linear curve of TC-related maximum sustained windspeed and cumulative

rainfall with all-cause, cardiovascular, and respiratory mortality risks. Only 1 prior study has

estimated the ER curves of TC characteristics with health outcomes and observed a similar

monotonically increasing ER relationship with an approximately linear shape between TC-

related maximum sustained windspeed and all-cause mortality, hospitalizations for respiratory

diseases, chronic obstructive pulmonary diseases, and cardiovascular diseases in the USA [27].

Stronger TCs with higher windspeed and rainfall were more likely to induce adverse events

such as flood, displacement and power outage, there having higher risks causing mortality and

morbidity. Prior epidemiological studies on multiple TCs generally assessed the potential haz-

ard of TCs only based on a binary variable of exposure (exposed versus unexposed) in terms of

the maximum sustained windspeed [9–11,26,27,41,51]. The established ER curves with TC-

related windspeed and rainfall in the current study could inform the potential risks of various

mortality outcomes associated with different TC intensities. Considering that more intense

TCs are expected in the future under a changing climate, it is critical to incorporate the epide-

miological evidence such as the ER curves in the early warning system to accurately evaluate

the potential hazards of a landfalling TC and develop strategies accordingly to minimize the

health burdens [52].

Heterogeneous TC-related mortality risks and patterns of the ER relationships across coun-

tries and mortality outcomes were further revealed in our study. Populations in countries like

Guatemala, Brazil, Vietnam, and South Korea appear to be especially vulnerable to TC-related

elevated mortality risks compared to those in other countries or regions such as Canada,

Mexico, and Australia. Many factors, such as topography, economics, disaster management

practices, and population characteristics, can impact the susceptibility to natural disasters like

TCs [53–55]. However, there is very little evidence on systematic assessment of the vulnerabil-

ity to TCs across countries and no clear explanation for such differences has yet been pro-

posed. The higher susceptibility to the elevated mortality risks of TCs in these regions could be

partially attributed to the higher frequency of high-amplitude TCs, while the relatively fewer

strong TCs or study locations in other countries including Mainland China and Mexico hin-

dered us from detecting a significant and positive ER curve [56–59]. Additionally, Clark and

colleagues proposed a Notre Dame Global Adaptation Index (ND-GAIN) and attributed the

differences in the overall vulnerability to climate change across countries to 6 country-level

life-supporting sectors—food, water, health, ecosystem service, human habitat, and infrastruc-

ture [60]. Countries with more reliable water and food supply (e.g., higher fresh water with-

drawal rate), better health and ecosystem services (e.g., less slum population and dependency

on natural capital), and improved infrastructure and human habitat (e.g., less population living

under 5 m above sea level and smaller age dependency ratio) could be more resilient to the
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adverse impacts of climate change. The heterogeneous patterns of the ER relationships could

also be explained by differences in these factors across countries. Overall, current epidemiolog-

ical evidence on the potential contributing factors or effect modifiers on the associations

between TCs and health is still very limited and inconclusive. More studies are required to bet-

ter elucidate this issue and the underlying contributors.

We observed an overall decreasing trend for TC-related all-cause and respiratory mortality

risks, with great heterogeneity across countries or territories. Despite the temporal change of

the TC characteristics (e.g., tracks, frequency, intensity, duration) has been well characterized

[56–59,61,62], no studies have yet estimated the temporal trend of TC-related mortality risks.

To our knowledge, only 1 study examined the temporal change in the risk of homelessness,

casualties, and property losses induced by TCs in South Korea and found a decreasing trend

over 1979 to 2010, which is similar to our observed ER curve for TC-related all-cause mortality

in South Korea [63]. Additionally, the mostly decreasing TC-related mortality risk across

countries highlights the effectiveness and progress of the disaster management measures and

devoted prevention efforts, especially for the Philippines, Taiwan, and the USA. While the

intensity and duration of landfall TCs have been increasing [64,65], the improved early warn-

ing system and disaster preparedness practices can significantly reduce the related health risks

[66–68]. However, it should also be noted that a potentially increasing trend in TC-related all-

cause and cardiovascular mortality risk was observed in Japan. This may be partially attributed

to the considerably increasing proportion of the elderly population and the prevalence of car-

diovascular diseases over the past decade in this country [69,70]. Further studies are highly

warranted to elucidate the underlying mechanisms and formulate targeted approaches to

reverse the increasing trends.

This study had 4 main strengths. To the best of our knowledge, this is the first and largest

global investigation of the mortality risk attributed to TCs. Compared with most previous

studies confined to single or several TC events within a limited region or timeframe, we col-

lected representative death data from countries or territories of the USA (including the loca-

tions from the territories in the Caribbean [i.e., Virgin Islands and Puerto Rico]), Japan, South

Korea, Canada, Brazil, Taiwan, Australia, and New Zealand. We also developed TC exposure

data based on a collection of representative and best track data of TCs from official sources

worldwide (i.e., IBTrACS), which has been widely used to analyze TC ecology and subsequent

events (e.g., flood) [62,71–73]. A final of 382 TC events in 494 locations from 18 countries or

territories during 1980 to 2019, which were characterized by different climates, socioeco-

nomics, demographics, public health service development, and TC features. This allowed us to

characterize the spatiotemporal pattern of the TC-related mortality risks, and to reduce poten-

tial selection-related biases and ensure the high-quality and generalizability of our findings.

