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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Background

Evidence for the impact of body size and composition on cancer risk is limited. This mende-

lian randomisation (MR) study investigates evidence supporting causal relationships of

body mass index (BMI), fat mass index (FMI), fat-free mass index (FFMI), and height with

cancer risk.

Methods and findings

Single nucleotide polymorphisms (SNPs) were used as instrumental variables for BMI (312

SNPs), FMI (577 SNPs), FFMI (577 SNPs), and height (293 SNPs). Associations of the

genetic variants with 22 site-specific cancers and overall cancer were estimated in 367,561

individuals from the UK Biobank (UKBB) and with lung, breast, ovarian, uterine, and pros-

tate cancer in large international consortia. In the UKBB, genetically predicted BMI was posi-

tively associated with overall cancer (odds ratio [OR] per 1 kg/m2 increase 1.01, 95%

confidence interval [CI] 1.00–1.02; p = 0.043); several digestive system cancers: stomach

(OR 1.13, 95% CI 1.06–1.21; p < 0.001), esophagus (OR 1.10, 95% CI 1.03, 1.17; p =

0.003), liver (OR 1.13, 95% CI 1.03–1.25; p = 0.012), and pancreas (OR 1.06, 95% CI 1.01–

1.12; p = 0.016); and lung cancer (OR 1.08, 95% CI 1.04–1.12; p < 0.001). For sex-specific

cancers, genetically predicted elevated BMI was associated with an increased risk of uterine

cancer (OR 1.10, 95% CI 1.05–1.15; p < 0.001) and with a lower risk of prostate cancer (OR

0.97, 95% CI 0.94–0.99; p = 0.009). When dividing cancers into digestive system versus

non-digestive system, genetically predicted BMI was positively associated with digestive

system cancers (OR 1.04, 95% CI 1.02–1.06; p < 0.001) but not with non-digestive system
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cancers (OR 1.01, 95% CI 0.99–1.02; p = 0.369). Genetically predicted FMI was positively

associated with liver, pancreatic, and lung cancer and inversely associated with melanoma

and prostate cancer. Genetically predicted FFMI was positively associated with non-Hodg-

kin lymphoma and melanoma. Genetically predicted height was associated with increased

risk of overall cancer (OR per 1 standard deviation increase 1.09; 95% CI 1.05–1.12; p <
0.001) and multiple site-specific cancers. Similar results were observed in analyses using

the weighted median and MR–Egger methods. Results based on consortium data confirmed

the positive associations between BMI and lung and uterine cancer risk as well as the

inverse association between BMI and prostate cancer, and, additionally, showed an inverse

association between genetically predicted BMI and breast cancer. The main limitations are

the assumption that genetic associations with cancer outcomes are mediated via the pro-

posed risk factors and that estimates for some lower frequency cancer types are subject to

low precision.

Conclusions

Our results show that the evidence for BMI as a causal risk factor for cancer is mixed. We

find that BMI has a consistent causal role in increasing risk of digestive system cancers and

a role for sex-specific cancers with inconsistent directions of effect. In contrast, increased

height appears to have a consistent risk-increasing effect on overall and site-specific

cancers.

Author summary

Why was this study done?

• The causal relevance of body size and composition as risk factors for specific cancers is

unclear based on traditional observational studies.

• By considering the relationships between genetically predicted values of body size and

composition with cancer risk, our estimates are less influenced by confounding vari-

ables, and, hence, more reliably reflect the underlying causal relationships between these

measures and cancer risk.

What did the researchers do and find?

• We assessed the associations between genetically predicted body mass index (BMI), fat

mass index (FMI), fat-free mass index (FFMI), and height with 22 specific cancers in the

UK Biobank (UKBB), a population-based sample of the United Kingdom residents.

• Although genetically predicted height was consistently associated with increased risk of

site-specific cancers, genetically predicted BMI was associated with an increased risk of

certain digestive system cancers (esophageal, stomach, liver, and pancreas), plus lung

and uterine cancer, but a decreased risk of breast and prostate cancer.
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• When dividing cancers into digestive system cancers versus non-digestive system can-

cers, genetically predicted BMI was associated with increased risk of digestive system

cancers, but not associated with non-digestive system cancers.

What do these findings mean?

• Our findings suggest that BMI is a causal risk factor for some cancers, but is not a

generic risk factor for all cancers.

