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Abstract

Background

Preoperative risk prediction is important for guiding clinical decision-making and resource

allocation. Clinicians frequently rely solely on their own clinical judgement for risk predic-

tion rather than objective measures. We aimed to compare the accuracy of freely avail-

able objective surgical risk tools with subjective clinical assessment in predicting 30-day

mortality.

Methods and findings

We conducted a prospective observational study in 274 hospitals in the United Kingdom

(UK), Australia, and New Zealand. For 1 week in 2017, prospective risk, surgical, and out-

come data were collected on all adults aged 18 years and over undergoing surgery requiring

at least a 1-night stay in hospital. Recruitment bias was avoided through an ethical waiver to

patient consent; a mixture of rural, urban, district, and university hospitals participated. We

compared subjective assessment with 3 previously published, open-access objective risk

tools for predicting 30-day mortality: the Portsmouth-Physiology and Operative Severity

Score for the enUmeration of Mortality (P-POSSUM), Surgical Risk Scale (SRS), and Surgi-

cal Outcome Risk Tool (SORT). We then developed a logistic regression model combining

subjective assessment and the best objective tool and compared its performance to each

constituent method alone. We included 22,631 patients in the study: 52.8% were female,
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median age was 62 years (interquartile range [IQR] 46 to 73 years), median postoperative

length of stay was 3 days (IQR 1 to 6), and inpatient 30-day mortality was 1.4%. Clinicians

used subjective assessment alone in 88.7% of cases. All methods overpredicted risk, but

visual inspection of plots showed the SORT to have the best calibration. The SORT demon-

strated the best discrimination of the objective tools (SORT Area Under Receiver Operating

Characteristic curve [AUROC] = 0.90, 95% confidence interval [CI]: 0.88–0.92; P-POSSUM

= 0.89, 95% CI 0.88–0.91; SRS = 0.85, 95% CI 0.82–0.87). Subjective assessment demon-

strated good discrimination (AUROC = 0.89, 95% CI: 0.86–0.91) that was not different from

the SORT (p = 0.309). Combining subjective assessment and the SORT improved discrimi-

nation (bootstrap optimism-corrected AUROC = 0.92, 95% CI: 0.90–0.94) and demon-

strated continuous Net Reclassification Improvement (NRI = 0.13, 95% CI: 0.06–0.20, p <
0.001) compared with subjective assessment alone. Decision-curve analysis (DCA) con-

firmed the superiority of the SORT over other previously published models, and the SORT–

clinical judgement model again performed best overall. Our study is limited by the low mor-

tality rate, by the lack of blinding in the ‘subjective’ risk assessments, and because we only

compared the performance of clinical risk scores as opposed to other prediction tools such

as exercise testing or frailty assessment.

Conclusions

In this study, we observed that the combination of subjective assessment with a parsimoni-

ous risk model improved perioperative risk estimation. This may be of value in helping clini-

cians allocate finite resources such as critical care and to support patient involvement in

clinical decision-making.

Author summary

Why was this study done?

• Over 3 million postoperative deaths occur worldwide per year.

• Some of these may be avoidable through risk-assessment–based modification of treat-

ment pathways, such as postoperative critical care admission.

• There are multiple methods for predicting which patients are at high risk of death or

complications from surgery, but these are not widely used, with clinicians instead usu-

ally relying on their subjective clinical judgement alone.

• Before this study, there was little information about whether clinical judgement was of

better, worse, or equivalent accuracy to objective risk scores.

What did the researchers do and find?

• We conducted a 1-week cohort study in 274 hospitals in the UK, Australia, and New

Zealand, during which we collected data on risk and surgical outcome on every patient

who had an operation requiring an overnight stay in hospital.
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• The clinical team (surgeons, anaesthetists) looking after the patient were asked to pro-

vide a subjective assessment of risk. We compared these assessments with the results of

3 freely available objective risk-assessment tools.

• We included data from 22,631 patients in our analyses and found that subjective assess-

ment was as accurate as the best of the objective risk tools (the Surgical Outcome Risk

Tool or SORT) for predicting death in hospital within 30 days of surgery.

• However, combining subjective and objective measurement using the SORT provided

an even more accurate estimate.

What do these findings mean?

• The new SORT–clinical judgement calculator can be used by clinicians to risk-stratify

patients and so identify which individuals are most likely to benefit from limited

resources such as access to postoperative critical care.

• At the policy level, the tool can be used to plan surgical services, including the number

of critical care beds required to serve a surgical population.

• This study is limited by being conducted solely in high-income countries, limiting its

global generalisability.

Introduction

The provision of safe surgery is an international healthcare priority [1]. Guidelines recom-

mend that preoperative risk estimation should guide treatment decisions and facilitate shared

decision-making [2,3]. Furthermore, there is an ethical imperative (and in the United King-

dom [UK], a legal requirement) to provide an individualised assessment of a patient’s risk of

adverse outcomes [4]. Increasing evidence suggests that postoperative mortality in both high

and low/middle-income settings is due less to what happens in the operating theatre and more

to our ‘failure to rescue’ patients who develop postoperative complications [5,6]. These obser-

vations also point towards opportunity: once a patient has been identified as high risk, mitiga-

tion strategies such as pre-emptive admission to critical care or enhanced postoperative

surveillance may prevent adverse outcomes [2]. However, critical care is a finite resource, with

competition for beds between surgical and emergency medical admissions. To that end, the

requirement for a postoperative critical care bed is itself a risk factor for last-minute cancella-

tion, with consequent potential for disruption and harm for both patients and healthcare pro-

viders [7]. Thus, there is a need to accurately stratify patient risk so as to make the most of

limited resources and improve perioperative outcomes. This is especially true given the scale

of demand; more than 300 million operations take place annually worldwide [8]. With a major

postoperative morbidity rate of around 15% [9,10], a short-term mortality rate between 1 and

3% [11], and a reproducible association between short-term morbidity and long-term survival

[9,12,13], the impact of surgical complications on individual patients, healthcare resources,

and society at large is clearly evident. Furthermore, if resources permitted, substantially larger

numbers of patients would be considered for surgical intervention [1].

