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Abstract

Background

Bloodstream infections (BSIs) produced by antibiotic-resistant bacteria (ARB) cause a sub-

stantial disease burden worldwide. However, most estimates come from high-income set-

tings and thus are not globally representative. This study quantifies the excess mortality,

length of hospital stay (LOS), intensive care unit (ICU) admission, and economic costs asso-

ciated with ARB BSIs, compared to antibiotic-sensitive bacteria (ASB), among adult inpa-

tients in low- and middle-income countries (LMICs).

Methods and findings

We conducted a systematic review by searching 4 medical databases (PubMed, SCIELO,

Scopus, and WHO’s Global Index Medicus; initial search n = 13,012 from their inception to

August 1, 2022). We only included quantitative studies. Our final sample consisted of n =

109 articles, excluding studies from high-income countries, without our outcomes of interest,

or without a clear source of bloodstream infection. Crude mortality, ICU admission, and LOS

were meta-analysed using the inverse variance heterogeneity model for the general and

subgroup analyses including bacterial Gram type, family, and resistance type. For economic

costs, direct medical costs per bed-day were sourced from WHO-CHOICE. Mortality costs
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were estimated based on productivity loss from years of potential life lost due to premature

mortality. All costs were in 2020 USD. We assessed studies’ quality and risk of publication

bias using the MASTER framework. Multivariable meta-regressions were employed for the

mortality and ICU admission outcomes only. Most included studies showed a significant

increase in crude mortality (odds ratio (OR) 1.58, 95% CI [1.35 to 1.80], p < 0.001), total

LOS (standardised mean difference “SMD” 0.49, 95% CI [0.20 to 0.78], p < 0.001), and ICU

admission (OR 1.96, 95% CI [1.56 to 2.47], p < 0.001) for ARB versus ASB BSIs. Studies

analysing Enterobacteriaceae, Acinetobacter baumanii, and Staphylococcus aureus in

upper-middle-income countries from the African and Western Pacific regions showed the

highest excess mortality, LOS, and ICU admission for ARB versus ASB BSIs per patient.

Multivariable meta-regressions indicated that patients with resistant Acinetobacter baumanii

BSIs had higher mortality odds when comparing ARB versus ASB BSI patients (OR 1.67,

95% CI [1.18 to 2.36], p 0.004). Excess direct medical costs were estimated at $12,442

(95% CI [$6,693 to $18,191]) for ARB versus ASB BSI per patient, with an average cost of

$41,103 (95% CI [$30,931 to $51,274]) due to premature mortality. Limitations included the

poor quality of some of the reviewed studies regarding the high risk of selective sampling or

failure to adequately account for relevant confounders.

Conclusions

We provide an overview of the impact ARB BSIs in limited resource settings derived from

the existing literature. Drug resistance was associated with a substantial disease and eco-

nomic burden in LMICs. Although, our results show wide heterogeneity between WHO

regions, income groups, and pathogen–drug combinations. Overall, there is a paucity of BSI

data from LMICs, which hinders implementation of country-specific policies and tracking of

health progress.

Author summary

Why was this study done?

• Bloodstream infections (BSIs) caused by antibiotic-resistant bacteria (ARB) have multi-

faceted impacts, including higher admission to intensive care units (ICUs), prolonged

hospitalisations, and high economic and societal costs worldwide.

• Despite the global burden, most evidence on the excess burden of ARB BSIs has been

derived from high-income countries; comparatively, there are limited data from low-

and middle-income countries (LMICs).

What did the researchers do and find?

• We employed a systematic literature review and subsequent meta-analysis of 109 indi-

vidual studies to quantify the impact of ARB BSIs in hospitalised patients from LMICs.

• Based mostly on crude data comparisons ignoring the possible influence of confounding

factors, we found that ARB BSIs, compared to BSIs caused by antibiotic-sensitive
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bacteria (ASB), were associated with substantially longer stays in hospitals and ICUs,

higher mortality, and increased direct medical and productivity costs.

What do these findings mean?

• Our findings highlight the excess morbidity, mortality, and costs associated with ARB

BSIs and the sparsity of data from LMICs.

• Targeted strategies to improve the prevention, detection, and treatment of resistant BSIs

in LMICs are required to reduce the economic and disease burden.

Introduction

Antibiotic-resistant bacteria (ARB) constitute a global health priority, particularly where resis-

tance proportion is highest in low- and middle-income countries (LMICs) [1]. Resource-lim-

ited hospital infrastructure, poor health system capacity, and inadequate sanitation and

hygiene infrastructure partly explain the spread and impact of ARB in LMICs [1,2]. Ameliorat-

ing health inequities is hampered by the feedback caused by ARB infections resulting in

increased morbidity and mortality, more complicated treatments due to the use of reserved

antibiotics, and prolonged hospitalisations, all of which exacerbate costs to countries’ health

systems and society [1,3]. Recent figures from the World Health Organization (WHO) Global

Antimicrobial Resistance and Surveillance System (GLASS) report show that the proportion of

Escherichia coli bloodstream infections (BSIs) caused by third-generation cephalosporins resis-

tant E. coli was more than triple in LMICs compared to high-income countries, (58.3% and

17.53%, respectively) [4]. A similar trend was observed for other WHO critical- and high-pri-

ority BSI pathogens, including Klebsiella pneumoniae and Staphylococcus aureus [4,5].

BSIs are one of the most lethal infections, having an estimated overall crude mortality of 15%

to 30% [4,6]. BSIs are intrinsically more deadly as pathogens can spread quickly via blood, pro-

ducing multiple infections and leading to organ damage and dysfunction. Extensive literature

has examined the excess burden of ARB BSIs in specific locations [7–13]. For example, com-

pared to their sensitive counterparts, carbapenem-resistant Klebsiella spp. [12] and methicillin-

resistant Staphylococcus aureus (MRSA) [11] BSIs are associated with 9.08 (95% CI [1.17 to

70.51]) and 2.23 (95% CI [1.14 to 4.37]) times greater mortality, respectively. Higher admission

to the intensive care units (ICUs), (OR 8.57; 95% CI [3.99 to 18.38]), greater length of hospital

stay (LOS), (4.89 additional days; 95% CI [0.56 to 11.52]) and sizeable hospital costs ($23,318,

95% CI [$858 to $57,090]) have been linked to vancomycin-resistant versus -sensitive Entero-
cocci BSIs [13]. Studies conducted in high-income countries contribute disproportionately to

these estimates [14–16]; data from LMICs are scant. This comprises a critical gap in our under-

standing of the impact of drug-resistant BSI in countries with higher underlying health risks

(e.g., cancer, neutropenia and haematological malignancies, pneumonia, and diabetes) [17].

Here, we present a systematic review and meta-analysis of the literature on the impact (i.e.,

LOS, mortality, and ICU admission) and excess economic costs per patient associated with

ARB BSI compared with antibiotic-sensitive (ASB) BSI among hospitalised patients in LMICs.

Methods

This study is reported as per the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guideline (S1 Checklist) [18] and was prospectively registered with PROS-

PERO (id number: CRD42021264056).
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Search strategy

We searched the literature for studies examining the burden of ARB BSIs compared with ASB

BSIs among inpatients from LMICs. PubMed, SCIELO, Scopus, and WHO’s Global Index

Medicus (Latin American and Caribbean Health Sciences Literature “LILACs” and African

Index Medicus “AIM”) were searched without restrictions to language or year of publication

using a family of keywords related to antibiotic/drug-resistance, bloodstream infections/bac-

teraemia, and burden measures among inpatients. We searched articles published through

August 1, 2022. The complete list of terms, abbreviations, and Boolean connectors used by

search engine can be found in the Supporting information (S1 Text, section 1).

Study selection

We selected articles according to a step-guided protocol. First, articles were excluded if carried

out in high-income countries; these were defined according to the 2021 World Bank classifica-

tion list (i.e., gross national income “GNI” per capita> $12,696) [19]. Second, studies were

only included if BSIs were presented based on laboratory-confirmed positive blood cultures.

Either primary or secondary BSIs were included. Articles that analysed patients with different

culture types (e.g., blood, urine, wound, nasal) were removed unless BSI episodes were clearly

detailed. Third, articles were included if the ASB and ARB groups were identified among adult

patients presenting BSIs in the hospital. Fourth, participants with chronic or severe diseases

(e.g., HIV, cancer) were removed unless they were present in the ARB and ASB groups (e.g.,

studies were withdrawn if HIV–positive patients having ARB BSIs were compared with HIV–

negative patients having ASB BSIs). Finally, studies were removed if they did not present our

selected outcomes (i.e., mortality, ICU admission, LOS, or costs). Experimental and observa-

tional articles were included. We removed correspondence letters or opinions, short reports

without data analysis, literature reviews, and single-case studies.

Studies were analysed only when the number of patients was reported. We only included

the adult population (average�18 years of age) because (i) the number of studies focusing on

children was limited (n = 4) after looking at the provisional results; and (ii) children’s inherent

behaviour and exposure level differ from adults [3]. Only data on WHO-priority pathogens

were retained [20]. The Results section (PRISMA chart) and Table A in S1 Text present the

complete list of search criteria used.

To avoid our study hinging only on published articles’ results, we systematically reviewed

the grey literature and other current literature reviews analysing similar topics. Four referees

resolved any disagreement presented at any stage of study selection through scholarly discus-

sion. Two native Spanish speakers fluent in Portuguese and English, a native English speaker,

and a native Chinese speaker fluent in English conducted the screening and consecutive data

extraction. Papers written in any other language were translated to English using Google

Translate PDF (<1% of the included articles). We used the Rayyan free online tool (https://

rayyan.ai/) to screen, select, and decide which articles were included. Double article screening

for eligibility was employed, and discrepancies were resolved via scholarly dialogue.

Data extraction

We extracted data including authors, publication year, country, study setting, population char-

acteristics, bacterium type, resistance type, and sample sizes (for cases and control groups).

