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AbstractAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:

Background

The prevalence of obesity has increased in the United Kingdom, and reliably measuring the

impact on quality of life and the total healthcare cost from obesity is key to informing the

cost-effectiveness of interventions that target obesity, and determining healthcare funding.

Current methods for estimating cost-effectiveness of interventions for obesity may be sub-

ject to confounding and reverse causation. The aim of this study is to apply a new approach

using mendelian randomisation for estimating the cost-effectiveness of interventions that

target body mass index (BMI), which may be less affected by confounding and reverse cau-

sation than previous approaches.

Methods and findings

We estimated health-related quality-adjusted life years (QALYs) and both primary and sec-

ondary healthcare costs for 310,913 men and women of white British ancestry aged

between 39 and 72 years in UK Biobank between recruitment (2006 to 2010) and 31 March

2017. We then estimated the causal effect of differences in BMI on QALYs and total health-

care costs using mendelian randomisation. For this, we used instrumental variable regres-

sion with a polygenic risk score (PRS) for BMI, derived using a genome-wide association

study (GWAS) of BMI, with age, sex, recruitment centre, and 40 genetic principal compo-

nents as covariables to estimate the effect of a unit increase in BMI on QALYs and total

healthcare costs. Finally, we used simulations to estimate the likely effect on BMI of policy

relevant interventions for BMI, then used the mendelian randomisation estimates to esti-

mate the cost-effectiveness of these interventions.

A unit increase in BMI decreased QALYs by 0.65% of a QALY (95% confidence interval

[CI]: 0.49% to 0.81%) per year and increased annual total healthcare costs by £42.23 (95%

CI: £32.95 to £51.51) per person. When considering only health conditions usually consid-

ered in previous cost-effectiveness modelling studies (cancer, cardiovascular disease,
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cerebrovascular disease, and type 2 diabetes), we estimated that a unit increase in BMI

decreased QALYs by only 0.16% of a QALY (95% CI: 0.10% to 0.22%) per year.

We estimated that both laparoscopic bariatric surgery among individuals with BMI greater

than 35 kg/m2, and restricting volume promotions for high fat, salt, and sugar products,

would increase QALYs and decrease total healthcare costs, with net monetary benefits (at

£20,000 per QALY) of £13,936 (95% CI: £8,112 to £20,658) per person over 20 years, and

£546 million (95% CI: £435 million to £671 million) in total per year, respectively.

The main limitations of this approach are that mendelian randomisation relies on

assumptions that cannot be proven, including the absence of directional pleiotropy, and that

genotypes are independent of confounders.

Conclusions

Mendelian randomisation can be used to estimate the impact of interventions on quality of

life and healthcare costs. We observed that the effect of increasing BMI on health-related

quality of life is much larger when accounting for 240 chronic health conditions, compared

with only a limited selection. This means that previous cost-effectiveness studies have likely

underestimated the effect of BMI on quality of life and, therefore, the potential cost-effective-

ness of interventions to reduce BMI.

Author summary

Why was this study done?

• The prevalence of obesity has increased in the United Kingdom, and reliably measuring

the impact on quality of life and the total healthcare cost from obesity is key to inform-

ing the cost-effectiveness of interventions that target obesity, and determining how

much additional healthcare funding may be required should the trend of increasing

obesity continue.

• Current methods of examining cost-effectiveness of interventions for obesity may be

subject to confounding and reverse causation, and previous studies also typically only

use a limited number of health conditions to estimate the effects of BMI on quality of

life, potentially underestimating the effects of BMI.

• The aim of this study is to elucidate a new approach using mendelian randomisation for

estimating the cost-effectiveness of interventions that target body mass index (BMI),

which may be less affected by confounding and reverse causation than previous

approaches.

What did the researchers do and find?

• Using mendelian randomisation, we estimated that a unit increase in BMI decreased

quality-adjusted life years (QALYs) by 0.65% of a QALY per year and increased annual

total healthcare costs by £42.23 per person.
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accessible from https://www.ukbiobank.ac.uk/. The

code used to clean and analyse the data is available
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• Using these results and simulations, we estimated that, compared to no intervention

and over 20 years, people aged 40 to 69 years in England or Wales with a BMI over 35

kg/m2 receiving laparoscopic bariatric surgery would have, on average, an increase of

0.92 QALYs and a decrease in total healthcare costs of £5,096 per person.

• We also estimated that restricting volume promotions for high fat, salt and sugar prod-

ucts would, across the 21.7 million adults aged 40 to 69 years in England and Wales,

increase QALYs by 20,551 per year and decrease total healthcare costs by £137 million

per year, and that between 1993 and 2017 in England and Wales, the increase in BMI of

people aged 40 to 69 years led to a decrease of 1.13% of a QALY per year and an increase

in annual healthcare costs of £69 per person.

What do these findings mean?

• Mendelian randomisation can be used to estimate the impact of interventions on quality

of life and healthcare costs and is likely less biased than existing observational methods.

• Interventions for BMI are likely to be cost-effective, possibly more so than previously

anticipated using simulation methods that restrict the effect of changes in BMI on health

conditions to cancer, cardiovascular disease, cerebrovascular disease, and type 2

diabetes.

Introduction

Between 1993 and 2017 in England, the prevalence of obesity in adults aged 40 to 69 years,

defined as a body mass index (BMI) of over 30 kg/m2, rose from 13% to 27% in men and 16%

to 30% in women, as estimated by the Health Survey for England [1,2]. Obesity is associated

with many chronic illnesses, such as hypertension, coronary artery disease, type 2 diabetes,

dyslipidaemia, metabolic liver disease, renal and urological diseases, sleep apnoea, osteoarthri-

tis, psychiatric comorbidity, gastro-oesophageal reflux disease, and various cancers [3–7]. Reli-

ably measuring the impact on quality of life and the total healthcare cost from obesity is key to

informing the cost-effectiveness of interventions that target obesity, and determining how

much additional healthcare funding may be required should the trend of increasing obesity

continue. For example, prominent recent policy interventions such as the introduction in

England of a tax on sugar-sweetened beverages were motivated in part by a desire to avoid

some of the long-term consequences of obesity on individuals and the healthcare system [8].