There are numerous methods available to help clinicians estimate perioperative risk,

including frailty indices [14], functional capacity assessments such as cardiopulmonary
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exercise testing (CPET) [15], and dozens of risk prediction scores and models, many of which

are open-source, are easily applied, and have been validated in multiple heterogeneous surgical

cohorts [16]. Despite this myriad of choices, data from national Quality Improvement (QI)

programmes indicate that clinicians do not routinely document an individualised risk assess-

ment before surgery [10,17]. In part, this may relate to the availability of complex investiga-

tions and equipoise over which method is most accurate, particularly when the accuracy of

objective methods compared with subjective assessment alone is disputed [15]. We therefore

performed a prospective cohort study with the following objectives: to describe how clinicians

assess risk in routine practice, to externally validate and compare the performance of 3 open-

access risk models with subjective assessment, and to investigate whether objective risk tools

add value to subjective assessment.

Methods

This is a planned analysis of the Second Sprint National Anaesthesia Project: EPIdemiology of

Critical Care provision after Surgery (SNAP-2: EPICCS) study, a prospective observational

cohort study conducted in 274 hospitals from the UK, Australia, and New Zealand [18]. We

report our findings in accordance with the Strengthening the Reporting of Observational Stud-

ies in Epidemiology (STROBE; S1 Text) and the Transparent Reporting of a multivariable pre-

diction model for Individual Prognosis Or Diagnosis (TRIPOD; S2 Text) statements [19,20].

National research networks, including trainee-led networks, were used to maximise recruit-

ment from public hospitals in all countries. All adult (�18 years) patients undergoing inpatient

surgery and meeting our criteria (see ‘Data set’, below) during a 1-week period were included

in our analyses for this paper. Patients were recruited between 21–27 March 2017 in the UK,

21–27 June 2017 in Australia, and 6–13 September 2017 in New Zealand.

Ethical and governance approvals

UK-wide ethical approval for the study was obtained from the Health Research Authority

(South Central–Berkshire B REC, reference number: 16/SC/0349); additional permission to

collect patient-identifiable data without consent was granted through Section 251 exemption

from the Confidentiality Advisory Group for England and Wales (CAG reference: 16/CAG/

0087), the NHS Scotland Public Benefit and Privacy Panel for Health and Social Care (PBPP

reference: 1617–0126), and individual Health and Social Care Trust research and development

departments for each site in Northern Ireland (Belfast, Northern, South Eastern, and Western

Health and Social Care Trusts, IRAS reference number: 154486). In Australia, each state had

different regulatory approval processes, and approvals were received from the following ethics

committees: New South Wales—Hunter New England and Greater Western Human Research

Ethics Committee; Queensland—Metro South Hospital and Health Service Human Research

Ethics Committee; South Australia—Southern Adelaide Clinical Human Research Ethics

Committee; Tasmania—Tasmania Health and Medical Human Research Ethics Committee;

Victoria—Alfred Health, Eastern Health, Goulburn Valley, Mercy Health, Monash Health,

Peter MacCallum Cancer Centre Research Ethics Committees; Western Australia—South

Metropolitan Health Service Human Research Ethics Committee. In New Zealand, the study

received national approval from the Health and Disability Ethics Committees (Ethics ref: 17/

NTB/139).

Data set

All data (S3 Text) were collected prospectively. In this study, we defined objective risk assess-

ment as the use of a risk calculation model or equation or tool that supplies a prediction of risk
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on a probability scale. Before surgery, perioperative teams answered the following question for

each patient: ‘What is the estimate of the perioperative team of the risk of death within 30

days?’, with 6 categorical response options (<1%, 1%–2.5%, 2.6%–5%, 5.1%–10%, 10.1%–50%,

and>50%). These thresholds were decided by expert consensus within the study steering

group and study authors. Teams were then asked to record how they arrived at this estimate

(for example, clinical judgement and/or an objective risk tool). The patient data for this study

were collected from a wide range of participating publicly funded hospitals in the UK

(n = 245), Australia (n = 21), and New Zealand (n = 8). These were a heterogeneous mix of sec-

ondary (42%) and tertiary care (58%) institutions and likely reflective of the general composi-

tion of hospitals in these countries. We have previously described the hospitals and their

available facilities for providing perioperative care [21].

Patients included in the study were adults (�18 years) undergoing surgery or other inter-

ventions that required the presence of an anaesthetist and who were expected to require over-

night stay in hospital. We included all procedures taking place in an operating theatre,

radiology suite, endoscopy suite, or catheter laboratory for which inpatient (overnight) stay

was planned, including both planned and emergency/urgent surgery of all types, endoscopy,

and interventional radiology procedures.

Patients were excluded if they indicated they did not want to participate in the study. We

also excluded ambulatory surgery, obstetric procedures (for example, cesarean sections and

surgery for complications of childbirth), procedures on ASA-PS (American Society of Anes-

thesiologists Physical Status score) grade VI patients, noninterventional diagnostic imaging

(for example, CT or MRI scanning without interventions), and emergency department or criti-

cal care interventions requiring anaesthesia or sedation but no interventional procedure.