We classified pathogen resistance based on the specific pathogen-resistance profiles evaluated

in each study (e.g., cephalosporin-resistant Acinetobacter baumanii). For completeness, we

also collated data on ESBL+ and non-ESBL (ESBL-) groups for gram-negative pathogens. For

the analysis, the case group comprised infections with resistant strains (ARB), whereas the
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control group comprised sensitive-strain infections (ASB). Selected studies were organised

using unique identifiers (e.g., 1, 2, 3), and sub-studies within the primary articles were classi-

fied using consecutive numbers separated by a dot (e.g., 1.1, 1.2, 1.3) if they presented bacte-

rium- or resistance type-specific information (S1 Data).

We extracted the following outcomes by case/control group: mortality (crude 30-day mor-

tality, whenever available, or overall crude mortality if timing was not reported), LOS (average

total days and standard deviation), and ICU admission (patients admitted). We also collected

data on demographics and underlying conditions: average age, previous surgery and hospitali-

sation, community- or hospital-acquired BSI, any underlying condition (diabetes, hyperten-

sion, cardiovascular or heart diseases, solid tumour or malignancy, liver or kidney disease,

pulmonary/respiratory diseases, and any hematologic disease), and BSI source (urinary tract,

intravenous or catheter, pulmonary, and intrabdominal or gastrointestinal). Pitt bacteraemia

score, APACHE II, and CHARLSON scores were collected if presented. We compared ARB

and ASB groups by comparing variables’ proportion or mean using McNemar’s χ2 or T-tests

for binary and continuous data, respectively. Additionally, we classified the studies by World

Bank income level, WHO region, WHO Global Priority Pathogens List, bacterium family and

antibiotic class, pathogen strain, and bacterium Gram type. We used Microsoft Excel 2022 to

compile and extract included articles’ data. We used double data extraction reviewing, and

inconsistencies (14% disagreement) were resolved through scholarly discussion.

Study quality and risk assessment

We used a unified framework to evaluate the methodological quality of analytic study designs

(MASTER scale) [21]. This framework comprises 36 questions classified into 7 domains con-

cerning equal recruitment, retention, implementation, prognosis, ascertainment, sufficient

analysis, and temporal precedence. Each question was scored independently by 2 reviewers as

1 if the study complied with the domain or 0 if it did not. Therefore, a higher score indicates

higher study quality. Two independent reviewers performed a risk of bias assessment. Con-

flicts were addressed through scholarly discussion.

Statistical analysis

Firstly, we employed population-weighted descriptive statistics of the health and demographic

characteristics collated by studies’ patients having ARB and ASB BSIs to contrast both groups

and check whether mean differences across patient features existed. Secondly, the overall esti-

mates for excess mortality, ICU admission, and LOS associated with resistant strains compared

to their sensitive counterparts were meta-analysed using the inverse variance heterogeneity

model [22]. The heterogeneity was calculated using the I2 statistics; I2 values were classified as

high (>75%), moderate (50% to 75%), and low (<50%) heterogeneity. All results were com-

puted using odds ratios (ORs) for mortality and ICU admission rates, and the standardised

mean difference (SMD) for LOS. We estimated ORs based on studies’ crude numbers or unad-

justed ORs provided. Forest plots and meta-analyses were computed by outcome and sub-

groups of variables, including bacterial family, Gram type, reported resistance type, most

common antibiotic-resistant microbial strains, World Bank income group, and WHO region.

P-values (p) were reported using a two-tailed t test (p< 0.05) for the ORs for mortality and

ICU admissions and LOS’s standardised mean difference. We also analysed and compared,

whenever reported, the unadjusted and confounder-adjusted ORs, for studies reporting uni-

variate and multivariable regression analyses.

As a secondary analysis, we used univariate and multivariable meta-regressions to explore

the main determinants of mortality and ICU admission (LOS was not included because of a
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small sample size). We included the bacterial family and resistance profile, demographics, and

underlying health condition variables in the univariate regression. Variables were transformed

to odds between ARB and ASB groups. We evaluated the associations with the original and

fully imputed observations. Multiple imputations were performed using fully completed data

as factors and with 1,000 repetitions following a multivariable normal regression design. Vari-

ables associated with our outcomes in the univariate analysis with p< 0.05 using non-imputed

data were included in the fully imputed multivariable model.

Excess economic costs per patient (i.e., costs associated with ARB BSI minus costs associ-

ated with ASB BSI) were computed only for excess length of stay, separated by ICU and non-

ICU wards. Hospital-day costs included all the inpatient hospitality costs per patient stay for

primary and secondary level and teaching hospitals and were calculated based on WHO--

CHOICE costs [23]. ICU costs were calculated per patient stay for tertiary/teaching hospitals

and were retrieved from the literature for countries with available information [24–36], or by

using an approximation ratio between hospital and ICU costs [37–39]. Direct medical costs

comprised hospital-day and ICU admission costs per patient, adjusted to their respective

patients’ LOS in the hospitalised or ICU services. We also calculated excess productivity losses

per patient associated with premature mortality from ARB BSIs (compared to ASB BSIs) using

the life expectancy at death and human capital approaches [40]. Excess productivity losses

associated with premature mortality costs were computed by multiplying the years of life lost,

based on the reference standard life expectancy at the average age of death [41] from ARB BSI

(i.e., costs associated with ARB BSI minus costs associated with ASB BSI), using the study-

weighted average age for all patients over all studies, without age-weights and a 5% time dis-

count [42]. All costs were expressed in 2020 USDs, adjusting for inflation using US GDP

implicit price deflators. Due to a lack of data, we excluded direct and indirect nonmedical

costs (e.g., travel). Cost computations and methods are detailed in S1 Text, section 4.

Small-study effects

The Doi [43] plots and the LFK index were used to evaluate small-study effects when there

were at least 5 studies in the meta-analysis. Leave-one-out cross-validation [44] was used to

estimate the generalisation performance of our main meta-analyses to cross-validate the

results’ sensitivity.

Sensitivity analyses

We evaluated whether our main meta-analysis results varied by location. Due to the large pro-

portion of studies from China (N = 41), we assessed our meta-analyses by separating our sam-

pled studies into those performed in China and other LMICs.

All statistical analyses included studies and sub-studies according to their specific popula-

tion features and were performed in Stata 17, College Station, TX: StataCorp LLC.

Results

Yield of the search strategy

Our search strategy identified 13,012 articles: 4,720 through PubMed, 8,193 in Scopus, 55 in

SCIELO, and 44 in AIM and LILACs (Fig 1). Of these, 1,076 were duplicated (8.3%; 1,076/

13,012), and 10,948 were performed in high-income countries (84.1%; 10,948/13,012) and

hence removed. In total, 988 articles were full-text screened, resulting in the inclusion of 109

studies (N = 22,756 patients).
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Characteristics of included studies

Of the 109 articles, 100 (91.7%; 100/109) studies reported the impacts of ARB BSIs on mortal-

ity, 42 on hospital LOS, but only 18 displayed the average LOS with its standard deviation

(16.5%; 18/109) and 52 (47.7%; 52/109) reported on ICU admission (Table 1). Studies were

primarily conducted in China (44.9%; 49/109, N = 12,092 patients), Brazil (11.9%; 13/109,

N = 1,559 patients), and Turkey (8.3%; 9/109, N = 2,190 patients) (Fig 2). Most studies

Fig 1. Flowchart detailing systematic review according to PRISMA guidelines. PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-

Analyses guidelines [18]. HICs: High-income countries. PRISMA checklist is provided in S1 Text. ARB, antibiotic-resistant bacteria; ASB, antibiotic-sensitive

bacteria; BSI, bloodstream infections; WHO, World Health Organization.

https://doi.org/10.1371/journal.pmed.1004199.g001
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Table 1. Details of all studies included in the systematic literature review (N = 109).

ID⁂ Author/year Country

setting

Bacterium family Group comparison Group N of

obs.

Mortality, n (%) LOS (mean) ICU admission,

n (%)

Case Control Case Control Case Control Case Control Case Control

1 Abhilash, 2010 [46] India Enterobacteriaceae ESBL+ ESBL- 96 35 24(25) 9(26)

2 Abolghasemi, 2018

[47]

Iran Moraxellaceae XDR non-XDR 16 14 13(81) 1(7) 8(50) 0(0)

3 Akhtar, 2016 [48] Pakistan Enterococcus spp. VRE VSE 46 65 29(63) 28(43) 28.5 13.2 23(50) 9(14)

4 Anggraini, 2022

[49]

Indonesia Moraxellaceae CRAB CSAB 72 72 41(57) 35(49) 17 13 60(83) 49(68)

5 Anunnatsiri, 2011

[50]

Thailand Moraxellaceae MDR non-MDR 24 25 22(92) 12(48) 21.5 14 9(38) 3(12)

6 Arias-Ortiz, 2016

[51]

Colombia Staphylococcaceae MRSA MSSA 186 186 105

(56)

89(48)

7 Atmaca, 2014 [52] Turkey Staphylococcaceae MRSA MSSA 99 99 70.84 14 25(25) 6(6)

8 Barrero, 2014 [53] Colombia Staphylococcaceae MRSA MSSA 102 102 62(61) 46(45) 30 21 64(63) 54(53)

9.1 Braga, 2013 [54] Brazil Staphylococcacea MRSA MSSA 12 44 7(58) 25(57)

9.2 Braga, 2013 [54] Brazil Pseudomonadaceae CRPA CSPA 14 42 13(93) 19(45)

9.3 Braga, 2013 [54] Brazil Enterobacteriaceae CREN CSEN 3 53 2(67) 30(57)

9.4 Braga, 2013 [54] Brazil Enterobacteriaceae CERKP CESKP 5 51 4(80) 28(55)

10 Castillo 2012 [55] Colombia Staphylococcaceae MRSA MSSA 186 186 62(33) 48(26) 105

(56)

90(48)