• Body fat may play a role in development of specific cancers and should be studied fur-

ther to identify future targets to prevent cancer.

• Public health strategies should focus on reducing obesity as a risk factor for cancer, but

should be clear that benefit may be limited to certain cancers.

Background

Obesity is a global epidemic [1] that is predicted to affect 20% of the world’s population by

2025 [2]. The relationship between obesity and cancer risk has been subject to extensive inves-

tigation. Body mass index (BMI) is the most commonly measured marker for obesity and cor-

relates most strongly with fat mass [3]. Observational studies have shown that raised BMI is

associated with increased risk [4–7], no risk [4,7], and even reduced risk [4,8] of cancers. In

particular, consistent positive associations have been observed between BMI and risk of colo-

rectal, stomach, esophagus, liver, gallbladder, breast, endometrial, ovarian, kidney, and pancre-

atic cancers [9–11]. However, traditional epidemiological studies are influenced by

confounding factors, such as smoking [12,13], and reverse causation due to subclinical disease

[14,15]. Thus, the true relationship between obesity and cancer remains unclear.

Mendelian randomisation (MR) uses genetic variants as instrumental variables for an expo-

sure to investigate evidence for a causal effect of the exposure on a disease outcome [16]. MR

estimates represent associations of genetically predicted levels of risk factors with outcomes, as

opposed to standard epidemiological estimates, which represent associations of the risk factor

levels with outcomes. As a result of Mendel’s laws of segregation and independent assortment,

estimates from MR are less susceptible to bias due to confounding factors than those from con-

ventional observational epidemiological studies [17]. As the genetic code cannot be influenced

by environmental factors or preclinical disease, MR estimates are also less susceptible to bias

due to reverse causation.

MR investigations have previously been performed to investigate the effect of obesity on

various cancer types. Studies have suggested risk-increasing effects of BMI for cancers of the

colorectum, pancreas, kidney, lung, uterus, and ovary, for adenocarcinoma in the esophagus,

and for overall cancer [18–20]. A separate study evidenced a risk-increasing effect of BMI on

renal cell carcinoma [21]. Risk-decreasing effects of BMI have been evidenced for both pre-

and postmenopausal breast cancer [22] and for prostate cancer in one study [23], but not oth-

ers [19,24]. However, a comprehensive MR investigation into the effect of BMI on a wide

range of cancer types has not been performed. Additionally, previous investigations have not

considered the specific contribution of fat mass and fat-free mass to cancer risk.

Our aim in this paper is to perform a wide-angled MR investigation to provide independent

evidence that replicates and extends analyses for the impact of obesity on cancer outcomes
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where MR investigations have already been performed and provides new evidence for cancer

outcomes that have not previously been investigated using this approach. In particular, we

want to assess the consistency of findings across different site-specific cancers. We define fat

mass index (FMI) and fat-free mass index (FFMI) analogously to BMI, as fat mass or fat-free

mass divided by height squared. As a comparative analysis, we consider height as a risk factor,

as this has also been suggested to have a causal effect on multiple cancer types [25–27]. We

used MR to investigate the causal roles of genetically predicted BMI, FMI, FFMI, and height

on the risk of developing 22 cancers in 367,561 individuals from the UK Biobank (UKBB)

study. We supplement our investigation with publicly available genetic association data from

large international consortia for certain site-specific cancers. We aimed to elucidate the causal

role of body composition for site-specific cancers and so extend and focus the evidence base

for targeted public health strategies.

Methods

Study population

Data for genetic associations with site-specific cancer risk were obtained from the UKBB. The

UKBB comprises demographic, clinical, biochemical, and genetic data from around 500,000

adults (aged 37 to 73 years old at baseline) recruited between 2006 and 2010 and followed up

until June 30, 2020 [28]. Only unrelated individuals of European ancestries (defined by self-

report and genetics) were included in our analysis in order to reduce population stratification

bias. For each group of related individuals (third-degree relatives or closer), only 1 individual

was included in analyses. After performing quality control filters as described previously [29],

367,561 individuals were included in analyses (S1 Fig). We defined cancer outcomes in the