Statistical analysis

The protocol for SNAP-2: EPICCS was previously published with aims, objectives, and

research questions outlined [18]. Our primary outcome for the study described in this paper

was inpatient 30-day mortality, recorded prospectively by local collaborators. We conducted 3

inferential analyses, the first using the entire patient data set and the second and third omitting

the patients for whom an objective tool was used to predict perioperative risk (Fig 1). For the

first analysis, we evaluated performance of the Portsmouth-Physiology and Operative Severity

Score for the enUmeration of Mortality (P-POSSUM), Surgical Risk Scale (SRS), and Surgical

Outcome Risk Tool (SORT) [16,22–24]. The calibration and discrimination of all models was

assessed in accordance with the Transparent Reporting of a multivariable prediction model

for Individual Prognosis Or Diagnosis (TRIPOD) recommendations [20]. Calibration was

assessed by graphical inspection of observed versus expected mortality and by the Hosmer–

Lemeshow goodness-of-fit test [25]. Discrimination was assessed by calculating the Area

Under Receiver Operating Characteristic curve (AUROC) [26]. AUROCs were compared

using DeLong’s test for 2 correlated ROC curves [27]. ROC curves can be constructed for both

continuous predictions (for example, P-POSSUM, SRS, and SORT) and ordinal categorical

predictions (for example, ASA-PS or the 6-category subjective predictions that clinicians were

asked to make): in the former, sensitivities and specificities are calculated for every value in the

probability range of 0 to 1, and then each point is plotted to obtain a smooth curve; in the lat-

ter, sensitivities and specificities are computed for each category, and the points form a poly-

gon on the ROC plot.

The second analysis compared the performance of subjective assessment (defined as either

using clinical judgement and/or ASA-PS) against the best-performing risk tool. For this, we

included only patients for whom subjective assessment alone was used to predict the risk of
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30-day mortality. Subjective assessment was then evaluated on calibration and discrimination.

Point estimates of risk prediction were taken as the midpoint of the predicted risk intervals

provided by clinicians (i.e., 0.5% for the interval<1%, 1.75% for the interval 1%–2.5%, and so

on), and the proportion of observed mortality in each of these risk categories was calculated.

Calibration was then assessed by plotting the observed mortality proportions against the mid-

points of clinician-predicted risk intervals. We then compared the performance of subjective

assessment against the best-performing risk model, using AUROC and the continuous Net

Reclassification Improvement (NRI) statistic [25]. The NRI quantifies the proportion of indi-

viduals whose predictions improve in accuracy (positive reclassification) subtracted by the

proportion whose predictions worsened in accuracy (negative reclassification) when using one

prediction model versus another [28]. An NRI>0 indicates an overall improvement, <0 an

overall deterioration, and zero no difference in prediction accuracy.

The third analysis evaluated the added value of combining subjective assessment with the

best-performing risk tool by creating a logistic regression model with variables from both

sources.

For this, we fitted a logistic regression model with 2 variables: the subjective assessment of

risk and the mortality prediction from the best objective risk tool according to the following

Fig 1. Participant flowchart.

https://doi.org/10.1371/journal.pmed.1003253.g001
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logit formula: ln(R/(1 − R)) = β0 +β1Xsubjective + β2Xobjective, where R is the probability of

30-day mortality; β0, β1, and β2 are the model coefficients; Xsubjective is the subjective clinical

assessment (6 ordered categories, as above); and Xobjective is the risk of mortality as predicted

using the most accurate risk model. An optimism-corrected performance estimate of the com-

bined model was obtained using bootstrapped internal validation with 1,000 repetitions; this

was then compared with subjective assessment and the most accurate risk model alone.

We used decision-curve analysis (DCA) to describe and compare the clinical implications

of using each risk model. In DCA, a model is considered to have clinical value if it has the high-

est net benefit across the whole range of thresholds for which a patient would be labelled as

‘high risk’. The net benefit is defined as the difference between the proportion of true positives

(labelled as high risk and then going on to die within 30 days of surgery) and the proportion of

false positives (labelled as high risk but not going on to die within 30 days) weighted by the

odds of the selected threshold for the high-risk label. At any given threshold, the model with

the higher net benefit is the preferred model [20, 25, 29].

Missing data

The P-POSSUM requires biochemical and haematological data for calculation; however, fit

patients may not have preoperative blood tests [30], and in other cases, there may be no time

for blood analysis before surgery. Therefore, in cases for which these data were missing, nor-

mal physiological ranges were imputed because this most closely follows what clinicians might

reasonably do in practice when tests are not indicated or not feasible or results are missing.

Following imputation, we performed a complete case analysis because we considered the pro-

portion of cases with missing data in the remaining variables to be low (1.08%) [31].

Sensitivity analyses

We conducted a number of sensitivity analyses to examine the potential effects of differences

in population characteristics on our main study findings. First, we repeated our analyses in a

full cohort of patients, including those undergoing obstetric procedures. Second, we repeated

the analysis in a subgroup of high-risk patients, defined according to previously published cri-

teria based on age, type of surgery, and comorbidities [15,32]. Third, we evaluated the impact

on the accuracy of subjective assessment of using objective tools by comparing discrimination

and calibration of subjective assessment in the subgroup of patients whose risk estimates were

not solely informed by clinical judgement. Fourth, we repeated our analyses separately in the

UK and Australian/New Zealand cohorts to investigate the potential for geographical influ-

ences on our findings. Fifth, we examined the potential impact of normal value imputation on

missing P-POSSUM values by repeating the analysis on only cases in which no missing P-POS-

SUM variables were present. Finally, we conducted analyses on surgical specialty subgroups to

evaluate the accuracy of the new model created on different subcohorts.

Analyses were performed using R version 3.5.2; p< 0.05 was considered statistically signifi-

cant. Statistical code is available on request.

Results

Patient data were collected on 26,502 surgical episodes in 274 hospitals across the UK, Austra-

lia, and New Zealand (Table 1). A total of 3,871 cases were excluded from all analyses: 3,660

obstetric cases in which there were no deaths, plus a further 286 cases for missing values. This

left 22,631 cases with adequate data for external validation of the P-POSSUM, SRS, and SORT

models, the first part of our analyses (Fig 1). For the second and third analyses, in which we

compared subjective assessment against the best-performing objective risk tool and combined
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Table 1. Patient demographics stratified by 30-day mortality.