11 Carena, 2020 [56] Argentina Multiple MDR non-MDR 168 226 58(35) 36(16) 54(32) 43(19)

12 Cetin, 2021 [57] Turkey Multiple gram-

negative

CRGN CSGN 54 157 29(54) 31(20) 45 20

13 Chang, 2020 [58] China Enterobacteriaceae CRKP CSKP 46 239 27(59) 37(15) 26(57) 33(14)

14 Chen, 2022 [59] China Enterobacteriaceae CRKP CSKP 29 223 14(48) 13(6) 21(72) 38(17)

15 Chen, 2012 [60] China Staphylococcaceae MRSA MSSA 75 43 25(33) 8(19) 55 38.7

16 Chusri 2019 [61] Thailand Moraxellaceae CRAB CSAB 31 11 20(65) 2(18) 89 57 20(65) 6(55)

17 Conterno 1998 [62] Brazil Staphylococcaceae MRSA MSSA 90 46 44(49) 9(20) 54(60) 13(28)

18 Dantas 2017 [63] Brazil Pseudomonadaceae MDR non-MDR 67 90 39(58) 35(39)

19 Deodhar 2015 [64] India Staphylococcaceae MRSA MSSA 40 61 8(20) 13(21)

20 De-Oliveira 2002

[65]

Brazil Staphylococcaceae MRSA MSSA 159 92 73(46) 19(21)

21 Deris, 2011 [66] Malaysia Moraxellaceae IRAB ISAB 15 41 6(40) 9(22) 32.3 32.8 11(73) 20(49)

22 Dramowski, 2022

[67]

South Africa Enterobacteriaceae CEREN CESEN 62 115 27(44) 33(29) 10.5 9

23 Durdu, 2016 [68] Turkey Enterobacteriaceae CRKP CRSKP 46 63 23(50) 23(37)

24 Ergönül, 2016 [69] Turkey Multiple CRGN CSGN 379 452 236

(62)

135(30)

25 Ferreira, 2018 [70] Brazil Multiple MDR non-MDR 25 37 10(40) 3(8)

26 Fu, 2015 [71] China Moraxellaceae XDR non-XDR 39 86 31(79) 38(44) 36.7 36.1 31(79) 45(52)

27 Furtado, 2006 [72] Brazil Enterococcus spp. VRE VSE 34 55 57.7 29 13(38) 18(33)

28 Garnica, 2009 [73] Brazil Multiple MDR non-MDR 10 44 4(40) 4(9)

29 Gaytán, 2006 [74] Mexico Enterobacteriaceae CiREC CiSEC 26 24 4(15) 3(13)

30 Ghafur, 2014 [75] India Multiple MDR non-MDR 44 97 28(64) 37(38)

31.1 Goda, 2022 [76] India Multiple MDR non-MDR 8 22 1(13) 8(36)

31.2 Goda, 2022 [76] India Multiple XDR non-XDR 20 10 8(40) 1(10)

32 González, 2014 [77] Colombia Pseudomonadaceae MDR non-MDR 92 141

33 Guo, 2016 [78] China Moraxellaceae MDR non-MDR 64 23 38(59) 1(4) 51(80) 5(22)

34 Hincapié, 2020 [45] Colombia Staphylococcaceae MRSA MSSA 292 909 219

(75)

71(8) 239

(82)

84(9)
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Table 1. (Continued)

ID⁂ Author/year Country

setting

Bacterium family Group comparison Group N of

obs.

Mortality, n (%) LOS (mean) ICU admission,

n (%)

Case Control Case Control Case Control Case Control Case Control

35.1 Islas-Muñoz, 2018

[79]

Mexico Enterobacteriaceae ESBL+ ESBL- 123 148 37(30) 35(24)

35.2 Islas-Muñoz, 2018

[79]

Mexico Multiple gram-

negative

MDR non-MDR 9 34 6(67) 5(15)

35.3 Islas-Muñoz, 2018

[79]

Mexico Multiple gram-

positive

MDR non-MDR 6 43 2(33) 4(9)

36 Jafari, 2020 [80] Iran Enterococcus spp. VRE VSE 52 21 30(57) 6(29) 36.6 22.32 30(58) 5(24)

37 Jamulitrat, 2009

[81]

Thailand Moraxellaceae IRAB ISAB 67 131 35(52) 26(20) 37 27

38 Kalam, 2014 [82] Pakistan Multiple MDR non-MDR 117 126 54(46) 34(27) 32(27) 36(29)

39 Li, 2019 [83] China Enterobacteriaceae CRKP CSKP 19 21 8(42) 2(10) 21 18 11(58) 5(24)

40 Li, 2017 [84] China Enterobacteriaceae MDR non-MDR 76 28 23(30) 3(11)

41 Li, 2018 [85] China Pseudomonadaceae CRPA CSPA 63 63 17(27) 8(13) 30 21

42 Li, 2017 [86] China Enterobacteriaceae CREN CSEN 26 122 17(65) 21(17) 25.4 21 20(77) 10(8)

43 Li, 2020 [87] China Enterobacteriaceae CRKP CSKP 164 328 72(44) 49(15) 31 19 116

(71)

58(18)

44 Liang, 2021 China Enterobacteriaceae CRKP CSKP 56 47 22(39) 9(19) 28.5 28 20(36) 13(28)

45.1 Lim, 2016 [88] Thailand Staphylococcaceae MDR non-MDR 2017 299*
45.2 Lim, 2016 [88] Thailand Enterobacteriaceae MDR non-MDR 144 20*
45.3 Lim, 2016 [88] Thailand Enterobacteriaceae MDR non-MDR 288 7*
45.4 Lim, 2016 [88] Thailand Pseudomonadaceae MDR non-MDR 94 4*
45.5 Lim, 2016 [88] Thailand Moraxellaceae MDR non-MDR 864 351*
46 Lima, 2020 [89] Brazil Multiple CR CS 60 30 30(50) 12(40) 26.5 15

47 Lipari, 2020 [90] Argentina Enterobacteriaceae CREN CSEN 42 42 22(52) 7(17) 32(76) 12(29)

48 Liu, 2019 [91] China Enterobacteriaceae CRKP CSKP 20 69 11(55) 11(16)

49 Liu, 2015 [92] China Moraxellaceae MDR non-MDR 182 59 50(27) 3(5) 109

(60)

7(12)

50 Liu, 2019 [93] China Enterobacteriaceae CRKP CSKP 70 28 30(43) 12(43)

51 Liu, 2020 [94] China Moraxellaceae CRAB CSAB 229 88 60(26) 4(5) 129

(56)

26(30)

52 Loftus, 2022 [95] Fiji Enterobacteriaceae CREN CSEN 66 96 20(30) 16(17) 13 8

53.1 Lopez-Luis, 2020

[96]

Mexico Enterococcus spp VRE VSE 107 85 34(32) 11(13) 41(38) 11(13)

53.2 Lopez-Luis, 2020

[96]

Mexico Enterococcus spp ARE ASE 18 129 5(28) 23(18) 4(22) 22(17)

54 Ma, 2017 [97] China Enterobacteriaceae ESBL+ ESBL- 70 43 15(21) 6(14)

55 Marra, 2006 [98] Brazil Enterobacteriaceae ESBL+ ESBL- 56 52 18(32) 8(15) 31(55) 18(35)

56 Meneküe 2019 [99] Turkey Enterobacteriaceae CRKP CSKP 111 99 77(69) 44(44)

57 Metan, 2009 [100] Turkey Moraxellaceae CRAB CSAB 54 46 41(76) 22(48)

58 Moghnieh, 2015

[101]

Lebanon Multiple MDR non-MDR 7 68 4(57) 3(4)

59 Moreira, 1998 [102] Brazil Staphylococcaceae ORSA OSSA 71 71 40(56) 8(11) 32.7 29.7

60 Najmi, 2019 [103] India Enterobacteriaceae ESBL+ ESBL- 101 81 29(29) 19(24)

61 Niu, 2018 [104] China Moraxellaceae CRAB CSAB 242 51 84(35) 2(4)

62.1 Palavutitotai, 2018

[105]

Thailand Pseudomonadaceae MDR non-MDR 32 167 12(38) 38(23)

62.2 Palavutitotai, 2018

[105]

Thailand Pseudomonadaceae XDR non-XDR 56 199 23(41) 50(25) 53.5 45.5 8(14) 42(21)
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Table 1. (Continued)

ID⁂ Author/year Country

setting

Bacterium family Group comparison Group N of

obs.

Mortality, n (%) LOS (mean) ICU admission,

n (%)

Case Control Case Control Case Control Case Control Case Control

63 Porto, 2013 [106] Brazil Staphylococcaceae MRSA MSSA 61 169 44(71) 36(21) 43.2 20.5

64 Rao 2020 [107] India Enterococcus spp. VRE VSE 73 100 27(37) 33(33) 34.47 26.25 21(29) 41(41)

65 Seboxa, 2015 [108] Ethiopia Enterobacteriaceae CEREC CESEC 10 6 10

(100)

0(0)

66 Serefhanoglu 2009

[109]

Turkey Enterobacteriaceae MDR non-MDR 30 64 7(23) 12(19)

67 Shi, 2009 [110] China Multiple MDR non-MDR 70 82 27(39) 12(15)

68.1 Shi, 2022 [111] China Multiple CRGN CSGN 65 953 29(45) 79(8)

68.2 Shi, 2022 [111] China Multiple ESBL+ ESBL- 347 671 33(10) 75(11)

68.3 Shi, 2022 [111] China Multiple MDR non-MDR 412 606 56(14) 52(9)

69.1 Sirijatuphat, 2018

[112]

Thailand Enterobacteriaceae CREC CSEC 106 100 23(22) 18(18)

69.2 Sirijatuphat, 2018

[112]

Thailand Enterobacteriaceae CRKP CSKP 45 65 23(51) 22(34)

69.3 Sirijatuphat, 2018

[112]

Thailand Pseudomonadaceae CRPA CSPA 21 47 10(48) 19(40)

69.4 Sirijatuphat, 2018

[112]

Thailand Moraxellaceae CRAB CSAB 57 24 38(67) 3(13)

69.5 Sirijatuphat, 2018

[112]

Thailand Enterobacteriaceae FRS FSS 2 2 0(0) 1(50)

69.6 Sirijatuphat, 2018

[112]

Thailand Staphylococcaceae MRSA MSSA 16 47 9(56) 13(28)