UKBB for the 22 most common site-specific cancers in the UK using the International Classifi-

cation of Diseases (IAU : PleasenotethatICDhasbeendefinedasInternationalClassificationofDiseasesinthesentenceWedefinedcanceroutcomesin::::Pleasecheckandcorrectifnecessary:CD)-9 and ICD-10 coding (S1 Table). Overall cancer analyses included

individuals with any of the 22 site-specific cancers. Cancer outcomes were obtained from elec-

tronic health records, hospital episodes statistics (HES) data, the National Cancer Registry,

death certification data, and self-reporting validated by nurse interview. Both prevalent and

incident events were included in analyses. Genetic association estimates were obtained for

each cancer outcome by logistic regression adjusting for age, sex, and 10 genetic principal

components. Associations for sex-specific cancers (breast, ovarian, cervical, and uterine for

women and testicular and prostate for men) were estimated in participants of the relevant sex

only (198,825 women and 168,736 men).

In addition, publicly available data were extracted from the MR-Base platform [30] for

lung, breast, ovarian, uterine, and prostate cancer from the International Lung Cancer Consor-

tium (11,348 cases and 15,861 controls) [31], Breast Cancer Association Consortium (BCAC)

(122,977 cases and 105,974 controls) [32], the Ovarian Cancer Association Consortium

(25,509 cases and 40,941 controls) [33], a meta-analysis of genome-wide association studies

(GWASs) for endometrial cancer (12,906 cases and 108,979 controls from 17 studies identified

from the Endometrial Cancer Association Consortium, the Epidemiology of Endometrial Can-

cer Consortium, and the UKBB) [34], and the Prostate Cancer Association Group to Investi-

gate Cancer Associated Alterations in the Genome consortium (79,148 cases and 61,106

controls) [35].

Genetic instruments

The genetic instrument for BMI compromised 312 uncorrelated single nucleotide polymor-

phisms (SNPs) (linkage disequilibrium R2 < 0.001) associated with BMI at genome-wide sig-

nificance (p< 5 × 10−8) in a GWAS of up to 806,834 individuals of European ancestries [36]
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(S2 Table). For fat mass and fat-free mass (measured using bioelectrical impedance), we used

577 uncorrelated SNPs associated with body composition among 331,291 UKBB participants

[37] (S3 Table). FMI and FFMI were computed by dividing fat mass or fat-free mass by the

square of height. A GWAS of 253,288 European ancestry individuals identified 697 genome-

wide significant SNPs (p< 5 × 10−8) for adult height [38], of which 293 were uncorrelated

(linkage disequilibrium R2 < 0.001) and were used as instrumental variables (S4 Table).

Genetic associations with these body composition measures were obtained from the relevant

discovery GWAS and were adjusted for age, sex, and genetic principal components.

Statistical analysis

Associations of genetically predicted BMI and height with the 22 site-specific cancers and

overall cancer for the UKBB cohort were obtained using the random-effects inverse-variance

weighted method [39]. We performed additional analyses using the weighted median [39] and

MR–Egger [40] methods. The analyses of FMI and FFMI were based on the multivariable ran-

dom-effects inverse-variance weighted method with both exposures included in the same

model. Although overall cancer is a composite outcome comprising malignancies with differ-

ent etiologies, analyses for overall cancer are important from a public health perspective to esti-

mate the overall impact of the risk factors on cancer risk.

Our analysis did not have an explicit prespecified analysis plan. The analysis was conducted

similarly to previous published efforts for investigating the causal relationships of BMI, FMI,

and FFMI with cardiovascular diseases [37,41]. In response to comments from peer reviewers,

we made a number of changes to the analysis: We changed the overall cancer outcome from

including all cancers to including any of the 22 named site-specific cancers, we updated the

genetic variants used as instrumental variables to those from the latest GWAS for the relevant

risk factor, and we added analyses based on large-scale consortia for lung, breast, ovarian, uter-

ine, and prostate cancer.

The odds ratios (ORs) are expressed per 1 kg/m2 increase in genetically predicted BMI,

FMI, and FFMI and per 1 standard deviation (approximately 6.5 cm) increase in height. As the

number of cases and thus statistical power differed between analyses, we did not set a fixed

threshold for statistical significance. Statistical analyses were performed in Stata/SE 14.2 using

the mrrobust package [42] and R 3.6.0 software using the MendelianRandomization package

[39]. Power calculations were performed using the web-based tool at https://sb452.shinyapps.

io/power/ [43].

This study is reported as per the Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) guideline (S1 Checklist).