30-Day Mortality

Overall Survived Died
N 22,631 22,314 317

Male sex (%) 10,671 (47.2) 10,481 (47.0) 190 (59.9)

Female sex (%) 11,960 (52.8) 11,833 (53.0) 127 (40.1)

Age (median [IQR]) 62 [46–73] 62 [45–73] 76.00 [64.00–83.00]

Operative urgency (%)

Elective 12,061 (53.3) 12,029 (53.9) 32 (10.1)

Expedited 3,311 (14.6) 3,270 (14.7) 41 (12.9)

Urgent 6,617 (29.2) 6,460 (29.0) 157 (49.5)

Immediate 642 (2.8) 555 (2.5) 87 (27.4)

ASA-PS class (%)

I 4,462 (19.7) 4,458 (20.0) 4 (1.3)

II 10,192 (45.0) 10,168 (45.6) 24 (7.6)

III 6,574 (29.0) 6,454 (28.9) 120 (37.9)

IV 1,337 (5.9) 1,206 (5.4) 131 (41.3)

V 66 (0.3) 28 (0.1) 38 (12.0)

Procedure severity (%)�

Minor 1,951 (8.6) 1,919 (8.6) 32 (10.1)

Intermediate 4,523 (20.0) 4,476 (20.1) 47 (14.8)

Major 7,478 (33.0) 7,369 (33.0) 109 (34.4)

Xmajor 5,281 (23.3) 5,218 (23.4) 63 (19.9)

Complex 3,398 (15.0) 3,332 (14.9) 66 (20.8)

Surgical specialty (%)

Gastrointestinal surgery 4,472 (19.8) 4,384 (19.6) 88 (27.8)

Gynaecology/urology 4,309 (19.0) 4,297 (19.3) 12 (3.8)

Neuro/spinal surgery 1,208 (5.3) 1,181 (5.3) 27 (8.5)

Orthopaedics 6,772 (29.9) 6,688 (30.0) 84 (26.5)

Thoracic/cardiac surgery 1,033 (4.6) 1,015 (4.5) 18 (5.7)

Vascular 674 (3.0) 645 (2.9) 29 (9.1)

Other 4,163 (18.4) 4,104 (18.4) 59 (18.6)

Past medical history: coronary artery disease (%) 3,029 (13.4) 2,923 (13.1) 106 (33.4)

Past medical history: congestive cardiac failure (%) 893 (3.9) 839 (3.8) 54 (17.0)

Past medical history: metastatic cancer (active) (%) 825 (3.6) 799 (3.6) 26 (8.2)

Past medical history: dementia (%) 676 (3.0) 644 (2.9) 32 (10.1)

Past medical history: COPD (%) 1,955 (8.6) 1,909 (8.6) 46 (14.5)

Past medical history: pulmonary fibrosis (%) 180 (0.8) 173 (0.8) 7 (2.2)

Past medical history: liver cirrhosis (%) 224 (1.0) 206 (0.9) 18 (5.7)

Past medical history: renal disease (%) 381 (1.7) 362 (1.6) 19 (6.0)

Past medical history: diabetes (%)

Type 1 274 (1.2) 265 (1.2) 9 (2.8)

Type 2 (dietary-controlled) 614 (2.7) 598 (2.7) 16 (5.0)

Type 2 (insulin-controlled) 761 (3.4) 743 (3.3) 18 (5.7)

Type 2 (oral hypoglycaemic medication) 1,570 (6.9) 1,522 (6.8) 48 (15.1)

No diabetes 19,399 (85.8) 19,173 (86.0) 226 (71.3)

Postoperative length of stay in days (median [IQR]) 3 [1–6] 3 [1–6] 7 [2–13

SORT-calculated mortality risk % (median [IQR]) 0.4 [0.2–1.6] 0.4 [0.2–1.6] 8.9 [4.2–20.6]

P-POSSUM-calculated mortality risk % (median [IQR]) 1.1 [0.6–2.9] 1.1 [0.6–2.9] 18.1 [5.7–41.6]

(Continued)

PLOS MEDICINE Perioperative risk prediction: Subjective versus objective measures

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003253 October 15, 2020 8 / 22

https://doi.org/10.1371/journal.pmed.1003253


these measures to create a new model for internal validation, we excluded 4,891 cases in which

clinician prediction was aided by the use of other risk tools. This left 21,325 cases for these

analyses. There were 317 inpatient deaths within 30 days of surgery (1.40%). In most cases,

subjective assessment alone was used to estimate risk (n = 17,845, 78.9%; Table 2). No patients

were lost to follow-up.

External validation of existing risk prediction models

The SORT was the best calibrated of the pre-existing models; however, all overpredicted risk

(Fig 2A–2C; Hosmer–Lemeshow p-values all<0.001 for the SORT, P-POSSUM, and SRS). All

models exhibited good-to-excellent discrimination (Fig 2D; AUROC SORT = 0.90, 95% confi-

dence interval [CI]: 0.88–0.92; P-POSSUM = 0.89, 95% CI: 0.88–0.91; SRS = 0.85, 95% CI:

0.82–0.87). The AUROC for the SORT was significantly better than SRS (p< 0.001), but not

P-POSSUM (p = 0.298).

Table 1. (Continued)

30-Day Mortality

Overall Survived Died
SRS-calculated mortality risk % (median [IQR]) 1.9 [0.8–4.4] 1.9 [0.8–4.4] 19.6 [4.4–36.1]

Subjective clinical assessment made on clinical judgement and/or ASA-PS grading alone (%) 17,845 (78.9) 17,657 (79.1) 188 (59.3)

�Procedure severity classification (minor, intermediate, major, Xmajor, and complex: ordinal scale).

Abbreviations: ASA-PS, American Society of Anesthesiologists Physical Status; COPD, Chronic Obstructive Pulmonary Disease; IQR, interquartile range; P-POSSUM,

Portsmouth-Physiology and Operative Severity Score for the enUmeration of Mortality; SORT, Surgical Outcome Risk Tool; SRS, Surgical Risk Scale.

https://doi.org/10.1371/journal.pmed.1003253.t001

Table 2. Methods used by clinicians to estimate 30-day mortality. Clinicians could select one or more categories;

therefore, the total percentages (in parentheses) exceed 100%.