Previous studies examining the cost-effectiveness of interventions for obesity tended to fall

into 3 broad categories: (a) randomised controlled trials (RCTs), typically with relatively short-

term durations of follow-up [9]; (b) cohorts, typically retrospective [10–13]; and (c) decision

analytic and related simulation models [10,12,14–18]. These studies estimated the impact on

quality-adjusted life years (QALYs) and the total healthcare cost of different interventions,

such as bariatric surgery, and thus estimated whether the intervention was likely to be cost-

effective. Fig 1A–1C show schematic representations of each type of study, Table 1 summa-

rises their strengths and limitations, and S1 Text gives more information about each type of

study.
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Briefly, RCTs with economic evaluations provide causal evidence for cost-effectiveness but

are expensive and time consuming to perform, while cohort studies are observational and deci-

sion analytic simulation models rely on observational evidence that may be subject to con-

founding and reverse causation that may bias estimates of cost-effectiveness. Decision analytic

simulation models also routinely include only a limited selection of health conditions that

BMI may affect, meaning the true costs of obesity may be underestimated.

The aim of this study is to elucidate a new approach using mendelian randomisation

[19,20] for estimating the cost-effectiveness of interventions that target BMI (Fig 1D). This

approach uses observational data, but by using genetic information as an instrumental vari-

able, the risk of bias through confounding and reverse causation is reduced compared with

other methods using observational data [21–23]. This can give more causal estimates of cost-

effectiveness, approximating an RCT of different BMI levels assigned at birth, but with the

advantage of estimating at low cost the long-term causal effects of an intervention, rather than

shorter-term effects measured during a (usually) limited period of follow-up measured in an

economic evaluation conducted alongside an RCT.

In this paper, we estimate the causal effect of a unit increase in BMI on both QALYs and

total healthcare costs in UK Biobank [24] using mendelian randomisation. We then

Fig 1. Schematic representation of different methods of estimating cost-effectiveness of bariatric surgery. The

intervention or exposure for each analysis is in the blue box with bold text. Blue arrows represent what is estimated in

each study, while green arrows represent estimates from previous studies used to inform the study. (a) The estimate of

cost-effectiveness is not confounded as the intervention is randomised. (b) The estimate of cost-effectiveness could be

confounded as receiving bariatric surgery is not randomly assigned. (c) The estimate of cost-effectiveness could be

confounded, as could be the estimates from previous studies, there may be effects of bariatric surgery on QALYs and

healthcare costs that do not go through BMI, and there may be effects of BMI on QALYs and healthcare costs that do

not go through the modelled health conditions. (d) the estimate of cost-effectiveness is less likely to be affected by

confounding, as genetic variants are randomly distributed within families at conception, though there may be effects of

bariatric surgery on QALYs and healthcare costs that do not go through BMI. BMI, body mass index; CVD,

cardiovascular disease; QALY, quality-adjusted life year; RCT, randomised controlled trial.

https://doi.org/10.1371/journal.pmed.1003725.g001
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demonstrate how the results from this approach can be used to estimate the cost-effectiveness

of prominent and widely used interventions aimed at reducing BMI (with bariatric surgery

and restricting volume promotions for high fat, sugar, and salt (HFSS) products as case stud-

ies), estimate the increased healthcare cost of the rise in BMI in England and Wales between

1993 and 2017, and estimate the total cost of the BMI profile of England and Wales in 2017

versus a hypothetical profile where no one has a BMI above 25 kg/m2.

Methods

We used mendelian randomisation to estimate the causal effect of BMI on QALYs and total

healthcare costs per year. For a guide to mendelian randomisation for clinicians, please see

Davies and colleagues [20], and for a lay description, please see Harrison and colleagues [25].

Briefly, we generated a polygenic risk score (PRS) for BMI (a weighted score of genetic risk for

higher BMI using common genetic variants), which we used as a proxy for BMI in the mende-

lian randomisation analyses.

Population

UK Biobank is a population-based health research resource consisting of approximately

500,000 people, who were recruited between the years 2006 and 2010 from 22 centres across

the United Kingdom [24]. Medical data from hospital episode statistics (HES) has been linked

to all participants up to 31 March 2017, and primary care (general practice) data have been

linked to UK Biobank participants registered with GP surgeries using EMIS Health (EMIS

Web) and TPP (SystmOne) software systems, also up to 31 March 2017. The study design, par-

ticipants, and quality control methods have been described in detail previously [26–28]. UK

Biobank received ethics approval from the Research Ethics Committee (REC reference for UK

Biobank is 11/NW/0382). Genotyping information is available in S2 Text, with further infor-

mation available online [29].

Table 1. AU : PerPLOSstyle; boxescannotbecell � based; eitherreformatastextorchangetotable:Hence;Box1anditscitationinthetexthavebeenchangedtoTable1:The strengths and limitations of different methods to estimate the cost-effectiveness of interventions.

Methods Strengths Limitations

RCT, with economic

evaluation

• Causal effect estimates • Expensive

• Time consuming

• Often limited follow-up

• Study sample may not be representative of target population

Cohort • Follow-up may be long

• Potentially less expensive than RCTs

• A single study can test multiple hypotheses

• Estimates may be biased by confounding and reverse causation (control group

not “exchangeable” with intervention group)

Decision analytic

simulation models

• Inexpensive

• Follow-up not limited

• Flexible

• Estimates may be biased by confounding and reverse causation

• Using only limited health conditions (cancer, cardiovascular disease,

cerebrovascular disease, and type 2 diabetes) as mediators of the effect of the

exposure on the outcome may cause bias

• Effect estimates are for a change in the exposure, not an intervention for the

exposure, and therefore are best applied to an intervention that affects the

exposure across the life course

Mendelian

randomisation

• Follow-up may be long

• Potentially less expensive than RCTs

• A single study can test multiple hypotheses

• Estimates less liable to confounding and reverse

causation than cohort and decision analytic simulation

studies

• Low statistical power; requires very large sample sizes

• Effect estimates are for a change in the exposure, not an intervention for the

exposure, and therefore are most relevant to proxy an intervention that affects the

exposure across the life course

RCT, randomised controlled trial.

https://doi.org/10.1371/journal.pmed.1003725.t001

PLOS MEDICINE Long-term cost-effectiveness of interventions for obesity

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003725 August 27, 2021 5 / 24

https://doi.org/10.1371/journal.pmed.1003725.t001
https://doi.org/10.1371/journal.pmed.1003725


We restricted the main analyses to unrelated individuals of white British ancestry living in

England or Wales at recruitment, with a measured BMI value. Full details of inclusion criteria

and genotyping are in S2 Text. After exclusions, 310,913 participants remained in the main

dataset. Of these, 96,331 (31%) had primary care data covering the full period between recruit-

ment and 31 March 2017 or death, whichever came first.