69.7 Sirijatuphat, 2018

[112]

Thailand Enterococcus spp. VRE VSE 9 20 6(67) 12(60)

70 Soares, 2022 [113] ⍴ Brazil Enterobacteriaceae CRKP CSKP 28 79

71 Steinhaus, 2018

[114] a
South Africa Staphylococcaceae MRSA MSSA 23 75

72 Stewardson, 2019

[115]

Multiple

LMICs ☨
Enterobacteriaceae CREN CSEN 123 174 43(35) 35(20) 3.7* 54(44) 51(29)

73.1 Stoma, 2016 [116] Belarus Multiple CR CS 23 112 17(74) 25(22)

73.2 Stoma, 2016 [116] Belarus Enterobacteriaceae ESBL+ ESBL- 24 111 6(25) 36(32)

73.3 Stoma, 2016 [116] Belarus Staphylococcaceae MRSA MSSA 15 120 4(27) 38(32)

74 Tang, 2021 [117] China Multiple CRGN CSGN 78 757 27(35) 79(10)

75 Tian, 2016 [118] China Enterobacteriaceae CRKP CSKP 33 81 14(42) 16(20) 50 24

76 Topeli, 2000 [119] Turkey Staphylococcaceae MRSA MSSA 46 55 27(59) 17(31) 50.3 32.7 20(43) 13(24)

77 Traverso, 2010

[120]

Argentina Staphylococcaceae MRSA MSSA 17 22 12(71) 8(36)

78 Tu, 2018 [121] China Enterobacteriaceae MDR non-MDR 55 145 9(16) 19(13) 16(29) 18(12)

79 Tuon, 2012 [122] Brazil Pseudomonadaceae CRPA CSPA 29 48 13(45) 26(54) 43 43.1 24(83) 25(52)

80 Valderrama, 2016

[123]

Colombia Pseudomonadaceae CRPA CSPA 42 126 24(57) 45(36) 26 16 26(62) 73(58)

81 Wang, 2016 [124] China Enterobacteriaceae CREN CSEN 94 93 33(35) 11(12) 40 26 49(52) 33(35)

82 Wang, 2018 [125] China Enterobacteriaceae CRKP CSKP 48 48 23(48) 2(4) 84 33 25(52) 3(6)

83 Wei, 2020 [126] China Pseudomonadaceae CRPA CSPA 23 58 14(61) 10(17)

84.1 Wu, 2021 [127] China Enterobacteriaceae CRKP CSKP 24 55 10(42) 12(22)

84.2 Wu, 2021 [127] China Enterobacteriaceae ESBL+ ESBL- 24 55 9(38) 15(27)

84.3 Wu, 2021 [127] China Enterobacteriaceae MDR non-MDR 36 43 12(33) 12(28)

85 Xiao, 2018 [128] China Enterobacteriaceae CRKP CSKP 135 293 52(39) 26(9)
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Table 1. (Continued)

ID⁂ Author/year Country

setting

Bacterium family Group comparison Group N of

obs.

Mortality, n (%) LOS (mean) ICU admission,

n (%)

Case Control Case Control Case Control Case Control Case Control

86 Xiao, 2020 [129] China Enterobacteriaceae CRKP CSKP 104 267 58(56) 37(14) 35 23

87 Xie, 2018 [130] China Multiple MDR non-MDR 186 322 59(32) 72(22) 42(23) 40(12)

88 Xu, 2015 [131] China Enterococcus spp. VRE VSE 31 54 21(68) 24(44)

89 Yang, 2018 [132] China Moraxellaceae CRAB CSAB 84 34 23(27) 2(6) 55(65) 6(18)

90 Yang, 2021 [133] China Pseudomonadaceae CRPA CSPA 65 155 17(26) 29(19) 38 24 34(52) 46(30)

91 Ye, 2014 [134] China Multiple rESKAPE sESKAPE 39 32 22(56) 12(38)

92 Yilmaz, 2016 [135] Turkey Staphylococcaceae MRSA MSSA 100 145 22(22) 7(5)

93 Yuan, 2020 [136] China Enterobacteriaceae CRKP CSKP 98 141 7(7) 2(1) 55 51 82(84) 44(31)

94 Zhang, 2020 [137] China Enterobacteriaceae CRKP CSKP 108 388 41(38) 34(9) 24.5 26 85(79) 155(40)

95 Zhang, 2019 [138] China Enterobacteriaceae ESBL+ ESBL- 160 164 39(24) 32(20)

96 Zhang, 2017 [139] China Enterobacteriaceae CEREC CESEC 51 197 13(25) 24(12) 29.88 30.98 4(8) 23(12)

97 Zhang, 2017 [140] China Enterococcus spp. VRE VSE 7 217 2(29) 52(24)

98 Zhang, 2020 [141] China Pseudomonadaceae CRPA CSPA 40 29 30(75) 12(41)

99 Zhao, 2022 [142] China Enterobacteriaceae ESBL+ ESBL- 159 205 29(18) 24(12)

100.1 Zhao, 2020 [143] China Pseudomonadaceae CRPA CSPA 55 238 11(20) 14(6) 29 26

100.2 Zhao, 2020 [143] China Pseudomonadaceae MDR non-MDR 38 255 11(29) 14(5) 27 26

101 Zheng, 2018 [144] China Enterobacteriaceae CRKP CSKP 59 230 32(54) 45(20) 28(47) 47(20)

102 Zheng, 2017 [145] China Enterobacteriaceae CRKP CSKP 31 17 19(61) 8(47) 31.74 21.47

103 Zhou, 2019 [146] China Moraxellaceae MDR non-MDR 274 64 161

(59)

8(13) 29 22.5 184

(67)

12(19)

104 Zhu, 2016 [147] China Staphylococcaceae MRSA MSSA 22 42 6(27) 6(14) 25.7 15.3

105 Zhu, 2021 [148] China Enterobacteriaceae CREN CSEN 152 727 87(57) 133(18) 35 20 98(64) 135(19)

106 Zlatian, 2018 [149] Romania Staphylococcaceae MRSA MSSA 23 40 14(61) 19(48)

107 Zou, 2020 [150] China Enterobacteriaceae CREC CSEC 31 367 17(55) 39(11) 20(65) 61(17)

108 Zhang, 2018 [151] China Enterobacteriaceae MDR non-MDR 77 33 10(13) 10(30)

109 Zhang, 2017 [152] China Moraxellaceae CRAB CSAB 49 29 40(82) 6(21) 10(20) 12(41)

Full information can be found in S1 Data.

*Reported as excess mortality or length of stay. Empty cells did not reported values for the outcomes.
aThis study reported unadjusted and adjusted ORs rather than raw values for outcome variables.
⁂Studies ID comprised the main articles and articles’ sub-studies if information on the outcomes by comparison group was reported separately for more than 1

bacterium or resistance-type according to their specific populations.

☨LMICs included in the study were India, Egypt, Nigeria, Colombia, Ghana, Pakistan, Lebanon, Vietnam, and Bangladesh.
⍴Odds ratios were reported only.

MRSA, methicillin-resistant Staphylococcus aureus; MSSA, methicillin-sensitive Staphylococcus aureus; MDR, multi-drug resistance; CRKP, carbapenem-resistant

Klebsiella pneumoniae; CSKP, carbapenem-sensitive Klebsiella pneumoniae; CRPA, carbapenem-resistant Pseudomonas aeruginosa; CSPA, carbapenem-sensitive

Pseudomonas aeruginosa; CRAB, carbapenem-resistant Acinetobacter baumannii; CSAB, carbapenem-sensitive Acinetobacter baumannii; CREC, carbapenem-resistant

Escherichia coli; CSEC, carbapenem-sensitive Escherichia coli; IRAB, imipenem-resistant Acinetobacter baumannii; ISAB, imipenem-sensitive Acinetobacter baumannii;
ESBL, extended-spectrum β-lactamases; VRE, Vancomycin-resistant Enterococcus spp; VRE, Vancomycin-sensitive Enterococcus spp.; CERKP, Cephalosporins-resistant

Klebsiella pneumoniae; CESKP, Cephalosporins-sensitive Klebsiella pneumoniae; CiREC, Ciprofloxacin-resistant Escherichia coli; CiSEC, Ciprofloxacin-sensitive

Escherichia coli; CRGN, Carbapenem-resistant gram-negative bacteria; CSGN, Carbapenem sensitive gram-negative bacteria; CR, Carbapenem resistance; CS,

Carbapenem sensitive; CREN, Carbapenem-resistant Enterobacteriaceae; CSEN, Carbapenem-sensitive Enterobacteriaceae; ARE, Ampicillin-resistant Enterococcus spp.;

ASE, Ampicillin-sensitive Enterococcus spp.; ORSA, Oxacillin-resistant Staphylococcus aureus; OSSA, Oxacillin-sensitive Staphylococcus aureus; CEREC,

Cephalosporins-resistant Escherichia coli; CESEC, Cephalosporins-sensitive Escherichia coli; FRS, Fluoroquinolone-resistant Salmonella spp.; FSS, Fluoroquinolone-

sensitive Salmonella spp.; XDR, Extensive drug-resistance. rESKAPE: Vancomycin-resistant E. faecium, methicillin-resistant S. aureus (MRSA), extended-spectrum β-

lactamase (ESBL)-producing K. pneumoniae, carbapenem-resistant A. baumannii, carbapenem- and quinolone-resistant P. aeruginosa, and de-repressed chromosomal

β-lactam and ESBL-producing Enterobacter species. sESKAPE: sensitive ESKAPE; ICU: intensive care unit; LOS: length of stay.

https://doi.org/10.1371/journal.pmed.1004199.t001
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collected data from the Western Pacific region according to the WHO classification (46.8%;

51/109) and 88% (96/109) were from upper-middle-income countries (S1 Text, section 2). The

majority of the studies reported on gram-negative bacteria, mainly Enterobacteriaceae (41.3%;

45/109), Moraxellaceae or Acinetobacter baumanii (15.6%; 17/109), and Pseudomonas aerugi-
nosa (11.9%, 13/109) (Fig 3). The main gram-positive pathogens reported were Staphylococcus
aureus (19.3%; 21/109) and Enterococcus spp. (7.3%; 8/109); 75.2% (82/109) of the pathogens

reported were classified as a critical priority following the WHO criteria (Fig 3). β-lactam anti-

biotics were among the most tested antibiotic class within the studies (67.9%; 74/109), 71.6%

(53/74) of which were carbapenems or cephalosporins (Fig 3). The total number of patients

and most prevalent features per country’s studies are reported in Table E in S1 Text. Table F in

S1 Text presents the weighted unadjusted differences for sociodemographic and health vari-

ables among ARB and ASB groups. We found no statistically significant difference between

ARB and ASB groups for most of these variables (χ2 test p> 0.05). S1 Text section 2 describes

the distribution of our studies by WHO region, World Bank income group, year, and out-

comes densities per ARB/ASB group.