Overall

n 22,631

Clinical judgement (%) 20,064 (88.7)

ASA-PS score (%) 8,622 (38.1)

Duke Activity Status Index or other activity index (%) 515 (2.3)

Six-minute walk test or incremental shuttle walk test (%) 48 (0.2)

Cardiopulmonary exercise testing (%) 215 (1.0)

Formal frailty assessment (for example, Edmonton Frail Scale) (%) 48 (0.2)

SRS (%) 315 (1.4)

SORT (%) 750 (3.3)

EuroSCORE (%) 442 (2.0)

POSSUM (%) 287 (1.3)

P-POSSUM (%) 1,397 (6.2)

Surgery-specific POSSUM (for example, Vasc-POSSUM) (%) 192 (0.8)

Other risk scoring system (%) 651 (2.9)

Abbreviations: ASA-PS, American Society of Anesthesiologists Physical Status; EuroSCORE, European System for

Cardiac Operative Risk Evaluation; POSSUM, Physiology and Operative Severity Score for the enUmeration of

Mortality; P-POSSUM, Portsmouth-POSSUM; SORT, Surgical Outcome Risk Tool; SRS, Surgical Risk Scale.

https://doi.org/10.1371/journal.pmed.1003253.t002

PLOS MEDICINE Perioperative risk prediction: Subjective versus objective measures

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003253 October 15, 2020 9 / 22

https://doi.org/10.1371/journal.pmed.1003253.t001
https://doi.org/10.1371/journal.pmed.1003253.t002
https://doi.org/10.1371/journal.pmed.1003253


Fig 2. Calibration plots for the SORT (A), P-POSSUM (B), SRS (C), and ROC curves for the 3 models (D). In the calibration plots (A–C), nonparametric

smoothed best-fit curves (blue) are shown along with the point estimates for predicted versus observed mortality (black dots) and their 95% CIs (black lines) within

each decile of predicted mortality. External validation of all 3 models were performed on the entire patient data set (n = 22,631). ASA-PS, American Society of

Anesthesiologists Physical Status; CI, confidence interval; P-POSSUM, Portsmouth-Physiology and Operative Severity Score for the enUmeration of Mortality; ROC,

Receiver Operating Characteristic; SORT, Surgical Outcome Risk Tool; SRS, Surgical Risk Scale.

https://doi.org/10.1371/journal.pmed.1003253.g002
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Subjective assessment

There were 188 deaths (1.05%) within 30 days of surgery in the subset of 17,845 patients who

had mortality estimates based on clinical judgement and/or ASA-PS alone. Subjective assess-

ment overpredicted risk (Fig 3A, Hosmer–Lemeshow test p< 0.001) but demonstrated good

discrimination (Fig 3B and Table 3, AUROC = 0.89, 95% CI: 0.86–0.91), which was not signifi-

cantly different from the SORT (p = 0.309). Continuous NRI analysis did not show improve-

ment in classification when using the SORT compared with subjective assessment (Table 3

and S4 Text). The 30-day mortality outcomes at each level of clinician risk prediction were

cross-tabulated, showing that clinician predictions correlated well with actual mortality out-

comes (S2 Table).

Combining subjective and objective risk assessment

Bootstrapped internal validation yielded an optimism-corrected AUROC of 0.92 for a com-

bined model using both subjective assessment and SORT predictions as independent variables

(Table 3); this was better than subjective assessment alone (p< 0.001) and SORT alone

(p = 0.021) (Table 4). The model also significantly (p< 0.001) improved reclassification com-

pared with subjective assessment alone in continuous NRI analysis (S4 Text). The improved

NRI was largely attributable to the correct downgrading of patient risks—i.e., a large propor-

tion of patients were correctly reclassified as lower risk using the combined model compared

with subjective assessment. The DCA also favoured SORT over the other previously published

models, but the combined clinician judgement–SORT model again performed best (Fig 4).

The effect of combining information from subjective assessment and the SORT is further dem-

onstrated by computing the conditional probabilities of 30-day mortality using the combined

model over a full range of predictor values (Fig 5). When assessing the decision curves across

all risk thresholds, the combined model outperformed P-POSSUM and SRS, and beyond

approximately the 10% risk threshold, P-POSSUM and SRS demonstrated negative net bene-

fits when they were used. The decision curve for our combined model incorporating both sub-

jective assessment and SORT showed increased net benefit across almost the entire range of

risk thresholds versus SORT alone.

Sensitivity analyses

A summary of the different sensitivity analyses is provided in S5 Text. In the first sensitivity

analysis (S6 Text), we repeated the main study analyses using the full cohort of patients avail-

able from SNAP-2: EPICCS, including those undergoing obstetric procedures, and found that

there were minimal differences seen from our main study findings. The SORT was again the

best calibrated of the pre-existing models in this larger cohort, and all objective risk tools again

overpredicted risk (S1 Fig; Hosmer–Lemeshow p-values all<0.001 for the SORT, P-POSSUM,

and SRS). The estimates for AUROC were minimally affected (S1 Fig; AUROC SORT = 0.91,

95% CI: 0.90–0.93; P-POSSUM = 0.90, 95% CI: 0.88–0.92; SRS = 0.85, 95% CI: 0.83–0.88). The

AUROC for the SORT was still significantly better than SRS (p< 0.001), but not P-POSSUM

(p = 0.121). Subjective assessment in this first sensitivity analysis demonstrated similar over-

prediction of risk (S2 Fig, Hosmer–Lemeshow test p< 0.001) but similar discrimination

(S2 Fig, AUROC = 0.89, 95% CI: 0.87–0.92) to the main study analysis. Differences in discrim-

ination between subjective assessment and SORT were again not significantly different

(p = 0.216). Continuous NRI analysis again did not show improvement in classification when

using the SORT compared with subjective assessment in this larger group of patients.