Polygenic risk scores (instrumental variables)

We used the Locke 2015 [30] genome-wide association study (GWAS) for BMI to identify

genome-wide significant single nucleotide polymorphisms (SNPs) with strong evidence of

association with BMI, defined as having a P value below genome-wide significance

(P� 5 × 10−8). We clumped the genome-wide significant SNPs at an R2 threshold of 0.001

within a 10,000 kilobase window, and proxies were found for all SNPs not in UK Biobank

using the European subsample of 1,000 genomes as a reference panel (with a lower R2 limit of

0.6) [31]. In total, 69 SNPs were used to construct a PRS, which we calculated as the weighted

sum of the SNP effect alleles for all SNPs associated with BMI, with each SNP weighted by the

regression coefficient from the Locke GWAS. S1 Table shows summary data for all SNPs in

the PRS. We did not use the more recent 2018 BMI GWAS because this includes the UK Bio-

bank [32], and sample overlap leads to bias towards the observational effect in mendelian ran-

domisation analyses [33].

Exposure and covariates

We defined BMI as weight in kilograms divided by height in metres squared, and BMI catego-

ries using conventional World Health Organization guidelines [34]: normal weight as a BMI

of between 18.5 kg/m2 and 25 kg/m2, overweight as a BMI of between 25 kg/m2 and 30 kg/m2,

and obese as a BMI of above 30 kg/m2. BMI was estimated at the UK Biobank baseline assess-

ment using measured height and weight.

We used age, sex, and UK Biobank recruitment centre reported at the UK Biobank baseline

assessment as covariables, as well as 40 genetic principal components derived by UK Biobank

to control for population stratification [35].

Data and code availability

This study is reported as per the Strengthening the Reporting of Observational Studies in Epi-

demiology (STROBE) guideline (S1 STROBE Checklist). This study did not have a prospec-

tive protocol or analysis plan: The analysis method was developed over the course of this

study, and the policy analysis examples were considered before the method was finalised. No

changes to the analysis were made from peer review comments. The empirical dataset is

archived with UK Biobank and available to individuals who obtain the necessary permissions

from the study’s data access committees, with data accessible from https://www.ukbiobank.ac.

uk/. The code used to clean and analyse the data is available here: https://github.com/sean-

harrison-bristol/Robust-causal-inference-for-long-term-policy-decisions.

Estimation of quality-adjusted life years and healthcare costs (outcomes)

Quality-adjusted life years. We predicted health-related quality of life for all participants

daily from recruitment to 31 March 2017 using the results from a study by Sullivan and col-

leagues [36]; full details in S3.1 Text. Briefly, we used each of 240 chronic health conditions to

predict health-related quality of life for all participants daily from recruitment to 31 March

2017 or death, whichever came first, and averaged over years to estimate QALYs. S2 Table
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details all 240 chronic health conditions, including which ICD-9, ICD-10, read v2, and read v3

codes were used for each condition. QALYs are a measure of disease burden, capturing both

the quality of life (through preferences over health states, which, in this context, may be under-

stood as health-related quality of life) and quantity of life [37]. A QALY of 1 indicates a full

year of perfect health, while a QALY of 0 indicates either a time of no quality of life or death.

QALYs can be negative, implying that death would be preferable to life at a certain time.

Throughout this manuscript, we report the change in the number of QALYs, either in whole

numbers or percentage points, e.g., 0.65% of a QALY, meaning 0.0065 QALYs.

Chronic health conditions were recorded in an individual’s primary care data, HES data, or

both. As only 31% of participants in this study had primary care data, we used multiple impu-

tation by chained equations to predict both QALYs and primary care healthcare costs (N miss-

ing = 214,270, 69%), creating 100 imputed datasets [38]. We also imputed Townsend

deprivation index (N missing = 342, 0.1%) and whether the participant had ever smoked (N

missing = 1,064, 0.3%), as these variables were informative but had some missingness. Further

details are reported in S3.2 Text.

Primary care healthcare costs. We estimated primary care healthcare costs between

recruitment and 31 March 2017 from the primary care data as the sum of the cost of prescribed

drugs and appointments at a GP practice. Briefly, we estimated the cost of prescribed drugs

during follow-up using the NHS electronic drug tariff (November 2019 version), adding the

cost of each prescription (£1.27 in November 2019) to the cost of each drug [39]. In total, we

costed 94% of 29,646,535 prescribed drugs, with the remaining drugs either no longer pre-

scribed (and so not costed, n = 392,801, 1.3%) or unmatched to a price (n = 1,392,091, 4.7%).

We estimated the cost of each appointment at a GP practice during follow-up at £30, an aver-

age of the cost of GP, nurse, and other appointments as we could not distinguish between con-

sultation types from the available data [40]. We did not consider the cost of diagnostic tests.

We divided the total primary care costs by years of follow-up to give the average yearly primary

care healthcare costs for each participant.

Secondary care healthcare costs. We estimated secondary care healthcare (hospital)

costs, in which we converted procedure and diagnosis ICD-10 codes from inpatient episodes

into Healthcare Resource Groups, which are assigned a cost (in 2016/2017 pounds sterling) for

publicly funded NHS hospitals; see Dixon (2019) for more information [41]. The data came

from HES (for English care providers) and from the Patient Episode Database for Wales (for

Welsh providers). Inpatients are those admitted to hospital and who occupy a hospital bed but

need not necessarily stay overnight and does not include emergency care or outpatient

appointments. We had follow-up data from baseline to 31 March 2015 for secondary care

healthcare for all participants in this study. We estimated healthcare costs for those registered

in England and Wales only, as the basis for remunerating hospitals in Scotland is different and

cannot be combined with data from the other 2 countries [42].