Compared to the Farrington Model currently implemented by the CDC for evaluating related

disaster-attributable deaths [74–76], we employed an advanced flexible statistical framework

that has higher power to detect the small and persistent increases in death rate introduced by

such effects as one contiguous period [24]. Additionally, this modeling technique enabled us

to account for the great across-TC variability and evaluated TC-specific POC and mortality

risks, which tends to provide more precise effect estimates than the traditional multi-TC aver-

age estimates based on an identical exposure window. Finally, apart from providing the TC-

related mortality risk estimates like in most prior studies, we further estimated the POC, the

ER curves between TC characteristics and mortality outcomes, as well as the temporal trends

of mortality risks, which were important aspects for developing or adjusting disaster manage-

ment policies and public health interventions to mitigate the adverse impacts of TCs.

There are also some limitations in our study. The possibility of residual confounding cannot

be completely excluded. Despite our application of an advanced methodology to first attempt
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to estimate the TC-specific POC across countries, some uncertainty in the estimates caused by

the limitations of this methodology must be acknowledged. We involved a predetermined

wash-out period by excluding a certain length of post-TC period for other TCs (if any) when

estimating the individual mortality risks for each TC event. The impacts of other TCs may still

exist and bias our results. However, we believed the impact of this issue could be modest as evi-

denced by the robust results in sensitivity analyses by excluding different lengths of post-TC

period. Furthermore, the determination of POC relied on statistical significance (i.e., the lower

limit of the 95% CI > 0), potentially influenced by factors irrelevant to TCs, such as sample

size. However, a series of simulation studies indicated that the impact of this issue on results

may be modest, with consistent and reliable estimates in different scenarios [24]. Nonetheless,

more studies are needed in the future to work on this challenging topic and improve the esti-

mates of POC across TCs. In addition, mandatory pre-TC evacuation orders and population

displacement during TC could be important influential factors in the health impacts of TCs.

However, to our knowledge such data have never been systematically compiled and available

on a multi-TC scale [24]. To minimize the health threats of climate and weather-related disas-

ters, it is highly warranted to collect, compile, and incorporate richer data on these events in

future studies. In this study, we estimated the yearly population size for each location and

included it as an offset in the model to account for the long-term variations over time and

across space due to the unavailability of daily population size in each location. Population

characteristics such as the age and sex structure were associated with the vulnerability to TC

hazards. Based on a classical two-stage modeling approach, we accounted for the temporal var-

iations within a location by the control of temporal trends in the first stage, and the spatial var-

iations across locations by using a mixed meta-regression model in the second stage. However,

due to the lack of these data (e.g., age- or sex-specific daily mortality) at daily level and on a

multicountry scale, we were thus unable to assess the potential risk differences across subpopu-

lations such as different age and sex subgroups. Moreover, the TC-specific excess deaths for

some TCs could be underestimated for some countries or territories without nationwide data

such as China Mainland, Vietnam, and Mexico. The limited locations in China Mainland,

Vietnam, and Mexico also increased the uncertainty of our results and prevented us from

detecting significant findings for those countries and regions. We were also not able to esti-

mate the TC-related mortality risk in the countries or territories without study locations but

with a potentially high TC-related health burden (e.g., Bangladesh, Myanmar). These issues

warrant further exploration with more comprehensive data and should be lessened in the

future as the MCC network expands. Finally, land conditions could significantly influence the

speed and direction of surface winds. The widely used improved wind field model by Holland

incorporated an attenuation factor, the ratio between the distance to the center and the radius

of maximum winds, to resemble surface friction effects [8,35–37]. This does not explicitly

account for the surface friction-induced wind speed reduction [77] or motion-induced asym-

metry [78]. Post-landfall, TC wind fields could become very noisy due to interaction with com-

plex land surfaces, posing challenges in accounting for uncertainties when assessing the ER

relationship with health outcomes [79]. However, neglecting inhomogeneous wind conditions

over land is expected to minimally impact the results, given the study’s focus on a binary TC

exposure variable (exposed versus unexposed).

Conclusion

To conclude, TCs show great variation in the POC and elevated mortality risks globally. The

overall ER relationships of TC-related windspeed and rainfall with all-cause and cardiopulmo-

nary mortality exhibited a monotonically increasing, non-threshold and linear curve, with a
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heterogeneous pattern across regions. An overall decreasing trend was observed for the TC-

related all-cause and cardiovascular mortality risk from 1980 to 2019. The TC-related mortal-

ity risks were generally decreasing in most of the study countries, especially for the Philippines

and the USA, while potentially increasing trends in TC-related all-cause and cardiovascular

mortality risks were observed for Japan. Further targeted actions and in-depth explorations of

TC epidemiology in the countries with high and increasing TC-related mortality burdens are

particularly needed.
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