For the second sensitivity analysis (S7 Text), we used a previously defined more restrictive

inclusion criteria to identify high-risk patients [15, 32]. This yielded a subgroup of 12,985
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Fig 3. Calibration plots and ROC curves for subjective clinical assessments (A, B) and the logistic regression model combining clinician and SORT predictions

(C, D), validated on the subset of patients in whom clinicians estimated risk based on clinical judgement alone (n = 17,845). For (A), a nonparametric smoothed

best-fit curve (blue) is shown along with the point estimates for predicted versus observed mortality (black dots) and their 95% CIs (black lines) within each range of

clinician-predicted mortality. For (C), the apparent (blue) and optimism-corrected (red) nonparametric smoothed calibration curves are shown; the latter was

generated from 1,000 bootstrapped resamples of the data set. CI, confidence interval; ROC, Receiver Operating Characteristic; SORT, Surgical Outcome Risk Tool.

https://doi.org/10.1371/journal.pmed.1003253.g003
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patients in whom the 30-day mortality rate was 2.01%. In this subgroup, calibrations of

P-POSSUM, SRS, and SORT predictions were similar to the full cohort (S3 Fig). The AUROCs

were lower in this subgroup (SORT = 0.88, 95% CI: 0.86–0.90; P-POSSUM = 0.86; 95% CI:

0.84–0.89; SRS = 0.81, 95% CI: 0.78–0.84, S3 Fig). The calibration of subjective assessment

was again similar to that of the full cohort, and discrimination was reduced but still good

(AUROC = 0.85; 95% CI: 0.82–0.89, S3 Fig). The discrimination of subjective assessment in

this subgroup was not significantly different from the full cohort (p = 0.155).

The third sensitivity analysis (S8 Text) used the subgroup whose mortality estimate was

based on clinical judgement in conjunction with any objective risk tool (n = 4,751, S4 Fig).

The AUROC for subjective assessment in this subgroup was 0.88, which was not significantly

different from the AUROC in the main cohort (p = 0.769). The calibration of subjective assess-

ment in this subgroup was similar to that in the main cohort, again with a tendency to overpre-

dict risk.

In the fourth sensitivity analysis (S9 Text), we looked for differences in performance of sub-

jective clinical assessment and objective risk tools between the UK and the Australia/New Zea-

land cohorts (S5 Fig and S3 Table). The 30-day mortality in the Australia/New Zealand cohort

(1.09%) was comparable to that of the UK (1.45%, p = 0.127). Visual inspection of calibration

plots showed SORT to be worse calibrated in Australasia than the UK. AUROCs for the objec-

tive tools in the Australasian subset (P-POSSUM = 0.90, SRS = 0.81, SORT = 0.87) were not

significantly different from the AUROCs in the UK subset (P-POSSUM = 0.89, SRS = 0.85,

Table 3. Coefficients of the logistic regression model combining subjective clinical assessment with SORT-predicted risk; p-values in a logistic regression model

test the null hypothesis that the estimated coefficient is equal to zero using a z-test.

Coefficient Standard Error Z-Statistic p-Value

Intercept −6.403 0.2135 −30 <0.001

SORT-predicted risk (per 1% risk) 0.04028 0.007049 5.714 <0.001

Clinical assessment of risk

Clinical assessment of risk < 1% Reference

Clinical assessment of risk = 1%–2.5% 1.487 0.2962 5.021 <0.001

Clinical assessment of risk = 2.6%–5% 2.365 0.3177 7.444 <0.001

Clinical assessment of risk = 5.1%–10% 3.074 0.2976 10.33 <0.001

Clinical assessment of risk = 10.1%–50% 4.156 0.2852 14.57 <0.001

Clinical assessment of risk > 50% 5.028 0.3186 15.78 <0.001

Abbreviations: SORT, Surgical Outcome Risk Tool.

https://doi.org/10.1371/journal.pmed.1003253.t003

Table 4. Performance metrics for clinician prediction versus SORT and versus a logistic regression model combining clinician and SORT prediction. Calculations

based on the subset of patients in whom clinician judgement alone was used to estimate risk (n = 17,845). The reported AUROC for the combined model is the optimism-

corrected value from bootstrapped internal validation.

ROC Continuous NRI

Model AUROC 95% CI p-Value1 NRI 95% CI p-Value2

Clinical 0.886 0.858–0.914 Reference Reference

SORT 0.900 0.877–0.923 0.309 0.073 −0.062 to 0.208 0.288

Combined 0.920 0.899–0.940 <0.001 0.130 0.057–0.202 <0.001

1Differences between AUROCs are tested using DeLong’s test for 2 correlated ROC curves with a null hypothesis of no difference.
2Differences between continuous NRI statistics are tested using a z-test with a null hypothesis of no difference.

Abbreviations: AUROC, Area Under the Receiver Operating Characteristic curve; CI, confidence interval; NRI, Net Reclassification Improvement.

https://doi.org/10.1371/journal.pmed.1003253.t004
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Fig 4. DCA. DCA, decision-curve analysis; P-POSSUM, Portsmouth-Physiology and Operative Severity Score for the

enUmeration of Mortality; SORT, Surgical Outcome Risk Tool; SRS, Surgical Risk Scale.

https://doi.org/10.1371/journal.pmed.1003253.g004

Fig 5. Predicted risks from combined model, stratified by clinical assessments. We model the changes to risk

predictions (y-axis) based on subjective clinical assessments (coloured lines) as SORT-predicted risks (x-axis) change,

to illustrate the change in risk predictions if information from both are combined. P-POSSUM, Portsmouth-

Physiology and Operative Severity Score for the enUmeration of Mortality; SORT, Surgical Outcome Risk Tool; SRS,

Surgical Risk Scale.

https://doi.org/10.1371/journal.pmed.1003253.g005
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and SORT = 0.90, p> 0.05 for all). The calibration of subjective clinical assessment was com-

parable in the 2 geographical subgroups, and there were also no significant differences in

AUROCs (Australasia: 0.88, UK: 0.89, p = 0.860, S6 Fig).

For the fifth sensitivity analysis (S10 Text), we used the subgroup of patients who had no

missing P-POSSUM variables (n = 18,362; see S1 Table for patient characteristics). Patients

with complete P-POSSUM variables appeared to be older, have higher ASA-PS grades, and

undergo higher-severity surgery in comparison with those with missing P-POSSUM variables.