We estimated the secondary care healthcare cost for each participant between recruitment

and 31 March 2015, then divided by the years of follow-up to give the average secondary care

healthcare cost per year of follow-up. Secondary care costs were therefore averaged over 2

fewer years than primary care costs. We increased the value of secondary care healthcare costs

by 4.84% to reflect inflation between 2016/2017 and November 2019, using data from the NHS

cost inflation index, with April to November 2019 inflation estimated at the average annual

inflation in the previous 4 years accrued over 8 months [43].

Total healthcare costs. We combined the average yearly primary and secondary care

healthcare costs for each person to estimate total NHS-based healthcare costs from inpatient

hospital care episodes, primary care appointments, and primary care drug prescriptions. These

costs exclude emergency care, outpatient appointments, and private healthcare undertaken in
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private facilities (private healthcare received in NHS hospitals is included), in addition to diag-

nostic tests, but still represent a substantial proportion of healthcare costs in England and

Wales. Including these other costs would likely increase the size of our effect estimate but

would not alter the direction of the effect.

Main analysis

We used mendelian randomisation to estimate the causal effect of BMI on QALYs and total

healthcare costs per year using the PRS for BMI as an instrumental variable, with age at base-

line assessment, sex, UK Biobank recruitment centre, and 40 genetic principal components as

covariates. We used the ivreg2 package in Stata (version 15.1) with robust standard errors and

tested for weak instrument bias (using F statistics) to assess whether the PRS for BMI was suffi-

ciently associated with measured BMI [44]. This mendelian randomisation analysis estimates

the mean difference in the outcomes using an additive structural mean model [45–47], inter-

preted as the average change in each outcome caused by a 1-kg/m2 increase in BMI over all

participants. We multiplied the results for QALYs by 100 to give the percentage of a QALY

changed per unit increase in BMI.

Comparison with multivariable regression approach. We compared the mendelian ran-

domisation estimates with estimates from conventional multivariable linear regression for

QALYs and healthcare costs, with age, sex, recruitment centre, and 40 genetic principal com-

ponents as covariates. We performed endogeneity (Hausman) tests [48], in which a low P
value indicates that there was evidence the mendelian randomisation and multivariable effect

estimates were different.

Sensitivity analyses

S3.3 Text details full methods for all sensitivity analyses.

In brief, we conducted sensitivity analyses to test the mendelian randomisation assumption

of no pleiotropy (i.e., that the genetic variants for BMI only affect each outcome through BMI)

using summary data for each SNP in the BMI PRS, comprising inverse-variance weighted

(IVW), MR Egger (an indicator of directional pleiotropy), weighted median, weighted mode,

and simple mode analyses [49–51]. A low P value in the MR Egger constant would indicate

evidence of pleiotropy.

We also reran the main analysis stratified by age group (40 to 49, 50 to 54, 55 to 59, 60 to

64, and 65+ years) and by the World Health Organization BMI categories (normal weight,

overweight, and obese) [34] to test and account for both nonlinearity and a potential interac-

tion between age and BMI in the main effect estimates. We then used nonlinear mendelian

randomisation to estimate the precise shape of the associations between BMI, QALYs, and

healthcare costs [52,53]. Additionally, we conducted within-family mendelian randomisation

to assess whether there was evidence that family structure biased estimates from the main anal-

ysis because nontransmitted genetic variants from parents may influence a child’s individual

healthcare costs and QALYs in later life [54,55].

We tested whether accounting for prediction uncertainty in QALYs made a material differ-

ence to the precision of the main analysis estimates of BMI on QALYs.

Finally, to test whether decision analytic simulation models incorporate enough health con-

ditions to accurately estimate the effect of BMI on QALYs, we estimated whether including

only limited health conditions (cancer, cardiovascular disease, cerebrovascular disease, and

type 2 diabetes) in the prediction of QALYs had a substantial impact on the estimated effect of

BMI on QALYs.
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Policy analyses

S3.4 Text details full methods for all policy analyses; S3.5 Text details a worked example of

analysis d.

Briefly, we used the results from the mendelian randomisation analyses stratified by age

and BMI categories, as well as data and parameter estimates from other studies, to estimate the

effect of each of the following on QALYs and healthcare costs for the population aged 40 to 69

years of England and Wales in 2017 (21.7 million adults):

a. the effect of laparoscopic bariatric surgery in people with a BMI above 35 kg/m2;

b. the effect of restricting volume promotions for HFSS foods;

c. the effect of the increase in BMI between 1993 and 2017; and

d. the effect of having the BMI profile of England and Wales in 2017 versus a hypothetical pro-

file where no one has a BMI above 25 kg/m2.

In example a, we estimated the net monetary benefit of laparoscopic bariatric surgery as com-

pared to no intervention over 20 years at a cost-effectiveness threshold of £20,000 per QALY and

a discount rate for both QALYs and costs of 3.5% per year. We estimated that there were

2,741,556 people (12.6%) aged 40 to 69 years with a BMI of 35 kg/m2 or above in England and

Wales in 2017. We assumed laparoscopic bariatric surgery reduced BMI by 25% (95% confidence

interval [CI]: 22% to 28%) consistently over 20 years [56,57], and cost £9,549 [58]. In example b,

we estimated the net monetary benefit of restricting volume promotions for HFSS foods as com-

pared to no intervention over 1 year at a cost-effectiveness threshold of £20,000 per QALY. WeAU : PleaseconfirmthattheeditstothesentenceWeassumedthattheinterventionreducedcaloricintakeby11:::didnotaltertheintendedthoughtofthesentence:
assumed that the intervention reduced caloric intake by 11 to 14 calories per day, that weight is

reduced by 0.042 kg per 1 fewer calorie consumed per day [59,60], and that the intervention had

no cost. In example c, we estimated the change in QALYs and total healthcare costs each year for

the change in BMI between 1993 and 2017, and in example d, we estimated the effect of over-

weight and obesity on QALYs and total healthcare costs each year. We estimated that there were

15,565,145 people (72%) in England and Wales in 2017 with a BMI above 25 kg/m2.

We used data from the Health Survey for England in 1993 and 2017 to inform our estimates

of the BMI distribution of people in England and Wales [1,2], and data from the Office of

National Statistics to inform the age distribution in 2017 [61]. We defined the net monetary ben-

efit as the change in QALYs due to the intervention multiplied by a cost-effectiveness threshold

(£20,000), minus the change in healthcare costs due to the intervention and the cost of the inter-

vention, including from complications for bariatric surgery for that particular intervention.