Results

Baseline characteristics of the 367,561 participants in the UKBB are provided in Table 1. The

mean age was 57.2 years, with 45.9% males. Moreover, 10.3% of participants were current

smokers. In the UKBB, the 312 SNPs explained 4.1% of the variance in BMI, whereas the 577

SNPs for body composition explained 3.1% of the variance in FMI and 2.3% of the variance in

FFMI. The 293 SNPs for height explained around 5.5% of the variance in height. The pheno-

typic correlation of BMI with FMI was 0.84 and with FFMI was 0.66. The correlation between

FMI and FFMI was 0.14. The relatively low correlation between FMI and FFMI means multi-

variable analyses can likely differentiate between these 2 risk factors. A total of 59,647 partici-

pants had one of the 22 defined site-specific cancers. When excluding outcomes for which

only self-reported data were available, 55 674 events remained.
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Power calculations are provided in S2 Fig. For BMI, there was 80% power to detect an OR

of 1.2 per 1 kg/m2 increase in genetically predicted BMI even for outcomes with only 300

events and an OR of 1.05 for outcomes with 3,800 events. Power was lower for FMI and FFMI,

although still adequate to detect a moderate effect size for more common cancers.

BMI and cancer risk

Associations between genetically predicted BMI and site-specific and overall cancer in the

UKBB are shown in Fig 1. Genetically predicted BMI was associated with an increased risk of

overall cancer (OR 1.01, 95% confidence interval [CI] 1.00 to 1.02; p = 0.043); certain digestive

system cancers, including stomach (OR 1.13, 95% CI 1.06 to 1.21; p< 0.001), esophagus (OR

1.10, 95% CI 1.10 (1.03, 1.17; p = 0.003), liver (OR 1.13, 95% CI 1.03 to 1.25; p = 0.012), and

pancreas (OR 1.06, 95% CI 1.01 to 1.12; p = 0.016); and lung cancer (OR 1.08, 95% CI 1.04 to

1.12; p< 0.001). For sex-specific cancers, elevated BMI was associated with an increased risk

of uterine cancer (OR 1.10, 95% CI 1.05 to 1.15; p< 0.001) and with a lower risk of prostate

cancer (OR 0.97, 95% CI 0.94 to 0.99; p = 0.009). After omission of self-reported cancer events,

the strength of association with risk of overall cancer was diminished (OR 1.01, 95% CI 1.00 to

1.02; p = 0.055). Results for site-specific cancers excluding self-reported outcomes were gener-

ally similar but marginally less precise (S3 Fig). Complementary analyses based on the

weighted median and MR–Egger methods revealed similar but less precise estimates

(S5 Table).

Table 1. Baseline characteristics of the UKBB participants included in this study.

Mean (SD) or n (%)†

Sample size 367,561 (100)

Male 168,736 (45.9)

Age at baseline (years) 57.2 (8.1)

Body composition

BMI (kg/m2) 27.4 (4.8)

FMI (kg/m2) 8.8 (3.6)

FFMI (kg/m2) 18.6 (2.6)

Height (m) 1.69 (0.07)

Blood pressure (mm Hg)

Systolic blood pressure 137.6 (18.6)

Diastolic blood pressure 82.0 (10.1)

Smoking status

Current 37,866 (10.3)

Ex 185,704 (50.5)

Never 143,777 (39.1)

Alcohol status

Current 342,797 (93.2)

Ex 12,732 (3.5)

Never 11,646 (3.2)

Type 2 diabetes 15,834 (4.3)

† Mean (standard deviation) for continuous variables; n (%) for categorical variables.

A total of 214 participants had missing data on smoking status, and 386 participants had missing data on alcohol

status.

BAU : AnabbreviationlisthasbeencompiledforthoseusedthroughoutTable1:Pleaseverifythatallentriesarecorrect:MI, body mass index; FFMI, fat-free mass index; FMI, fat mass index; SD, standard deviation; UKBB, UK Biobank.

https://doi.org/10.1371/journal.pmed.1003706.t001
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In analyses based on consortium data, genetically predicted BMI was positively associated

with increased risk of overall lung cancer (OR 1.04, 95% CI 1.01 to 1.07; p = 0.006) and the

squamous cell cancer subtype (OR 1.08, 95% CI 1.03 to 1.12; p< 0.001) (Fig 2). For sex-spe-

cific cancers, elevated BMI was associated with increased risk of uterine cancer (OR 1.13, 95%

CI 1.10 to 1.16; p< 0.001), but with lower risk of breast (OR 0.96, 95% CI 0.95 to 0.98;

p< 0.001) and prostate cancer (OR 0.98, 95% CI 0.96 to 1.00; p = 0.020). Inverse associations

with similar magnitude were observed for both estrogen receptor positive (ER+) and estrogen

receptor negative (ER−) breast cancer. Positive associations were observed for mucinous and

endometrioid ovarian cancer, but not overall ovarian cancer.