The AUROC for clinical assessments in the subgroup with full P-POSSUM variables was 0.90,

which was not significantly different from the AUROC obtained for clinical assessments in the

main study analysis (p = 0.587), and the predictions were similarly calibrated to clinical assess-

ments in the main study analysis, again with a tendency to overpredict risk (S7 Fig). When

comparing the performance of P-POSSUM (AUROC = 0.89), SRS (AUROC = 0.84), and

SORT (AUROC = 0.90) in this subgroup, the performance was again similar to that of the

main study cohort (p> 0.05 for all comparisons).

In the sixth and final sensitivity analysis (S11 Text), we evaluated the AUROC and calibra-

tion of the SORT–clinical judgement model in subgroups of patients according to surgical spe-

cialty (S4 Table). We found that the AUROC remained high within these subgroups (ranging

from 0.87, 95% CI 0.75–0.98 in 1,033 cardiothoracic surgical patients through to 0.95, 95% CI

0.90–0.99 in 4,309 gynaecology and urology patients). Calibration was also good across differ-

ent specialties, with the exception of vascular surgery (674 patients, AUROC 0.88, 95% CI

0.82–0.94; Hosmer-Lemeshow p-value = 0.009).

Discussion

We present data from an international cohort of patients undergoing inpatient surgery with a

low risk of recruitment bias. Despite a plethora of options for objective risk assessment, in over

80% of patients, subjective assessment alone was used to predict 30-day mortality risk. All pre-

viously published risk models were poorly calibrated for this cohort of patients, reflecting the

common problem of calibration drift over time. However, the combination of subjective clini-

cal assessment with the parsimonious SORT model provides an accurate prediction of 30-day

mortality, which is significantly better than any of the methods we evaluated used on their

own. These findings should give confidence to clinicians that the combined SORT–clinical

judgement model can be used to support the appropriate allocation of finite resources and to

inform discussions with patients about the risks of surgery. The combined model accurately

downgraded predicted risk compared with other methods; therefore, application of this

approach may result in fewer low-risk patients inappropriately admitted to critical care (thus

easing system pressures) and may result in fewer patients having their surgery cancelled for

the lack of a critical care bed [7]. Finally, application of the SORT–clinical judgement model

may assist hospital managers and policy makers in determining the likely demand for postop-

erative critical care, thus supporting best practice at the hospital, regional, or national level.

This new model will now be incorporated into an open-access risk-assessment system (http://

www.sortsurgery.com/), enabling clinicians to combine their clinical estimation of risk and

the SORT model to evaluate patient risk from major surgery.

To our knowledge, this is the first study comparing subjective and objective assessment for

predicting perioperative mortality risk in a large multicentre international cohort. The high-

est-quality previous studies in this field have been challenged by recruitment bias because of

the predominant participation of research active centres and the need for patient consent. For

example, the METS (Measurement of Exercise Tolerance before Surgery) study ([15], which

compared clinical assessment of functional capacity with exercise testing, self-assessment, and
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a serum biomarker in 1,401 patients, and the VISION study (Vascular Events in non-cardiac

surgery cohort study) [32], which evaluated postoperative biomarkers in 15,133 patients,

had 27% and 68% screening to recruitment rates, respectively. One way of overcoming such

biases would be to study the accuracy of prognostic models using routinely collected or admin-

istrative data; however, this is unlikely to enable the evaluation of subjective assessments in

multiple centres. Our study avoided these issues through prospective data collection in an

unselected cohort with an ethical waiver for patient consent. The mortality in our sample

closely matches that recorded in UK administrative data of patients undergoing major or com-

plex surgery [11], therefore supporting our assertion that our cohort was representative of the

‘real-world’ perioperative population.

Our observation that the majority of risk assessments conducted for perioperative patients

do not involve objective measures is also noteworthy because subjective assessment is cur-

rently almost never incorporated into risk prediction tools for surgery. One exception is the

American College of Surgeons National Surgical Quality Improvement Program Surgical Risk

Calculator [33], which incorporates a 3-point scale of clinically assessed surgical risk (normal,

high, or very high) to supplement a calculated prediction of mortality and various short-term

outcomes. However, this system is proprietary, has rarely been evaluated outside the US, and

is substantially more complex than the SORT–clinical judgement model, with 21 input vari-

ables compared with 8. Furthermore, their methodology for developing this ‘uplift’ was quite

different from ours, using a panel of 80 surgeons to evaluate 10 case scenarios and grade them

in retrospect.

We recognise some limitations to our study. First, models predicting rare events may

appear optimistically accurate, as a model that identifies every patient as being at low risk of

mortality in a group in which the probability of death approaches 0% would almost always

appear to be correct. For this reason, we undertook several sensitivity analyses, including one

that evaluated the performance of the various risk-assessment methods in a subgroup of

patients who have been defined as high risk in previous studies of prognostic indicators and in

whom the mortality rate was higher. We found that the performance of the SORT and subjec-

tive assessment remained good and compared favourably with previous evaluations of more

complex risk-assessment methods [15,32]. Second, whilst we assumed that subjective assess-

ments were truly clinically based judgements, because this was a pragmatic unblinded study, it

was possible that information from other sources may have subconsciously influenced these

assessments. For this reason, we undertook the second sensitivity analysis, which refuted this

possible risk. Third, the very act of estimating mortality risk may lead clinicians to take actions

that improve that risk, therefore biasing the outcome of the assessments made and in particular

affecting the calibration of subjective risk estimates. The only way to avoid this risk would be

to have used subjective assessments made by clinicians independent of the clinical manage-

ment of individual patients, and this may be an interesting opportunity for future research.