Patient and public involvement

This study was conducted using UK Biobank. Details of patient and public involvement in the

UK Biobank are available online (www.ukbiobank.ac.uk/about-biobank-uk/). No patients

were specifically involved in setting the research question or the outcome measures, nor were

they involved in developing plans for recruitment, design, or implementation of this study. No

patients were asked to advise on interpretation or writing up of results. There are no specific

plans to disseminate the results of the research to study participants, but the UK Biobank dis-

seminates key findings from projects on its website.

Results

In total, we included 310,913 unrelated white British participants from England and Wales in

the analysis. These participants had a mean age of 56.9 years (standard deviation (SD) = 8.0
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years), mean BMI of 27.4 kg/m2 (SD = 4.8 kg/m2), a mean follow-up time of 8.1 years

(SD = 0.8 years) for primary care healthcare costs and HES data, a mean follow-up time of 6.1

years (SD = 0.8 years) for secondary care healthcare costs, and 10,519 participants died during

follow-up (3.4%); see Table 2. The median QALY per person per year from the 100 imputed

datasets was 0.78 (interquartile range (IQR) = 0.65 to 0.89), compared with 0.97 (IQR = 0.87 to

0.99) based on the HES data alone (nonimputed), reflecting incomplete information on

chronic healthcare conditions in HES data. The median total healthcare cost per person per

year was £601 (IQR = £212 to £1,217), the median primary care healthcare cost per year was

£375 (IQR = £128 to £738), and the median secondary care healthcare cost per year was £88

(IQR = £0 to £494). All cost outcomes were positively skewed.

Main analysis

We estimated in the mendelian randomisation analysis that a 1-kg/m2 increase in BMI caused

a reduction of 0.65% of a QALY per year (95% CI: 0.49% to 0.81%, P value = 1.2 × 10−15) and a

£42.23 increase in total healthcare costs per year (95% CI: £32.95 to £51.51, P
value = 4.5 × 10−19).

Comparison with multivariable regression approach. The multivariable adjusted analy-

ses were consistent with the mendelian randomisation analyses, with median P values for endo-

geneity from imputed datasets 0.31 and 0.52 for QALYs and total healthcare costs respectively

(Table 3). There was no evidence of weak instrument bias (the F statistic was 5,168). Figs 2 and

3 show both the mendelian randomisation and multivariable adjusted estimates, for the main

analysis, and stratified by sex, BMI category, and age category (see Sensitivity analyses).

Sensitivity analyses

Full results from all sensitivity analyses are in S4 Text.

Table 2. AU : DuetochangeinlabelfromBox1toTable1;Tables1and2andtheirrespectivecitationshavebeenchangedtoTables2and3; respectively:Summary demographics of UK Biobank.

Variable All Men Women

N 310,913 144,032 166,881

Age at recruitment, years [Mean (SD)] 56.9 (7.99) 57.1 (8.10) 56.7 (7.90)

BMI, kg/m2 [Mean (SD)] 27.4 (4.75) 27.8 (4.22) 27.0 (5.13)

Years of follow-up [Mean (SD)] 8.1 (0.80) 8.1 (0.80) 8.1 (0.80)

Participants with complete primary care data [N

(%)]

96,331 (30.98) 44,671 (31.01) 51,660 (30.96)

Death before 31 March 2017 [N (%)] 10,519 (3.38) 6,447 (4.48) 4,072 (2.44)

Qualification: None [N (%)] 54,874 (17.65) 25,340 (17.59) 29,534 (17.70)

Qualification: A levels, O level, GCSE, or CSE [N

(%)]

122,971 (39.55) 51,475 (35.74) 71,496 (42.84)

Qualification: NVQ or other [N (%)] 36,288 (11.67) 19,873 (13.80) 16,415 (9.84)

Qualification: College or university degree [N

(%)]

96,780 (31.13) 47,344 (32.87) 49,436 (29.62)

Average QALYs per year (predicted) [Median

(IQR)]�
0.78 (0.65 to 0.89) 0.78 (0.65 to 0.89) 0.78 (0.65 to 0.88)

Annual total healthcare costs [Median (IQR)]� £601 (£212 to

£1,217)

£605 (£206 to

£1,240)

£596 (£216 to

£1,199)

�Results from imputed data, median, and IQR are the medians of the 100 imputed medians/IQRs.

BMI, body mass index; IQR, interquartile range; N, number of participants; QALYs, quality-adjusted life years; SD,

standard deviation.

https://doi.org/10.1371/journal.pmed.1003725.t002
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Briefly, from the summary mendelian randomisation sensitivity analyses, we found little

evidence of pleiotropy in the mendelian randomisation estimates, but evidence of heterogene-

ity in SNP effects using Cochran’s Q value (S3 Table).

We found little difference between the effect estimates when analysing men and women sep-

arately; S1–S19 Tables have results split by sex. However, we found strong evidence of nonline-

arity in the effect of BMI on QALYs, where the effect of the same increase in BMI on QALYs

was higher in overweight and obese participants than normal weight participants. There was lit-

tle evidence of the same nonlinearity for total healthcare costs, although this may be due to a

lack of power to detect the effects; see Figs 4 and 5 and S4 and S7 Tables. Additionally, we

found evidence for an interaction between BMI and age for both QALYs and total healthcare

costs, where the effect of a unit increase in BMI increased as age increased (S5 Table). These

results indicate that accounting for sex is not necessary when applying these results to cost-

effectiveness analyses, but accounting for age and nonlinearity of the BMI effect is necessary.

The within-family mendelian randomisation analysis estimate for QALYs was very similar

to the main analysis estimate but was smaller for total healthcare costs, though both estimates

were far less precise (S8 Table). Accounting for the uncertainty in the QALY predictions

increased the standard errors of both effect estimates, but not substantially, and did not change

the effect estimates (S9 Table).