FMI and FFMI and cancer risk

Similar to BMI, genetically predicted FMI was associated with an increased risk of liver (OR

2.40, 95% CI 1.02 to 5.65; p = 0.045), pancreatic (OR 1.68, 95% CI 1.06 to 2.66; p = 0.028), and

lung cancer (OR 1.57, 95% CI 1.16 to 2.13; p = 0.004) in the UKBB (Fig 3). Elevated FMI was

associated with lower risk of prostate cancer (OR 0.77, 95% CI 0.61 to 0.97; p = 0.027) and mel-

anoma (OR 0.68, 95% CI 0.51 to 0.91; p = 0.008). From the consortia, elevated FMI was associ-

ated with increased uterine cancer risk (OR 1.69, 95% CI 1.33 to 2.15; p< 0.001) (Fig 4).

Genetically predicted FFMI was associated with increased risk of non-Hodgkin lymphoma

(OR 1.89, 95% CI 1.21 to 2.96; p = 0.005) and melanoma (OR 1.44, 95% CI 1.02 to 2.05;

p = 0.039) in the UKBB (Fig 3). From the consortia, elevated FFMI was associated with a

decreased risk of breast cancer (0.77, 95% CI 0.64 to 0.93; p = 0.007) (Fig 4).

Fig 1. Associations of genetically predicted BMI with overall and site-specific cancers in the UKBB. ORs are expressed per 1 kg/m2 increase in BMI. Results

are obtained from the random-effects inverse-variance weighted method. BAU : AbbreviationlistsofFigs1 � 6havebeenupdated:Pleaseverifythatallentriesarecorrect:MI, body mass index; CI, confidence interval; OR, odds ratio; UKBB, UK Biobank.

https://doi.org/10.1371/journal.pmed.1003706.g001
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Height and cancer risk

In the UKBB, genetically predicted height was positively associated with overall cancer (OR

1.09; 95% 1.05 to 1.12; p< 0.001) and multiple site-specific cancers, including kidney (OR

1.19, 95% CI 1.02 to 1.38; p = 0.027), colorectal (OR 1.09, 95% CI 1.01 to 1.19; p = 0.034), bili-

ary tract (OR 1.45, 95% CI 1.14 to 1.84; p = 0.003), breast (OR 1.12, 95% CI 1.06 to 1.19;

p< 0.001), and ovarian cancer (OR 1.21, 95% CI 1.05 to 1.40; p = 0.008) (Fig 5). Estimates

were generally similar in additional analyses using the MR–Egger and weighted median meth-

ods (S6 Table). From the consortia, genetically predicted height was positively associated with

ovarian (OR 1.37, 95% CI 1.14 to 1.64; p = 0.001) and breast cancer (OR 1.10, 95% CI 1.05 to

1.15; p< 0.001), similar to the UKBB (Fig 6).

Digestive system versus non-digestive system cancer risk

When dividing cancers into digestive system (esophagus, stomach, colorectum, liver, biliary

tract, and pancreas; 11,061 cases) versus non-digestive system (48,586 cases), estimates for

BMI were OR 1.04 (95% CI 1.02 to 1.06; p< 0.001) for digestive system and OR 1.01 (95% CI

0.99 to 1.02; p = 0.37) for non-digestive system cancers. For FMI, estimates were OR 1.17 (95%

CI 0.95 to 1.44; p = 0.13) for digestive system and OR 0.99 (95% CI 0.88 to 1.11; p = 0.86) for

non-digestive system cancers. For FFMI, estimates were OR 1.11 (95% CI 0.86 to 1.43;

p = 0.42) for digestive system and OR 1.12 (95% CI 0.96 to 1.29; p = 0.15) for non-digestive sys-

tem cancers. Genetically predicted height was positively associated with both digestive system

and non-digestive system cancers (Fig 5).

Fig 2. Associations of genetically predicted BMI with site-specific cancers in large international consortia. ORs are expressed per 1 kg/m2 increase in BMI.