Fourth, since we undertook this study, other promising risk-assessment methods have been

developed, including the Combined Assessment of Risk Encountered in Surgery (CARES) sys-

tem, which was developed using electronic health records; unfortunately, we were unable to

externally validate this system because we did not collect all the required variables [34]. We

also did not evaluate the accuracy of other risk prediction methods such as frailty assessment

or cardiopulmonary exercise testing. However, this was not an a priori objective of our study

[18]; furthermore, our observation of the lack of ‘real-world’ use of these types of predictors is

in itself an important finding, particularly given the substantial interest in such measures

(some of which carry considerable cost) in the research literature [15,35]. Fifth, the UK

cohort was substantially larger than the Australasian cohort; however, we found no significant

differences in mortality or accuracy of the various risk-assessment methods between the 2
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geographical groups. Finally, the study was conducted entirely in high-income countries;

therefore, our findings should now be tested in low- and middle-income nations in order to

evaluate global generalisability.

Our finding that the combination of subjective and SORT-based assessment is the best

approach is important because it is likely to have face validity with clinicians, thereby improv-

ing the likelihood that our new model will be incorporated into clinical practice. There is a

sound rationale for this finding, as it is likely that clinicians consider otherwise unmeasured

factors that they recognise as important, such as severity of comorbid diseases, frailty, socio-

economic status, patient motivation, and anticipated technical challenges. Modern approaches

to risk assessment using machine learning [36] provide promise for automation of risk predic-

tion and incorporating data and calculations that clinicians may subconsciously consider

when making subjective decisions; however, even these methods do not substantially outper-

form our simpler approach and are currently limited by recruitment biases and lack of avail-

ability. Future research could evaluate the benefits of incorporating clinical judgement into

risk-assessment methods in medicine more generally.

Implementation of a widely available, parsimonious, and free-to-use risk-assessment tool to

guide clinical decision-making about critical care allocations and other aspects of perioperative

care may now be considered particularly important in view of the likely prevalence of endemic

COVID-19 leading to an increased demand for critical care facilities. Therefore, now more

than ever, risk-based allocation of these resources is important for the benefit of individual

patients and the hospitalised population as a whole. Further to this, application of either the

SORT or the SORT–clinical judgement model to perioperative population data may assist

healthcare policy makers and managers in modelling the likely demand for postoperative criti-

cal care, thus improving system level planning and resource utilisation. Based on the results of

this large generalisable cohort study, the focus of the perioperative academic community could

now shift from evaluation of which risk prediction method might be best to testing the impact

of SORT–clinical judgement-based decision-making on perioperative outcomes.

In conclusion, the combination of subjective and objective risk assessment using the SORT

calculator provides a more accurate estimate of 30-day postoperative mortality than subjective

assessment alone. Implementation of the SORT–clinical judgement model should lead to bet-

ter clinical decision-making and improved allocation of resources such as critical care beds to

patients who are most likely to benefit.
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enUmeration of Mortality; ROC, Receiver Operating Characteristic; SNAP-2: EPICCS, Second

Sprint National Anaesthesia Project: EPIdemiology of Critical Care provision after Surgery;

SORT, Surgical Outcome Risk Tool; SRS, Surgical Risk Scale.

(PDF)

S2 Fig. Calibration plots and ROC curves for subjective clinical assessments (A, B) and the

logistic regression model combining clinician and SORT predictions (C, D), validated on

the subset of patients in whom clinicians estimated risk based on clinical judgement alone,

drawn from the full SNAP-2: EPICCS data set, including patients who underwent obstetric

surgery (n = 21,325). For (A), a nonparametric smoothed best-fit curve (blue) is shown along

with the point estimates for predicted versus observed mortality (black dots) and their 95%

CIs (black lines) within each range of clinician predicted mortality. For (C), the apparent

(blue) and optimism-corrected (red) nonparametric smoothed calibration curves are shown,

the latter was generated from 1,000 bootstrapped resamples of the data set. CI, confidence

interval; ROC, Receiver Operating Characteristic; SNAP-2: EPICCS, Second Sprint National

Anaesthesia Project: EPIdemiology of Critical Care provision after Surgery; SORT, Surgical

Outcome Risk Tool.

(PDF)

S3 Fig. Calibration plots for SORT (A), P-POSSUM (B), SRS (C), and clinical assessments

(E) and ROC curves for the 3 models (D) and clinical assessments (F), validated in the sen-

sitivity analysis patient subset with restricted inclusion criteria (n = 12,985). The AUROCs

for P-POSSUM, SRS, SORT, and clinical assessments were 0.863, 0.810, 0.875, and 0.853 in

this subgroup, respectively. AUROC, Area Under Receiver Operating Characteristic curve;

P-POSSUM, Portsmouth-Physiology and Operative Severity Score for the enUmeration of

Mortality; SORT, Surgical Outcome Risk Tool; SRS, Surgical Risk Scale.

(PDF)

S4 Fig. Calibration plot (A) and ROC curve (B) for clinical assessments, validated in the

sensitivity analysis patient subgroup in which clinical assessments were made in conjunc-

tion with 1 or more other risk prediction tools (n = 4,786). The AUROC for clinical assess-

ments was 0.880 in this subgroup. AUROC, Area Under Receiver Operating Characteristic

curve.

(PDF)

S5 Fig. Calibration plots (A to F) and ROC curves (G & H) for objective risk tools, vali-

dated in patients stratified by their country groups. There was minimal difference between

countries. ROC, Receiver Operating Characteristic.

(PDF)

S6 Fig. Calibration plots (A & B) and ROC curves (C & D) for clinical assessments, vali-

dated in patients stratified by their country groups. There was minimal difference between

countries. ROC, Receiver Operating characteristic Curve.

(PDF)

S7 Fig. Calibration plots for SORT (A), P-POSSUM (B), SRS (C), and clinical assessments

(E) and ROC curves for the 3 models (D) and clinical assessments (F), validated in the sen-

sitivity analysis patient subset with complete P-POSSUM variables (n = 18,362). The AUR-

OCs for P-POSSUM, SRS, SORT, and clinical assessments were 0.893, 0.838, 0.899, and 0.896

in this subgroup, respectively. AUROC, Area Under Receiver Operating Characteristic curve;

P-POSSUM, Portsmouth-Physiology and Operative Severity Score for the enUmeration of
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