Predicting QALYs using a limited number of health conditions, as is often done in decision

analytic simulation models, drastically reduced the estimated effect of BMI on QALYs, from

−0.65% of a QALY (95% CI: −0.49% to −0.81%) to a reduction of 0.16% of a QALY (95% CI:

0.10% to 0.22%) per 1-kg/m2 increase in BMI. This indicates that BMI affects more health condi-

tions than just cancer, cardiovascular disease, cerebrovascular disease, and type 2 diabetes, and

these other conditions have a considerable impact on health-related quality of life (S10 Table).

Policy analyses

Cost-effectiveness of laparoscopic bariatric surgery. We estimated that 2,741,556 people

in England and Wales had a BMI above 35 kg/m2 in 2017. Compared to no intervention, over

20 years for each person receiving laparoscopic bariatric surgery we estimated that QALYs

would increase by 0.92 (95% CI: 0.66 to 1.17), total healthcare costs would decrease by £5,096

(95% CI: £3,459 to £6,852), and the net monetary benefit (at £20,000 per QALY and £9,549 per

intervention) would be £13,936 (95% CI: £8,112 to £20,658). Therefore, laparoscopic bariatric

surgery is very likely to be cost-effective over 20 years for people with BMI of 35 kg/m2 aged 40

to 69 years in England and Wales. Multivariable adjusted estimates were larger for QALYs and

similar for costs, both with greater precision. Full results are in S11 and S12 Tables.

Cost-effectiveness of restricting volume promotions for high fat, sugar, and salt (HFSS)

products. We estimated that restricting volume promotions for HFSS products would, across

21 million adults in England and Wales, increase QALYs by 20,551 per year (95% CI: 15,335 to

Table 3. Results from the main mendelian randomisation analysis.

Outcome Main MR Analysis Multivariable Adjusted Analysis P value for Endogeneity

Beta (95% CI) P value Beta (95% CI) P value

QALYs per year −0.65% (−0.81% to −0.49%) 1.2 × 10−15 −0.71% (−0.73% to −0.69%) <1 × 10−323 0.31

Total healthcare costs per year £42.23 (£32.95 to £51.51) 4.5 × 10−19 £39.40 (£38.19 to £40.61) <1 × 10−323 0.52

Both analyses adjusted for age, sex, recruitment centre, and 40 genetic principal components.

Beta, effect estimate (beta coefficient) from analysis; CI, confidence interval; MR, mendelian randomisation; QALYs, quality-adjusted life years.

Results for QALYs are expressed as percentage points, e.g., 0.65% is equivalent to 0.0065 QALYs.

https://doi.org/10.1371/journal.pmed.1003725.t003
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25,301), decrease total healthcare costs by £137 million per year (95% CI: £106 million to £170

million), and would have a net monetary benefit (at £20,000 per QALY and no intervention

Fig 2. MR estimates for QALYs per year. Forest plot showing the estimated effect of a unit increase in BMI on average QALYs per year for the main MR, sex-

specific, BMI categorical (where “Normal” is a BMI below 25 kg/m2, “Overweight” is a BMI between 25 kg/m2 and 30 kg/m2, and “Obese” is a BMI of above 30 kg/

m2) and age categorical analyses. Effect estimates are indicated by squares, 95% CIs by horizontal lines around the squares. Effect estimates are derived from the main

imputation model (for all and sex-specific estimates) or the categorical imputation model (for BMI and age category–specific estimates). Both analyses adjusted for

age, sex, recruitment centre, and 40 genetic principal components. BMI, body mass index; CI, confidence interval; MR, mendelian randomisation; QALY, quality-

adjusted life year.

https://doi.org/10.1371/journal.pmed.1003725.g002
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cost) of £546 million per year (95% CI: £435 million to £671 million). The intervention would

therefore almost certainly be cost effective, relative to doing nothing. Multivariable adjusted

Fig 3. MR estimates for total healthcare costs per year. Forest plot showing the estimated effect of a unit increase in BMI on average total healthcare costs per year

for the main MR, sex-specific, BMI categorical (where “Normal” is a BMI below 25 kg/m2, “Overweight” is a BMI between 25 kg/m2 and 30 kg/m2, and “Obese” is a

BMI of above 30 kg/m2) and age categorical analyses. Effect estimates are indicated by squares, 95% CIs by horizontal lines around the squares. Effect estimates are

derived from the main imputation model (for all and sex-specific estimates) or the categorical imputation model (for BMI and age category–specific estimates). Both

analyses adjusted for age, sex, recruitment centre, and 40 genetic principal components. BMI, body mass index; CI, confidence interval; MR, mendelian

randomisation.

https://doi.org/10.1371/journal.pmed.1003725.g003
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estimates were larger for QALYs and similar for costs, both with greater precision. Full results

are in S13 and S14 Tables.

Fig 4. The estimated effect of 1-kg/m2 increase in BMI on QALYs per year, across BMI levels. A positive value

indicates an increase in BMI would increase QALYs, and vice versa. An increase in BMI is beneficial to QALYs up to

around 22 kg/m2, then becomes increasingly detrimental until the effect plateaus in overweight and remains relatively

steady in obesity. The BMI thresholds of 25 kg/m2 (overweight) and 30 kg/m2 (obese) are represented with dashed red

lines. The green shaded area represents the 95% CI of the estimated effect. Effect estimates are derived from the

nonlinear imputation model. BMI, body mass index; CI, confidence interval; QALY, quality-adjusted life year.

https://doi.org/10.1371/journal.pmed.1003725.g004

Fig 5. The effect of 1-kg/m2 increase in BMI on total healthcare costs per year, across BMI levels. A positive value

indicates that an increase in BMI would increase total healthcare costs, and vice versa. Due to the uncertainty in the

estimates, there is little statistical evidence of nonlinearity in the effect of BMI on total healthcare costs, though

descriptively, it appears that a 1-kg/m2 increase in BMI has a smaller effect on costs in the normal weight category, and

a larger effect in overweight and obesity. The BMI thresholds of 25 kg/m2 (overweight) and 30 kg/m2 (obese) are

represented with dashed red lines. The green shaded area represents the 95% CI of the estimated effect. Effect estimates

are derived from the nonlinear imputation model. BMI, body mass index; CI, confidence interval.

https://doi.org/10.1371/journal.pmed.1003725.g005
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Estimation of the effect of the population change in BMI between 1993 and 2017.