Results are obtained from the random-effects inverse-variance weighted method. BMI, body mass index; CI, confidence interval; ER−, estrogen receptor negative;

ER+, estrogen receptor positive; OR, odds ratio; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1003706.g002
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Discussion

This MR study investigated the causal role of clinically relevant measures of body composition

for a wide range of site-specific cancers. Genetically predicted BMI was associated with risk of

overall cancer. Elevated BMI was positively associated with several digestive system cancers,

including at the esophagus, stomach, liver, and pancreas. Additionally, BMI was positively

associated with lung and uterine cancer, but inversely associated with breast cancer (only in

the BCAC) and prostate cancer. Genetically predicted FMI was positively associated with lung,

liver, and pancreatic cancer, with inverse associations seen for melanoma and prostate cancer.

FFMI was positively associated with non-Hodgkin lymphoma, melanoma, and uterine cancer,

with inverse associations seen for breast cancer. Genetically predicted height was positively

associated with overall and multiple site-specific cancers.

The relationship between adiposity and cancer has been assessed in many traditional obser-

vational studies. An umbrella review of 204 meta-analyses found adiposity to be consistently

associated with 10 site-specific cancers: esophageal, gastric, colorectal, biliary tract, pancreas,

Fig 3. Associations of genetically predicted FMI and FFMI with overall and site-specific cancers in the UKBB. ORs are expressed per one 1 kg/m2 increase

in FMI. Results are obtained from the multivariable random-effects inverse-variance weighted method. CI, confidence interval; FFMI, fat-free mass index; FMI,

fat mass index; OR, odds ratio; UKBB, UK Biobank.

https://doi.org/10.1371/journal.pmed.1003706.g003
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breast, uterine, ovarian, and kidney cancer as well as multiple myeloma [11]. Current MR

studies have replicated the associations with esophageal, colorectal, pancreas, pancreas, uter-

ine, ovarian, and kidney cancer [18–21,44,45]. However, further positive associations were

observed in MR analyses for lung cancer [19,20], and inverse associations were seen with

breast and prostate cancer [22,23]. These discrepancies between observational and MR studies

may be due to the effect of environmental confounders (such as smoking) and reverse causa-

tion bias in traditional observational studies.

In our study, we observed a positive association between genetically predicted BMI and

digestive system cancers. This link between BMI and adiposity with risk of certain digestive

system cancers replicates and extends previous findings. High BMI has been associated with

esophageal and stomach cancers in a meta-analysis of observational studies [46] and MR stud-

ies [20]. Increased adipose tissue is associated with insulin resistance and hyperinsulinemia

[47], with raised circulating insulin enhancing colorectal epithelial cell proliferation in rat

models [48]. Additionally, ghrelin is a gut hormone produced in the stomach, with reduced

levels seen in obesity [49]. Ghrelin reduces pro-inflammatory cytokines and inflammatory

stress [50], and reduced levels are associated with increased risk of esophageal [51] and stom-

ach [52] cancers. Adiposity is also well established in causing nonalcoholic fatty liver disease

and has been implicated in its progression to hepatocellular carcinoma [53]. In line with this,

we observed an increased risk of liver cancer with raised BMI and FMI. Similarly, we observed

a positive association between elevated BMI and FMI and pancreas cancer, in line with adipose

tissue driving low grade inflammation and carcinogenesis in pancreatic tissue through pro-

inflammatory cytokines [54]. We also observe low-precision positive associations between

Fig 4. Associations of genetically predicted FMI and FFMI with site-specific cancers in large international consortia. ORs are expressed per one 1 kg/m2 increase in

FMI. Results are obtained from the multivariable random-effects inverse-variance weighted method. CI, confidence interval; ER−, estrogen receptor negative; ER+,

estrogen receptor positive; FFMI, fat-free mass index; FMI, fat mass index; OR, odds ratio; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1003706.g004
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elevated BMI and colorectal and biliary tract cancers, suggesting a causal role between adipos-

ity and digestive system cancers. Further research should assess the impact of weight loss inter-

ventions and dietary interventions in reducing cancers of the digestive system.