Quantitative results

The odds of health outcomes. The crude OR for mortality of ARB versus ASB BSIs was

1.58 (95% CI [1.35 to 1.80], p< 0.001); we obtained similar values for gram-negative or WHO

critical priority pathogens (OR 1.59, 95% CI [1.34 to 1.83], p< 0.001) (Table 2, section I). The

highest OR of crude mortality for resistant pathogens was for carbapenem-resistant Entero-

bacteriaceae (OR 1.97, 95% CI [1.37 to 2.56], p< 0.001) (Table 3). The impact seemed to be

lower among gram-positive bacteria, with an OR of 1.51 (95% CI [0.76 to 2.26], p 0.13) for

MRSA and an OR of 1.31 (95% CI [1.01 to 1.60], p 0.02) for vancomycin-resistant Enterococ-

cus species. Compared to ASB BSIs, ARB BSIs in upper-middle-income countries (OR 1.64,

95% CI [1.36 to 1.92], p< 0.001) from Europe and Western Pacific WHO regions (OR 1.79,

95% CI [1.49 to 2.11], p< 0.001, and OR 1.66, 95% CI [1.18 to 2.14], p< 0.001, respectively)

had the highest excess mortality (Table G in S1 Text). Among priority pathogens defined by

Fig 2. Distribution of the included studies according to country (N = 109 articles). Maps indicate the country where studies came from with their respective

number (N) of studies included and the percentage of studies per country of the total studies analysed. Joint studies used cross-country designs (i.e., analysed

ARB BSIs in more than 1 country). White areas represent high-income countries or missing LMICs. Maps were computed in QGIS Development Team (2020),

Geographic Information System, version 3.16: Open-Source Geospatial Foundation Project. http://qgis.osgeo.org. ARB, antibiotic-resistant bacteria; BSI,

bloodstream infection; LMIC, low- and middle-income country; QGIS, Quantum Geographic Information System.

https://doi.org/10.1371/journal.pmed.1004199.g002
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the WHO, crude excess mortality from carbapenem-resistant K. pneumoniae was substantially

higher than for other pathogens (OR 1.79, 95% CI [1.15 to 2.43], p 0.002; Table 3), compared

to sensitive counterparts. Among studies reporting both adjusted and unadjusted ORs for

mortality (N = 12), we found 1.35 and 1.57 times higher unadjusted and adjusted mortality fig-

ures, respectively, for patients having BSIs caused by ARB versus ASB (Fig AJ in S1 Text). We

found lower mortality estimates among studies reporting adjusted ORs for gram-negative

ARB BSIs (OR = 1.88), specifically for Enterobacteriaceae and Moraxellaceae species (OR 1.91

and OR 1.73, respectively), compared to the same unadjusted estimates (OR 2.95 and OR 3.28,

respectively) (Figs AK and AL in S1 Text). However, and surprisingly for the most part,

adjusted ORs for mortality among ARB versus ASB BSI patients reflected greater odds com-

pared to unadjusted ORs. This is explained by a single, highly influential study [45] among

unadjusted estimates displaying a smaller OR (although confidence intervals overlap between

unadjusted and adjusted ORs, and study’s weight is lower among adjusted estimates).

Overall, the crude odds of ICU admission were 1.96 times higher for ARB compared to

ASB BSIs (95% CI [1.56 to 2.47], p< 0.001) (Table 2, section II). Patients with WHO critical

priority pathogens resistant to antibiotics were twice as likely to be admitted to ICU (OR 2.02,

Fig 3. Number of included studies categorised by microbiological features †. (A) Number of included studies by bacterial family

(B) Number of included studies by antimicrobial susceptibility of interest (C) Number of included studies by bacterial Gram-type (D)

Number of included studies by WHO priority pathogen list. Enterobacteriaceae included Escherichia coli and Klebsiella pneumoniae.
Enterococcus spp. stands for Enterococcus species pluralis (multiple species), which included Enterococcus faecalis and faecium. The

multiple categories stand for either multiple bacteria or antibiotics analysed throughout our selected studies, which were not reported

disaggregated by bacterial family, biological strain, gram type, or WHO priority pathogen list. † Studies could include more than 1

subcategory per biological feature (i.e., a study might report Enterobacteriaceae and Pseudomonadaceae species separately in their

analyses, or altogether, in which case it was classified as “Multiple,” meaning no clear distinction between subcategories). Categories

might not be exclusive per study. WHO, World Health Organization.

https://doi.org/10.1371/journal.pmed.1004199.g003
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Table 2. Main results of the meta-analysis comparing outcomes between patients with drug-resistant and drug-sensitive infections, overall and per bacterial family

and WHO priority list classification (N = 109 studies‡).

Outcome variables OR/SMD 95% CI P-value tau2 N of patients N of studies

I. Mortalitya OR

Overall 1.58 1.35, 1.80 <0.001 0.39 19,597 93

WHO classification

Critical priority pathogens (gram-negative) 1.59 1.34, 1.83 <0.001 0.36 15,206 72

High-priority pathogens (gram-positive) 1.47 0.94, 2.00 0.045 0.48 4,472 22

Bacterial family

Enterobacteriaceae 1.49 1.09, 1.90 0.005 0.61 8,646 40

Enterococcus spp. 1.32 1.02, 1.61 0.017 0.00 949 6

Moraxellaceae 1.59 1.16, 2.02 <0.001 0.12 2,297 16

Pseudomonadaceae 1.37 1.04, 1.69 0.011 0.10 1,353 10

Staphylococcaceae 1.52 0.76, 2.28 0.135 0.80 3,566 17

II. ICU admissionb OR

Overall 1.96 1.56, 2.47 <0.001 0.33 12,005 52

WHO classification

Critical priority pathogens (gram-negative) 2.02 1.62, 2.52 <0.001 0.21 8,488 38

High-priority pathogens (gram-positive) 1.82 0.99, 3.37 0.055 0.68 3,517 14

Bacterial family

Enterobacteriaceae 2.59 1.95, 3.45 <0.001 0.16 4,841 18

Enterococcus spp. 1.48 0.90, 2.41 0.119 0.27 870 6

Moraxellaceae 1.57 1.02, 2.41 0.039 0.20 1,625 12

Pseudomonadaceae 1.37 1.05, 1.77 0.018 0.05 877 5

Staphylococcaceae 1.91 0.86, 4.25 0.112 0.82 2,647 8

III. LOSc SMD

Overall 0.49 0.20, 0.78 <0.001 0.27 3,185 18

WHO classification

Critical priority pathogens (gram-negative) 0.37 0.17, 0.57 <0.001 0.06 2,097 11

High-priority pathogens (gram-positive) 0.71 0.03, 1.39 0.040 0.66 1,088 7

Bacterial family

Enterobacteriaceae 0.43 0.14, 0.73 0.004 0.06 1,175 5

Enterococcus spp. 0.25 −0.05, 0.55 0.102 - 173 1

Moraxellaceae 0.16 −0.06, 0.38 0.155 0.00 379 3

Pseudomonadaceae 0.14 −0.11, 0.39 0.276 0.00 332 2

Staphylococcaceae 0.82 0.01, 1.63 0.047 0.78 915 6

WHO, World Health Organization. Where the numbers of studies seem inconsistent, this is attributable to several studies reporting on multiple categories (WHO) or

combined pathogens simultaneously. ICU stands for intensive care unit. Fully disaggregated results, including their respective forest plots, are shown in S1 Text, section

3. OR, odds ratio; SMD, standardised mean difference; CI, Confidence interval; N, number.
aFrom the total 109 studies included in the systematic review, 9 were excluded as they had missing data; one study was excluded as it only reported excess deaths for

ARB BSIs at the country level [88]; and, 6 studies evaluated mortality by comparison group but reported different bacteria for the sample of individuals and therefore

were excluded from the overall analysis but had sufficient information to be retained for the subgroup analyses.
bOne study [96] reported data on demographics and ARB BSI for 2 different pathogens and with non-duplicate episodes, which were included as separate sub-studies.
cThe number of studies/sub-studies differs from Table F in S1 Text because some studies did not report the standard deviation of LOS, so the SMD could not be

computed.
‡One study was excluded from the N = 109 initial sample because it only reported excess mortality. P-values (p) were reported using a two-sided z-test (α = 5%) for the

log-transformed mortality and ICU admission ratios and LOS’s SMD.

ARB, antibiotic-resistant bacteria; BSI, bloodstream infection; LOS, length of hospital stay.

https://doi.org/10.1371/journal.pmed.1004199.t002
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95% CI [1.62 to 2.52], p< 0.001), with the highest observed ratio for gram-negative BSIs

caused by antibiotic-resistant Enterobacteriaceae (OR 2.59, 95% CI [1.95 to 3.45], p< 0.001).