Mean BMI increased from 26.7 kg/m2 to 28.6 kg/m2 between 1993 and 2017 in people aged

between 40 and 69 years in England and Wales. The rise in BMI was more pronounced in peo-

ple with obesity than people with a normal weight; see S15 Table.

We estimated that between 1993 and 2017, across 21 million adults in England and Wales,

the increase in BMI led to an average decrease in QALYs of 1.13% of a QALY per person per

year (95% CI: 0.90% to 1.38%), or a decrease of 246,390 QALYs in total per year (95% CI:

196,231 to 300,481) and an increase in total healthcare costs of £69 per person per year (95%

CI: £53 to £84), or £1.50 billion in total per year (95% CI: £1.15 billion to £1.82 billion), giving

a combined cost (at £20,000 per QALY) of £312 per person per year (95% CI: £235 to £347), or

£6.39 billion (95% CI: £5.12 billion to £7.54 billion). This indicates that an intervention, which

could reduce the BMI of the population of England and Wales to 1993 levels, would likely be

cost effective if it cost less than £5.12 billion per year. Multivariable adjusted estimates were

larger for QALYs and similar for costs, both with greater precision. Full results are in S16 and

S17 Tables.

The cost of being overweight and obese in 2017. We estimated that, compared to if all

people with a BMI above 25 kg/m2 aged 40 to 69 years in England and Wales in 2017 had a

BMI of 25 kg/m2, the current BMI profile of England and Wales decreases QALYs by 3.73% of

a QALY per person with a BMI above 25 kg/m2 per year (95% CI: 2.94% to 4.61%), or a

decrease of 580,494 QALYs in total per year (95% CI: 457,907 to 717,691), and increases total

healthcare costs by £230 per person per year (95% CI: £176 to £279), or £3.58 billion in total

per year (95% CI: £2.75 billion to £4.34 billion), giving a combined cost (at £20,000 per QALY)

of £973 per person per year (95% CI: £773 to £1160), or £15.1 billion (95% CI: £12.0 billion to

£18.1 billion). Multivariable adjusted estimates were larger for QALYs and similar for costs,

both with greater precision. Full results are in S18 and S19 Tables.

Discussion

In this study, we have shown that cost-effectiveness of clinical and policy interventions can be

estimated using mendelian randomisation. We estimated the effect of a unit increase in BMI

on average QALYs and total healthcare costs per year in UK Biobank, which showed that

increasing BMI is detrimental to both QALYs and healthcare costs. The effect of an increase

BMI on healthcare costs and QALYs was relatively stable for BMI values above 25 kg/m2,

implying that the expected effect of a change in BMI is very similar whether a person has a

BMI considered overweight or obese. We used these estimates to show that bariatric surgery

and the restriction of volume promotions for HFSS products are likely cost-effective relative to

a “no intervention” comparator (net monetary benefit of £13,936 over 20 years) and estimated

the costs of the increase to BMI over time (a decrease of 1.13% of a QALY and increase of £69

of annual healthcare costs per person) and having a BMI above 25 kg/m2 in 2017 (a decrease of

3.73% of a QALY and increase of £230 of annual healthcare costs per person).

We have demonstrated how mendelian randomisation can be useful for estimating the

impact on quality of life and healthcare costs of either an exposure or intervention that is diffi-

cult, unethical, or impossible to randomise (e.g., smoking, alcohol intake), or for interventions

where long-term cost-effectiveness evidence from RCTs is rare or not generalisable (e.g., bar-

iatric surgery). While in this study the conventional multivariable adjusted estimates not using

genetic information were mostly similar to the mendelian randomisation estimates, this could

be due to larger uncertainty in the mendelian randomisation estimates, and there is no guaran-

tee that other exposures will be similar. We have also shown that considering more health con-

ditions than cancer, cardiovascular disease, cerebrovascular disease, and type 2 diabetes
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considerably increases the estimated effect of BMI on QALYs and healthcare costs, that laparo-

scopic bariatric surgery is likely to be cost-effective, and that the costs of population-level

changes in BMI can be substantial.

Previous studies examining the cost-effectiveness of interventions for obesity have used

RCTs [9], cohorts [10–13], and decision analytic and related simulation models [10,12,14–18].

These studies estimated the impact on QALYs and the total healthcare cost of different inter-

ventions, such as bariatric surgery, and thus estimated whether the intervention was likely to

be cost-effective. Relative to existing methods, mendelian randomisation has longer follow-up,

is less expensive and quicker, combines a more comprehensive set of outcomes, and is less

likely to suffer from confounding and reverse causation. However, the disadvantages to men-

delian randomisation for cost-effectiveness analysis are that it requires larger sample sizes, and

we cannot be certain that the effects of lifelong changes in BMI due to genetics will be compa-

rable to changes induced by interventions. These relative strengths and limitations of the dif-

ferent approaches are summarised in Table 1.

Strengths and limitations

The estimates of the effect of BMI on QALYs and costs from mendelian randomisation are

likely less biased by confounding and reverse causation than either cohort studies or decision

analytic simulation models using observational effect estimates [20]. UK Biobank has many

participants with comprehensive information about costs and disease states over many years.

While the corresponding conventional multivariable adjusted estimates were generally consis-

tent with the mendelian randomisation estimates for all outcomes, the mendelian randomisa-

tion estimates showed some detrimental effect of increasing BMI even in participants with

BMI close to the top end of the normal weight category, while the conventional estimates did

not, which could reflect bias in the conventional estimates.

This method of estimating the effect of a risk factor on QALYs and costs can be extended to

other risk factors with causal genetic components and also provide evidence for the causal

effects of health conditions on healthcare costs and QALYs. This may be useful for health con-

ditions that are strongly influenced by risk factors that affect other health conditions where the

effect of the condition would otherwise be confounded by the risk factor, such as cardiovascu-

lar disease.

However, mendelian randomisation relies on assumptions that cannot be proven [20], as is

the case with all types of instrumental variable analysis and other forms of observational policy

evaluation. There was evidence for heterogeneity between SNPs for all outcomes, though in

general, the summary mendelian randomisation sensitivity estimates were consistent with the

main estimates, and there was little evidence of directional pleiotropy from the MR Egger

regression. As the outcomes were not biological, the exclusion restriction assumption (i.e., that

any genetic variant affects the outcome only through the exposure) may not hold for all the

genetic variants (i.e., that the genetic variant affects the outcome only through the exposure).