In this MR study, elevated genetically predicted BMI was associated with sex-specific can-

cers: increased risk of uterine cancer and decreased risk of breast and prostate cancer. BMI

and breast cancer has been extensively studied in previous MR studies [19,22,55,56]. A previ-

ous MR study based on data from the BCAC and DRIVE consortia of 46,325 cases of breast

cancer found that genetically predicted BMI based on 84 SNPs was inversely associated with

breast cancer risk in both pre- and postmenopausal women [22], consistent with the findings

of our study based on data from the BCAC. A further MR study of 98,842 cases of breast cancer

confirmed this finding [57]. These MR results contrast with observational study findings that

have demonstrated adult obesity to be associated with increased risk of postmenopausal breast

cancer [10,46]. Furthermore, our study corroborates the findings of a previous MR study of

6,609 cases of uterine cancer, showing genetically predicted BMI was positively associated with

incidence [58]. In males, our findings are in line with a previous MR of 22 European cohorts,

which showed weak evidence for an inverse association between genetically predicted BMI

and prostate cancer [24], as well as a larger analysis showing stronger evidence for an associa-

tion [23]. The association of BMI and these sex-specific cancers is likely to be at least in part

hormonally mediated. In males, elevated BMI reduces serum testosterone [59], with androgens

recognised as promoting prostate cancer. In premenopausal women, increased BMI is associ-

ated with anovulation, reducing lifetime exposure of circulating estrogen and progesterone

Fig 5. Associations of genetically predicted height with overall and site-specific cancers in the UKBB. ORs are expressed per 1 standard deviation (6.5 cm)

increase in height. Results are obtained from the random-effects inverse-variance weighted method. CI, confidence interval; OR, odds ratio; UKBB, UK Biobank.

https://doi.org/10.1371/journal.pmed.1003706.g005
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[60], and thus a consequent reduction in breast cancer risk [61] and an increase in uterine can-

cer risk [62]. While observational associations of BMI with pre- and postmenopausal breast

cancers are directionally discordant, MR estimates have consistent direction. This may be

because the association of genetically predicted BMI is mediated via lifelong exposure to ele-

vated estrogen levels, the majority of which is premenopausal. We report an inverse associa-

tion between FFMI and breast cancer risk, suggesting that increased non-adipose tissue

density may have a protective role against malignancy. Observational studies have demon-

strated that sarcopenia is associated with increased breast cancer mortality [63,64], although

the association may be subject to reverse causation. However, reduced muscle mass and atro-

phy is associated with systemic inflammation [65,66] and increased TNF-alpha levels [66],

which may drive carcinogenesis, although the mechanistic links need to be assessed further.

We report a positive association between genetically predicted BMI and squamous cell lung

cancer risk, consistent with previous MR findings [19]. Our findings of no association between

BMI and melanoma risk are consistent with findings of a recent MR investigation [67]. How-

ever, we observed an inverse association between FMI and melanoma risk, but a positive asso-

ciation for FFMI. These findings suggest that body composition influences melanoma risk,

with increased adiposity being protective against melanoma. This may be because those with

higher FFMI and lower FMI spend more time outdoors and so have greater exposure to the

sun. Previous observational studies have shown that obesity is associated with improved sur-

vival of melanoma patients [68], with a down-regulation of key lipid genes shown in mela-

noma cells [69], suggesting that lipids play a role in carcinogenesis.

We observed a positive association between genetically predicted height and overall cancer

risk, which was consistent across a wide range of site-specific cancers, including kidney,

Fig 6. Associations of genetically predicted height with site-specific cancers in large international consortia. ORs are expressed per 1 standard deviation (6.5

cm) increase in height. Results are obtained from the random-effects inverse-variance weighted method. CI, confidence interval; ER−, estrogen receptor negative;

ER+, estrogen receptor positive; OR, odds ratio; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1003706.g006

PLOS MEDICINE Body size and composition and site-specific cancers in UK Biobank: A mendelian randomisation study

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003706 July 29, 2021 12 / 20

https://doi.org/10.1371/journal.pmed.1003706.g006
https://doi.org/10.1371/journal.pmed.1003706


colorectal, biliary tract, ovarian, and breast cancers. Our findings are consistent with previous

MR studies showing a positive association of height with colorectal [70–72] and breast cancer

[72–74]. Increased height is associated with elevated insulin-like growth factor 1 (IGF1) [75],

which is a growth factor that drives cellular proliferation and survival and has thus been impli-

cated in carcinogenesis of IGF-responsive tissues. Increased expression of IGF-1 and its cellu-

lar receptors are present in cancer tumours [76,77]. Our recent MR investigation

demonstrated that genetically predicted IGF-1 was associated with increased risk of colorectal

cancer, and, possibly, breast cancer, but not associated with overall or other site-specific can-

cers [78]. This suggests that the effect of height on cancer risk operates via pathways indepen-

dent of IGF-1.