Carbapenem-resistant Enterobacteriaceae in general (OR 2.66, 95% CI [1.98 to 3.57],

p< 0.001), and specifically Escherichia coli (OR 3.88, 95% CI [2.74 to 5.49], p< 0.001),

accounted for the highest figures (Table 3). Among gram-positive bacteria, Methicillin-resis-

tant Staphylococcus aureus had an OR of 1.91 for ICU admission rate (95% CI [0.86 to 4.25], p
0.11), and vancomycin-resistant Enterococcus faecium/faecalis had an OR of 1.48 (95% CI

[0.87 to 2.54], p 0.15) (Table 3). The Western Pacific region had the highest increase in ICU

odds (OR 2.42, 95% CI [1.88 to 3.12], p< 0.001), followed by the Americas (OR 1.77, 95% CI

[1.08 to 2.89], p 0.02), whereas the Southeast Asia region had the lowest odds of ICU admission

of ARB BSIs compared to ASB BSIs (Table G in S1 Text).

The crude SMD for LOS was 0.49 (95% CI [0.20 to 0.78], p< 0.001; Table 2, section III). In

other words, the curve representing the distribution of LOS times was shifted to the right by

0.49 standard deviations for the ARB BSIs group (i.e., LOS is approximately 7 days longer for

Table 3. Meta-analysis subgroup results by the most common antibiotic-resistant microbial strains according to the WHO global priority list of antibiotic-resistant

bacteria.

Outcome Most common antibiotic-resistant microbial strains* OR/SMD 95% CI P-value N of studies

I. Mortality OR

CRAB 1.46 0.80, 2.11 0.120 10

CREN 1.97 1.37, 2.56 <0.001 26

CREC 1.54 0.00, 6.37 0.857 2

CRKP 1.79 1.15, 2.43 0.002 19

CRPA 1.36 0.89, 1.82 0.088 9

MRSA 1.51 0.76, 2.26 0.132 16

VRE 1.31 1.01, 1.60 0.021 6

II. ICU admission OR

CRAB 1.36 0.85, 2.16 0.198 6

CREN 2.66 1.98, 3.57 <0.001 15

CREC‡ 3.88 2.74, 5.49 <0.001 1

CRKP 2.60 1.81, 3.75 <0.001 9

CRPA 1.39 1.02, 1.90 <0.001 3

MRSA 1.91 0.86, 4.25 0.112 8

VRE 1.48 0.87, 2.54 0.152 6

III. LOS SMD

CRAB 0.22 −0.04, 0.49 0.104 2

CREN 0.53 0.39, 0.67 <0.001 4

CREC‡ - - - -

CRKP 0.56 0.41, 0.71 <0.001 3

CRPA‡ 0.00 −0.46, 0.46 1.000 1

MRSA 0.82 0.00, 1.63 0.048 6

VRE‡ 0.25 −0.05, 0.55 0.102 1

*All comparisons and ORs/SMD computations were made concerning their sensitive-specific counterpart. CRAB, Carbapenem-resistant Acinetobacter baumanii;
CREN, Carbapenem-resistant Enterobacteriaceae; CREC, Carbapenem-resistant Escherichia coli; CRKP, Carbapenem-resistant Klebsiella pneumoniae; CRPA,

Carbapenem-resistant Pseudomonas aeruginosa; MRSA, Methicillin-resistant Staphylococcus aureus; VRE, Vancomycin-resistant Enterococcus faecium/faecalis.
‡Either non or only study-reported estimates for the specific antibiotic-bacterium pair. Full charts, including the studies, can be found in S1 Text, section 7. P-values (p)

were reported using a two-sided z-test (α = 5%) for the log-transformed mortality and ICU admission ratios and LOS’s SMD.

ARB, antibiotic-resistant bacteria; CI, confidence interval; ICU, intensive care unit; LOS, length of hospital stay; OR, odds ratio; SMD, standardised mean difference;

WHO, World Health Organization.

https://doi.org/10.1371/journal.pmed.1004199.t003
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the ARB group; derived from multiplying SMD by LOS’s standard deviation among all

patients [0.49*13.91]). The SMD was higher for resistant pathogens classified as WHO high-

priority pathogens (or gram-positive, SMD 0.71, 95% CI [0.03 to 1.39], p 0.04) compared with

WHO critical priority pathogens (or gram-negative, SMD 0.37, 95% CI [0.17 to 0.57], p 0.13).

Studies reporting MRSA accounted for the greatest excess LOS estimated (SMD 0.82; Table 3),

compared to methicillin-sensitive S. aureus. The highest excess LOS was observed in studies

from Turkey (SMD 1.29). Studies from Europe (SMD 1.29) and Brazil (SMD 0.43) contributed

substantially to the greater LOS in ARB BSI patients (Table G in S1 Text).

Full details on the meta-analysis main and subgroup results, including their respective for-

est plots, can be found in S1 Text, section 3.

Tables W and X in S1 Text show the results of the univariate and multivariable meta-regres-

sions for mortality and ICU admission, respectively. Among the variables selected from the

univariate analyses, our multivariable meta-regression showed that patients with resistant

Moraxellaceae BSIs and hypertension had higher mortality odds when ARB versus ASB BSI

patients were compared (OR 1.67, 95% CI [1.18 to 2.36], p 0.004; OR 1.13, 95% CI [1.00 to

1.28], p 0.035, respectively). Yet, countries from the Southeast Asia WHO region displayed

lower mortality odds (OR 0.62, 95% CI [0.46 to 0.85], p 0.004). For the ICU admission multi-

variable meta-regression, we found a weak negative association between BSIs originating as a

secondary infection from the urinary tract and the odds of mortality between patients having

ARB and ASB BSIs (OR 0.72, 95% CI [0.51 to 1.02], p 0.06).

Estimated excess costs

The average excess hospital bed-days cost per ARB BSI patient in tertiary/teaching hospitals,

adjusted by the calculated excess LOS from Table 2 and excluding drugs and tests costs, was

$812.5 (95% CI [$331.6 to $1,293.3]) (Table J in S1 Text). The excess costs per patient varied

considerably between countries, ranging from $30.9, $95.9, and $131.7 (Ethiopia, Pakistan,

and India, respectively) to $1,681.7 and $1,683.2 (Mexico and Turkey) (Fig 4, panel A).

We estimated an average excess of productivity loss (indirect costs associated with ARB BSI

for an average patient) from years of potential life lost due to premature mortality of $41,102

(95% CI = $30,931 to $51,274) for all bacteria combined (Table L in S1 Text). Romania pre-

sented the highest excess producitivity lossess attributed to years of potential life-lost costs per

patient, while Ethiopia had the lowest ($86,217 and $6,070, respectively). Mortality costs due to

premature mortality using the life expectancy approach had an observed average of $132,560

per patient (95% CI [$99,753 to $165,363]) among all sampled countries (Table L in S1 Text).

The average excess ICU admission costs per patient, multiplied by the calculated ICU LOS,

was $11,629 (95% CI [$6,016 to $17,243]) (Table O in S1 Text) for all bacteria combined. The

estimates varied, with a middle data dispersion of $5,669 (i.e., third quartile–second quartile).

Mexico had the highest costs per patient ($53,747), and Ethiopia had the lowest ($188)

(Table O in S1 Text).

Fig 4 displays the direct medical and productivity loss due to premature mortality costs per

patient by country (panel B). Direct medical costs (i.e., hospital bed-day costs and bed-day

ICU costs per day multiplied by the average hospital and ICU respective LOS) were estimated

at $12,442 (95% CI [$6,693 to $18,191]). The average total excess costs for a patient with ARB

compared to ASB BSI, comprising direct medical and years of potential life lost, were $53,545

(95% CI [$39,838 to $67,251]). Excess costs for ICU adjusted to ICU’s length of stay were 14

times higher compared with hospital-bed LOS-adjusted among patients with ARB BSIs. Lower

middle-income countries had the lowest economic burdens per patient; however, we found

substantial between-country differences.
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Fig 4. Excess costs (in 2020 USD) associated with productivity loss or excess length of stay per patient with a drug-resistant versus a drug-

sensitive bloodstream infection. (A) Direct excess medical costs dissagreggated by ICU and hospital-bed days and by country (B) Total excess

costs and productivity lossess due to premature mortality by country. ARB, antibiotic-resistant bacteria; BSI, bloodstream infection; YPLL,

years of potential life lost from premature mortality; LOS, length of stay; USD, United States dollars. Full information and data are provided in

S1 Text, section 4. ☨ Total excess costs incurred including YPLL and hospital-derived costs per patient with ARB BSI. “k” = thousands. Costs of

productivity loss are found in Table L in S1 Text.

https://doi.org/10.1371/journal.pmed.1004199.g004
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Full details on cost calculation can be found in S1 Text, section 4.

Quality and risk assessment

Using the MASTER scale for methodological assessment, we calculated, on average, 25.1, 23.7,

and 23.6 points (out of 36) for the mortality, ICU admission, and length of hospital stay out-

comes, respectively (Table 4). Our scores reflect that few studies addressed key confounders

(e.g., using statistical methods to control for other correlated risk factors) to account for differ-

ent prognoses and equal ascertainment (especially for participants, analysts, and caregivers’

blindness towards evaluation; <2% of included studies). Only 37%, 11%, and 13% of the stud-

ies incorporated statistical techniques (e.g., regression analyses, stratification, matching,

among others) for an equal prognosis for the mortality, ICU admission, and LOS outcomes,

respectively (Table 4, equal prognosis scores). Most studies achieved equal retention (e.g., low

missing data and null attrition) and sufficient analyses safeguards (e.g., absence of numerical

contradictions and data dredging), regardless of the outcome analysed. Full results are found

in S1 Text sections 8 and 9 and S1 Data, Master Scale spreadsheet.

Small-study effects

We found a medium level of heterogeneity between studies for the mortality outcome (I2 69%,

95% CI [52% to 78%]), and high variation for ICU admission (I2 91%, 95% CI [83% to 94%])

and LOS (I2 90%, 95% CI [75%, 95%]) for the meta-analysis run by specific groups (S1 Text,

section 5). Studies reporting ICU admission and LOS were either symmetrical (LFK index�1)

or slightly asymmetrical (LFK index<3) (Figs AM and AN in S1 Text).