These estimates represent a lifetime exposure to a genetic influence on BMI and thus can-

not be interpreted directly as the expected effect of an intervention at a specific age. In general,

as the age at which a person received an intervention increases, the effect estimates would

likely reduce. This is because the mechanisms by which BMI affects health may be cumulative

over time, and so even if BMI were lowered in older age, some residual detrimental effect of

previously high BMI may remain. It is therefore likely that our estimates of the impact of BMI

on costs and QALYs are best applied to population level interventions that aim to reduce BMI

across all age groups. This limitation is also present in decision analytic simulation models of

cost-effectiveness, though not RCTs or cohort studies. Our estimates may also underestimate
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the true effect as people in England and Wales now may have had larger BMI values earlier in

life than previously, increasing the length of exposure to obesity. It is also the case that the

mendelian randomisation estimates may be fully representative of interventions that target

BMI, as these interventions will typically target more than just a change in BMI, including

exercising more or improving diets. Therefore, the generalisability of our results to interven-

tions for BMI will depend on how comparable the intervention is to causing a genetically

determined difference in BMI.

ForAU : PleaseconfirmthattheeditstothesentenceForallpolicyexamples;werequirethestableunittreatment:::didnotaltertheintendedthoughtofthesentence:all policy examples, we require the stable unit treatment value assumption for causal

inference; this assumption requires that genetic change in BMI is equivalent to a change in BMI

by other means, e.g., by bariatric surgery or reducing caloric intake of HFSS foods. This

assumption is not testable. Mendelian randomisation analyses can also be interpreted as esti-

mates of a “local average treatment effect,” by assuming that changes in the genetic variants

affecting BMI affect all participants in UK Biobank in the same direction (monotonicity). This

assumption also cannot be tested, and deviations from monotonicity could bias effect estimates.

The analyses accounting for QALY prediction error were consistent with the main analysis,

although less precise. We predicted QALYs using data from Sullivan and colleagues [36], as

QALYs have not been previously estimated in UK Biobank. While these data are applicable to

a UK population, this method only captures health-related quality of life, and, therefore, our

QALY estimates do not include any non-health-related determinants of quality of life. This

was unavoidable given the data available in UK Biobank, where only linked healthcare data

were available beyond baseline (excepting the relatively small amount of data from follow-up

visits): Future studies repeatedly measuring quality of life directly may therefore provide more

robust effect estimates. WeAU : PleaseconfirmthattheeditstothesentenceWealsohadtoimputeprimarycarecostsandQALYs:::didnotaltertheintendedthoughtofthesentence:also had to impute primary care costs and QALYs as only a limited

section of UK Biobank had primary care data, which limited statistical power but were unlikely

to have biased the results; rather, the complete case analysis would likely have been biased

results, since the distribution of GP software systems allowing linkage of primary care data is

unlikely to be random.

The healthcare costs were estimated from observed hospital episodes, drug prescriptions,

and appointments from primary care. Follow-up was 2 years shorter for secondary care costs

than primary care costs, but as we averaged the costs, this should not have materially affected

the results. Additionally, we did not capture all healthcare costs as we did not have access to

private healthcare costs not incurred in NHS settings, or data for emergency care or outpatient

appointments (which are not linked to the UK Biobank cohort), and did not consider the cost

of diagnostic tests in primary care, likely therefore underestimating the total cost of increasing

BMI. In contrast, participants in UK Biobank may have different access to healthcare than the

country on average, which may have biased our estimates of the effect of BMI on costs. Finally,

BMI may have interacted with the use of both state and private healthcare, potentially biasing

the results in either direction.

In the policy analyses, we made several assumptions: that bariatric surgery had no effects on

QALYs through anything other than its effect on BMI, including no perioperative mortality or

side effects (though complications of bariatric surgery on total healthcare costs up to 5 years

were included in the cost of surgery); that the estimated BMI reduction from bariatric surgery

would be maintained over 20 years; and that both UK Biobank and the Health Survey for

England were representative of the population of England and Wales. These assumptions

appear justifiable, as the average effect of bariatric surgery on QALYs over 20 years is likely rel-

atively low, bariatric surgery has shown a consistent reduction in BMI up to 20 years [56,57],

and the Health Survey for England is nationally representative [1,2].

However, despite its size, UK Biobank is not representative of the UK population as partici-

pants tend to be wealthier and healthier compared to the country on average [62]. It therefore
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likely that we have underestimated the true costs of BMI, as wealthier and healthier people

may be more resistant to any detrimental effects of increased BMI. As obesity is more common

in lower socioeconomic groups [63], our results suggest that obesity may be causally related to

inequalities in quality of life.

Although mendelian randomisation is likely to be less affected by confounding and reverse

causality than conventional multivariable adjusted analyses, an important potential source of

bias in these analyses is family-level effects. Recent evidence suggests that assortative mating

and dynastic effects can lead to bias in mendelian randomisation effect estimates [54], though

within-family mendelian randomisation studies can account for some of these biases. Our

within-family sensitivity analyses showed that the effect of BMI on QALYs was consistent with

the main analysis, though the effect of BMI on total healthcare costs was reduced. However,

statistical power was limited in these analyses, and confidence intervals were wide. Addition-

ally, there is evidence of a geographic structure in the UK Biobank genotype data that cannot

be accounted for using adjustment for principal components, which may also have biased our

analyses [64].

Conclusions

Mendelian randomisation can be used to estimate the effect of an exposure on quality of life

and healthcare costs. We used this approach to estimate the cost-effectiveness of interventions

aimed at reducing BMI, all of which we estimated were likely to be cost-effective, and found

that the effect of increasing BMI on health-related quality of life may be larger than previously

thought, as decision analytic simulation models may underestimate the effect of BMI on

QALYs by using only limited health conditions are intermediates.

This approach could be especially useful where it is difficult, unethical, or impossible to ran-

domise participants to an exposure such as obesity or for prevalent behaviours with adverse

health impacts such as smoking or alcohol use, or where RCT evidence is rare for an interven-

tion. Results from such studies are likely of benefit to both policy and the NHS. In future stud-

ies, we will use this method to assess the costs of different risk factors for poor health.
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