We observed a positive association between elevated genetically predicted BMI and overall

cancer risk. This result replicates a recent MR investigation using 520 genetic variants for BMI

in the UKBB that showed that overall cancer risk (excluding nonmelanoma skin cancer) and

mortality was associated with elevated genetically predicted BMI. However, when dividing

cancers into digestive system versus non-digestive system, genetically predicted BMI was only

associated with digestive system cancers. This result has important clinical implications. Previ-

ous public health recommendations have advocated obesity as a generic risk factor for cancer

prevention [79,80]. While our research supports a causal role of obesity in driving and protect-

ing against certain cancers, it suggests differential effects of BMI and obesity in different malig-

nancies, which should be explored further. A more nuanced message public health message

with regard to obesity as a risk factor for digestive system cancers may be more appropriate.

Our study has several strengths. The MR design minimises the influence of environmental

confounding factors and reverse causality, allowing for causal relationships to be better charac-

terised. The UKBB is a large prospective cohort, allowing multiple cancer types to be studied

in a single dataset and comparisons of estimates across cancers to be made. However, there are

some limitations. The main limitation is the assumption that the genetic associations with can-

cer risk are mediated via the proposed risk factors. Additionally, estimates for some lower fre-

quency cancer types are subject to low precision, and, therefore, results should be interpreted

based on the magnitude of the associations rather than on p-values alone. Another shortcom-

ing is that our findings may not be applicable to other ethnic groups as we confined the study

population to individuals of European ancestries to minimise bias from population stratifica-

tion. As we analysed middle- to early late-aged individuals, some cancers, particularly those

with early onset and poor survival, may not be well captured in our analysis. Associations in

the UKBB may be subject to selection bias [81], as participants in the UKBB are overall more

healthy and better educated compared to the overall UK population [82]. Another potential

source of bias is detection bias. The probability of diagnosis for less severe cancers (such as

prostate cancer) may be more likely if the individual has comorbidities and so has more exten-

sive contact with health services. While we wanted to perform analyses for specific cancer sub-

types, we were unable to define these in a reliable way for the majority of site-specific cancers

in the data available. Results for overall cancer are dependent on the characteristics of the ana-

lytic sample and the relative prevalence of different cancer types. In particular, cancers with

greater survival chances will be overrepresented in the case sample. Selection of genetic vari-

ants was based on datasets that include the UKBB participants, and for FMI and FFMI, on a

dataset comprised solely of the UKBB participants. This may lead to bias due to sample overlap

and winner’s curse. However, results were similar when genetic associations with cancers were

taken from independent consortia. Our analysis assumes a linear relationship between the risk

factors and the outcome. Quantitative estimates may be misleading if the true relationship is

nonlinear, although estimates are still reflective of the presence and direction of the popula-

tion-averaged causal effect [83]. As with all methodologies that aim to assess causal
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relationships, MR makes untestable assumptions. The approach relies on the genetic associa-

tions with cancer risk being mediated via the body composition measures. While we were able

to perform robust methods to assess sensitivity to this assumption, it remains a possibility that

some genetic variants may influence cancer risk through other pathways than obesity. A fur-

ther limitation is that the relationship between obesity and cancer risk may change over the

life course. Typically, MR estimates reflect the impact of a lifelong difference in the trajectory

of a risk factor, as they represent associations between genetically predicted levels of risk fac-

tors and outcomes. Finally, our study does not provide understanding of the physiological

pathways by which obesity and height may affect carcinogenesis.

Conclusions

In conclusion, this comprehensive MR study provides evidence that elevated BMI increases

the risk of digestive system cancers, and BMI increases the risk of uterine cancer but is protec-

tive for other sex-specific cancers, including breast and prostate. We showed that elevated

genetically predicted FMI is associated with liver, lung, and pancreatic cancer, with FFMI

inversely associated with breast cancer. In contrast, genetically predicted height was consis-

tently positively associated with overall cancer and several site-specific cancers. These findings

suggest that obesity and body composition have particular causal relevance to specific cancer

types.
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