Sensitivity analyses

General mortality estimates from studies in China were not different from studies conducted

elsewhere. However, we found larger disaggregated estimates for subgroup meta-analyses,

such as Enterobacteriaceae, Moraxellaceae, Pseudomonaceae, and Staphylococcaceae species

(8%, 25%, 26%, and 20%, respectively) compared to the average mortality estimates reported

in Table 2 for the same subgroups. General LOS SMD was 16% higher among countries other

than China, compared to the estimates reported in Table 2, specifically driven by Moraxella-

ceae and Staphylococcaceae species. Finally, the odds for excess ICU admission were 25%

greater in China, with respect to average ICU admission found in all included studies, driven

by 27% elevated odds among patients having BSIs caused by gram-negative bacteria. Full

results in Tables U and V in S1 Text.

When applying the leave-one-out method to our meta-analyses, we observed that after

assessing the effect of every single study on the overall estimates, the numbers presented a rela-

tive variation with respect to overall estimates ranging between −2% and 4% for mortality (OR

95% CI [1.57 to 1.58]), −8% and 4% for ICU admission (OR 95% CI [1.95 to 1.97]), and −10%

and 4% for LOS (SMD 95% CI [0.48 to 0.50]) (S1 Text, section 6). These results suggest a mod-

erate influence of our studies in the overall estimates if relative variations are compared, espe-

cially for ICU admission and LOS.

Discussion

Antibiotic resistance imposes substantial morbidity, mortality, and societal costs in LMICs

[153]. Bloodstream infections with ARB are among the most lethal, imposing a large disease

burden. Examining all available data for hospitalised patients in LMICs, we found that ARB

BSIs with WHO critical- and high-priority pathogens were associated with increased mortality
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Table 4. Assessment of study quality and risk of bias using the MASTER scale.

Safeguard items and sub-items Outcomes

Mortality ICU

admission

LOS

Equal recruitment 60.4% 58.9% 60.6%

1. Data collected after the start of the study was not used to exclude participants or to select them for the analysis 38.8% 39.6% 40.0%

2. Participants in all comparison groups met the same eligibility requirements and were from the same population and

timeframe

100.0% 100.0% 100.0%

3. Determination of eligibility and assignment to treatment group/exposure strategy were synchronised 17.5% 11.3% 12.5%

4. None of the eligibility criteria were common effects of exposure and outcome 85.4% 84.9% 90.0%

Equal retention 96.9% 97.4% 96.5%

5. Any attrition (or exclusions after entry) was less than 20% of total participant numbers 92.2% 94.3% 87.5%

6. Missing data was less than 20% 97.1% 96.2% 97.5%

7. Analysis accounted for missing data 96.1% 96.2% 97.5%

8. Exposure variations/treatment deviations were less than 20% 100.0% 100.0% 100.0%

9. The analysis addressed variations in exposure or withdrawals after start of the study 99.0% 100.0% 100.0%

Equal ascertainment 57.1% 57.4% 57.1%

10. Procedures for data collection of covariates were reliable and the same for all participants 100.0% 100.0% 100.0%

11. The outcome was objective and/or reliably measured 100.0% 100.0% 100.0%

12. Exposures/interventions were objectively and/or reliably measured 100.0% 100.0% 100.0%

13. Outcome assessor(s) were blinded 100.0% 100.0% 100.0%

14. Participants were blinded 0.0% 0.0% 0.0%

15. Caregivers were blinded 0.0% 0.0% 0.0%

16. Analyst(s) were blinded 0.0% 1.9% 0.0%

Equal implementation 64.6% 66.4% 66.3%

17. Care was delivered equally to all participants 0.0% 0.0% 0.0%

18. Cointerventions that could impact the outcome were comparable between groups or avoided 0.9% 0.0% 0.0%

19. Control and active interventions/exposures were sufficiently distinct 100.0% 100.0% 100.0%

20. Exposure/intervention definition was consistently applied to all participants 87.4% 98.1% 97.5%

21. Outcome definition was consistently applied to all participants 100.0% 100.0% 100.0%

22. The period between exposure and outcome was similar across patients and between groups or the analyses adjusted for

different lengths of follow-up of patients

99.0% 100.0% 100.0%

Equal prognosis 37.6% 11.0% 12.5%

23. Design and/or analysis strategies were in place that addressed potential confounding 84.5% 0.0% 0.0%

24. Key confounders addressed through design or analysis were not common effects of exposure and outcome 69.9% 0.0% 0.0%

25. Key baseline characteristics/prognostic indicators for the study were comparable across groups 3.9% 0.0% 2.6%

26. Participants were randomly allocated to groups with an adequate randomisation process 4.9% 9.4% 10.0%

27. Allocation procedure was adequately concealed 0.0% 0.0% 0.0%

28. Conflict of interests were declared and absent 62.1% 56.6% 62.5%

Sufficient analysis 89.9% 92.3% 92.5%

29. Analytic method was justified by study design or data requirements 84.2% 88.5% 90.0%

30. Computation errors or contradictions were absent 93.2% 94.3% 90.0%

31. There was no discernible data dredging or selective reporting of the outcomes 92.2% 94.2% 97.4%

Temporal precedence 100.0% 100.0% 100.0%

32. All subjects were selected prior to intervention/exposure and evaluated prospectively 100.0% 100.0% 100.0%

33. Carry-over or refractory effects were avoided or considered in the design of the study or were not relevant 100.0% 100.0% 100.0%

34. The intervention/exposure period was long enough to have influenced the study outcome 100.0% 100.0% 100.0%

35. Dose of intervention/exposure was sufficient to influence the outcome 100.0% 100.0% 100.0%

36. Length of follow-up was not too long or too short in relation to the outcome assessment 100.0% 100.0% 100.0%

Average count of safeguard items (raw score out of 36 items) 25.1 23.6 23.7

(Continued)
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(OR 1.58, 95% CI [1.35 to 1.80]), overall length of stay (SMD 0.49, 95% CI [0.20 to 0.78]), and

ICU admission (OR 1.96, 95% CI [1.56 to 2.47]).

Our findings on mortality are consistent with the recent estimates by the Global Burden of

Disease study [154]. The largest mortality impact was associated with resistant A. baumannii
and Enterobacteriaceae. Both bacteria featured in the global top 5 contributors to resistance-

associated and -attributable deaths in 2019 [154]. Between a quarter and half of the patients

with ARB BSIs caused by Enterobacteriaceae, A. baumannii or P. aureginosa die, corroborating

findings from different country settings for Enterobacteriaceae [8,67], P. aeruginosa [155], and

large university hospitals in Israel and the US for A. baumanii [156,157].

Our results suggest that patients who acquired ARB BSIs during their hospital stay had an

overall hospital stay that is about a week longer than patients that acquired ASB BSIs. However,

in our study, we could not distinguish between excess length of stay before or after BSI, and as

such this is likely an overestimation. Depending on the pathogen, resistant infections have pre-

viously been shown to increase LOS typically by 2.0 to 12.7 days [158]. Longer hospital stay,

especially before BSI onset, is a primary risk factor for acquiring a resistant infection due to the

cumulative risk of hospital transmission of ARBs [158,159]. We found that MRSA had the

greatest impact on LOS (extending stay by 14 days relative to sensitive S. aureus). Others have

also shown considerably increased LOS as a result of MRSA compared with sensitive S. aureus:
Tsuzuki and colleagues [160] showed an excess overall LOS and LOS after BSI onset of 20 and

7 days, respectively; similarly, Graffunder and colleagues [161] showed MRSA patients pre-

sented an overall LOS of 3 weeks longer. Resistant infections are more difficult to treat and

increase the rate of ICU admissions. Our analysis showed that resistant Enterobacteriaceae

infections more than doubled the odds of ICU admission. This finding is comparable with the

2.69 higher odds of ICU admission previously shown among patients with carbapenem-resis-

tant K. pneumoniae BSIs [162]. Our exploratory analysis for studies performed in China and

LMICs other than China exhibited divergent results. We found that China’s patients with anti-

biotic-resistant gram-negative BSIs (A. baumanii, Enterobacteriaceae, and P. aeruginosa) dis-

played higher excess mortality, ICU admission, and LOS, compared to the other LMICs with

reported data. Large increases in antibiotic consumption and resistance levels over the last 20

years and the rapid development or acquisition of drug resistance among gram-negative path-

ogens might explain the greater excess mortality and morbidity for ARB BSIs in China

[1,163,164]. Correspondingly, inappropriate administration of empirical treatments and low

testing rates could increase the burden outcomes for patients with ARB BSIs in these settings

[165].

Despite being fundamental to resource allocation for healthcare provision, we found very

little data on excess costs associated with ARB BSIs among the reviewed studies. One study

conducted in Thailand, reported excess costs associated with hospital-acquired carbapenem-

resistant A. baumannii of $5,682 [61]. A study conducted in Colombia, reported excess

Table 4. (Continued)

Safeguard items and sub-items Outcomes

Mortality ICU

admission

LOS

Average percentage of sufficiency considering all 36 items (i.e., average raw score/36) 69.6% 65.6% 65.9%

Percentage of fulfilment among all included studies, and per outcome, is presented by MASTER’s scale safeguard and items [21].

ICU, intensive care unit; LOS, length of hospital stay. Full results are reported in S1 Data, Master Scale spreadsheet. See S1 Text, section 9, for a subgroup meta-analysis

according to quality scores.

https://doi.org/10.1371/journal.pmed.1004199.t004
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hospitalisation costs associated with MRSA BSI of $10,212, compared to sensitive S. aureus
[53]. We estimated costs associated with mortality, LOS, and ICU admissions from the pro-

vider and societal perspective following the WHO-CHOICE standards and human capital

approach. We found that the average hospital-related 2020 USD excess costs were $12,442

(95% CI [$6,693 to $18,190]) per ARB BSI patient, compared to ASB, ranging between Ethio-

pia, with the lowest figures, to Mexico, with the highest. These differences are partly explained

by the countries’ disparate economies (Pearson correlation = 0.27 between GDP and hospital

costs). Several LMIC-setting studies detailing excess costs of resistant infections were excluded

from our review because they did not meet specific inclusion criteria. Cost estimates from

these studies include 1 from Turkey in which excess hospital stay and treatment costs were

$10,002 [166]. Our estimate for Turkey of $10,403 is similar; however, our estimates did not

include therapy/treatment costs. Our estimate for China ($12,516) was higher than a previous

study including BSI treatment costs for carbapenem-resistant K. pneumoniae ($10,763) [167].

The average excess total costs comprising direct medical costs and years of potential life lost

associated with premature mortality were $53,545 (95% CI [$39,838 to $67,251]) per patient

with ARB BSI. WHO [168] recently reported that 58.3% of 22,371 isolates were identified as

ARB E. coli, while 33.3% of 23,031 isolates were ARB S. aureus in LMICs, indicating the high

relevance of these costs.

This study has limitations. First, the most important limitation is consistent with conclu-

sions from the Global Burden of Diseases study [154]: there is a sparsity of data on ARB from

LMICs. Only 18 of the 137 (13%) LMICs published any AMR outcome study. Consistent anti-

biotic resistance surveillance puts demands on clinical bacteriology, quality control, and data

linkage between culture test results and clinical outcomes, which is beyond the capabilities of

many LMICs. Applying the leave-one-out method to our meta-analyses (S1 Text, section 6)

showed a minor-to-moderate influence of individual studies likely due to the heterogeneity in

clinical settings, indicating that our model’s results are robust (assuming countries’ missing

information and selection biases are heterogeneously distributed). Future efforts to improve

coverage should prioritise WHO’s Africa region, where data were remarkably absent, with no

estimates for resistance-associated LOS or ICU admissions. Our results indicate that the stud-

ies from the Western Pacific and European areas show the highest excess mortality from ARB

BSIs. Studies from Africa show among the lowest but this region has limited data and substan-

tial uncertainty; it is essential to improve epidemiological surveillance of ARB BSIs in this

region in particular [169]. Second, some articles were of low quality or reported limited data.

Studies often failed to account for confounding factors; hence our analyses relied upon crude

estimates. ARB surveillance networks vary in blood culture sampling, potentially overestimat-

ing the number of severe cases if selective sampling among patients fulfilling the case defini-

tion is present. Third, we did not estimate the total relative harm of ARB BSIs relative to where

such infections were prevented (compared to non-infected patients) [170], primarily because

of the limited number of studies [171]. While we accounted for some key risk factors when

comparing antibiotic-sensitive and antibiotic-resistant groups in the metaregression, others

were unavailable. We could not match comparison groups by factors known to impact

patients’ underlying health conditions, such as illness severity, prolonged previous hospital

stays, or the use of invasive devices. The reported LOS does not distinguish between total LOS

and LOS following BSI infection, thus risking reverse causality [172]. This ecological study was

designed to identify associations; consequently, our results should be interpreted cautiously.

Also, we adjusted WHO-CHOICE country estimates using US GPD implicit price deflators,

which may not necessarily reflect price changes in some LMICs, particularly for non-tradable

cost components of healthcare. Finally, we may have overestimated the true effect size of the

association between ARB BSIs and mortality as indicated by the exploratory analysis of studies’
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adjusted—compared to unadjusted—ORs reporting both estimates, specifically among gram-

negative species.

Here, we described an updated evaluation of the health impact and excess economic costs

of resistant BSIs in low-resourced settings. Our results highlight regions where improved sur-

veillance, expanding microbiology laboratory capacity, and data collection systems are most

needed and where the current evidence indicates WHO critical and high-priority drug-resis-

tant pathogens exert the greatest toll on morbidity and mortality.
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meta-analysis using all the studies reporting mortality rates by income level. Fig I. Meta-analy-

sis results using all the studies reporting the mean and SD for the length of stay at the hospital.

Fig J. Subgroup meta-analysis using all the studies reporting the mean and SD for the length of

stay at the hospital for critical and high-priority pathogens according to the WHO. Fig K. Sub-

group meta-analysis using all the studies reporting the mean and SD for the length of stay at

the hospital for Enterococcus spp., Enterobacteriaceae, Moraxellaceae, Pseudomonadaceae,

and Staphyloccocaceae. Fig L. Subgroup meta-analysis using all the studies reporting the mean

and SD for the length of stay at the hospital by income level. Fig M. Subgroup meta-analysis

using all the studies reporting the mean and SD for the length of stay at the hospital by WHO

region. Fig N. Meta-analysis results using all the studies reporting ICU admission rates. Fig O.

Subgroup meta-analysis using all the studies reporting ICU admission rates for critical patho-

gens according to the WHO criteria. Fig P. Subgroup meta-analysis using all the studies

reporting ICU admission rates for high-priority pathogens according to the WHO criteria. Fig

Q. Subgroup meta-analysis using all the studies reporting ICU admission rates for Enterobac-

teriaceae. Fig R. Subgroup meta-analysis using all the studies reporting ICU admission rates

for Enterobacteriaceae. Fig S. Subgroup meta-analysis using all the studies reporting ICU

admission rates for Moraxellaceae. Fig T. Subgroup meta-analysis using all the studies report-

ing ICU admission rates for Pseudomonadaceae. Fig U. Subgroup meta-analysis using all the

studies reporting ICU admission rates for Staphylococcaceae. Fig V. Subgroup meta-analysis

using all the studies reporting ICU admission rates by resistance type (ESBL+). Fig W. Sub-

group meta-analysis using all the studies reporting ICU admission rates by WHO region:

Americas. Fig X. Subgroup meta-analysis using all the studies reporting ICU admission rates

by WHO region: Eastern Mediterranean. Fig Y. Subgroup meta-analysis using all the studies

reporting ICU admission rates by WHO region: Europe. Fig Z. Subgroup meta-analysis using

all the studies reporting ICU admission rates by WHO region: Southeast Asia. Fig AA. Sub-

group meta-analysis using all the studies reporting ICU admission rates by WHO region:

Western Pacific region. Fig AB. Subgroup meta-analysis using all the studies reporting ICU

admission rates by income level: Low and lower-middle income countries. Fig AC. Subgroup

meta-analysis using all the studies reporting ICU admission rates by income level: Upper-mid-

dle income countries. Fig AD. Subgroup analysis for studies reporting unadjusted ORs. Fig

AE. Subgroup analysis for studies reporting unadjusted ORs, by bacteria’s gram type or WHO

criticality category (critical = gram-negative, high-priority = gram-positive in this study). Fig

AF. Subgroup analysis for studies reporting unadjusted ORs, by specific bacterium. Fig AG.

Subgroup analysis for studies reporting adjusted ORs. Fig AH. Subgroup analysis for studies

reporting adjusted ORs, by bacteria’s gram type (critical = gram-negative, high-

priority = gram-positive in this study). Fig AI. Subgroup analysis for studies reporting

adjusted ORs, by specific bacterium. Fig AJ. Subgroup analysis for studies reporting adjusted

and unadjusted ORs simultaneously, general mortality estimates. Fig AK. Subgroup analysis

for studies reporting adjusted and unadjusted ORs simultaneously, mortality rates by Gram

type or WHO criticality list classification (high = gram-positive, critical = gram-negative). Fig

AL. Subgroup analysis for studies reporting adjusted and unadjusted ORs simultaneously,

mortality rates by bacterium family. Fig AM. Doi plots for Model 1 (general) and by outcome

based on Tables Q, R, and S. Fig AN. Funnel plots for Model 1 (general) and by outcome

based on Tables Q, R, and S. Fig AO. Influence analysis for Model 1 using the mortality out-

come compared to the general estimates and without subgroup analyses. Fig AP. Influence

analysis for Model 1 using the ICU admission outcome compared to the general estimates and

without subgroup analyses. Fig AQ. Influence analysis for Model 1 using the length of hospital

stay outcome compared to the general estimates and without subgroup analyses. Fig AR.

Meta-analysis results disaggregated by specific and prioritised antibiotic-bacterium pairs for
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mortality. Fig AS. Meta-analysis results disaggregated by carbapenem-resistant Enterobacter-

iaceae for mortality. Fig AT. Meta-analysis results disaggregated by specific and prioritised

antibiotic-bacterium pairs for LOS. Fig AU. Meta-analysis results disaggregated by carbape-

nem-resistant Enterobacteriaceae for LOS. Fig AV. Meta-analysis results disaggregated by spe-

cific and prioritised antibiotic-bacterium pairs for ICU admission. Fig AW. Meta-analysis

results disaggregated by carbapenem-resistant Enterobacteriaceae for ICU admission. Fig AX.

Graphical results of Table V. Fig AY. Distribution of the Master scale scores by outcome. Fig

AZ. Kernel density estimate of the Master scale scores by outcome. Fig BA. Percentage of full

completion by MASTER scale main safeguard and outcome.

(PDF)
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of the MASTER scale.
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96. López-Luis BA, Sifuentes-Osornio J, Lambraño-Castillo D, Ortiz-Brizuela E, Ramı́rez-Fontes A,

Tovar-Calderón YE, et al. Risk factors and outcomes associated with vancomycin-resistant Entero-

coccus faecium and ampicillin-resistant Enterococcus faecalis bacteraemia: A 10-year study in a ter-

tiary-care centre in Mexico City. J Glob Antimicrob Resist. 2020; 24:198–204. Epub 2020/12/29.

https://doi.org/10.1016/j.jgar.2020.12.005 PMID: 33359937.

97. Ma J, Li N, Liu Y, Wang C, Liu X, Chen S, et al. Antimicrobial resistance patterns, clinical features, and

risk factors for septic shock and death of nosocomial e coli bacteremia in adult patients with hemato-

logical disease. Medicine. 2017; 96(21). https://doi.org/10.1097/MD.0000000000006959 PubMed

Central PMCID: PMC28538389. PMID: 28538389

98. Marra AR, Wey SB, Castelo A, Gales AC, Cal RG, Filho JR, et al. Nosocomial bloodstream infections

caused by Klebsiella pneumoniae: impact of extended-spectrum beta-lactamase (ESBL) production

on clinical outcome in a hospital with high ESBL prevalence. BMC Infect Dis. 2006; 6:24. Epub 2006/

02/16. https://doi.org/10.1186/1471-2334-6-24 PMID: 16478537; PubMed Central PMCID:

PMC1382232.
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