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Abstract

Background

Low-grade gliomas cause significant neurological morbidity by brain invasion. There is no

universally accepted objective technique available for detection of enlargement of low-

grade gliomas in the clinical setting; subjective evaluation by clinicians using visual compari-

son of longitudinal radiological studies is the gold standard. The aim of this study is to deter-

mine whether a computer-assisted diagnosis (CAD) method helps physicians detect earlier

growth of low-grade gliomas.

Methods and findings

We reviewed 165 patients diagnosed with grade 2 gliomas, seen at the University of Ala-

bama at Birmingham clinics from 1 July 2017 to 14 May 2018. MRI scans were collected

during the spring and summer of 2018. Fifty-six gliomas met the inclusion criteria, including

19 oligodendrogliomas, 26 astrocytomas, and 11 mixed gliomas in 30 males and 26 females

with a mean age of 48 years and a range of follow-up of 150.2 months (difference between

highest and lowest values). None received radiation therapy. We also studied 7 patients

with an imaging abnormality without pathological diagnosis, who were clinically stable at the

time of retrospective review (14 May 2018). This study compared growth detection by 7 phy-

sicians aided by the CAD method with retrospective clinical reports. The tumors of 63

patients (56 + 7) in 627 MRI scans were digitized, including 34 grade 2 gliomas with radio-

logical progression and 22 radiologically stable grade 2 gliomas. The CAD method consisted

of tumor segmentation, computing volumes, and pointing to growth by the online abrupt

change-of-point method, which considers only past measurements. Independent scientists
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have evaluated the segmentation method. In 29 of the 34 patients with progression, the

median time to growth detection was only 14 months for CAD compared to 44 months for

current standard of care radiological evaluation (p < 0.001). Using CAD, accurate detection

of tumor enlargement was possible with a median of only 57% change in the tumor volume

as compared to a median of 174% change of volume necessary to diagnose tumor growth

using standard of care clinical methods (p < 0.001). In the radiologically stable group, CAD

facilitated growth detection in 13 out of 22 patients. CAD did not detect growth in the imaging

abnormality group. The main limitation of this study was its retrospective design; neverthe-

less, the results depict the current state of a gold standard in clinical practice that allowed a

significant increase in tumor volumes from baseline before detection. Such large increases

in tumor volume would not be permitted in a prospective design. The number of glioma

patients (n = 56) is a limitation; however, it is equivalent to the number of patients in phase II

clinical trials.

Conclusions

The current practice of visual comparison of longitudinal MRI scans is associated with signif-

icant delays in detecting growth of low-grade gliomas. Our findings support the idea that

physicians aided by CAD detect growth at significantly smaller volumes than physicians

using visual comparison alone. This study does not answer the questions whether to treat or

not and which treatment modality is optimal. Nonetheless, early growth detection sets the

stage for future clinical studies that address these questions and whether early therapeutic

interventions prolong survival and improve quality of life.

Author summary

Why was this study done?

• Low-grade gliomas constitute 15% of all adult brain tumors and cause significant neuro-

logical morbidity by brain invasion.

• There is no universally accepted objective technique available for detection of enlarge-

ment of low-grade gliomas in the clinical setting.

• The current gold standard is subjective evaluation by clinicians using visual comparison

of 2D images from longitudinal radiological studies.

• To improve visual evaluation, a computer-assisted diagnostic procedure that digitizes

the tumor and generates volumetric measures could enhance detection of tumor growth

by directing the attention of the physician to a change in volume.

What did the researchers do and find?

• We studied the longitudinal radiological studies of 63 patients with a median follow-up

period of 33.6 months, and compared detection of growth by 7 physicians aided by the

computer-assisted diagnostic procedure to detection of growth by the standard method

(visual comparison).

Growth Detection in Gliomas
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• The computer-assisted method helped physicians detect growth at significantly earlier

times and at significantly smaller tumor volumes than the current standard method.

• Physicians aided by the computer-assisted method diagnosed tumor growth in 13 of 22

glioma patients labeled as clinically stable by the standard method.

• Having tumor volume measurements and time series, we were able to identify tumors

with nonlinear and nonhomogeneous growth.

What do these findings mean?

• Current clinical practice is associated with significant delays in detecting growth of low-

grade gliomas.

• Earlier growth detection and detection at smaller tumor volumes are desirable because

smaller tumors are associated with smaller fields of radiation, optimal surgical resec-

tions, and longer survival with less neurological morbidity.

• Early growth detection holds the potential of lowering the morbidity, and perhaps mor-

tality, of patients with low-grade gliomas, a possibility that needs to be tested in prospec-

tive studies.

• In the future, there could be a policy of classifying and treating patients with low-grade

gliomas based on tumor growth rates and direction of tumor growth. The decision to

treat would be determined by the rate of growth and proximity to critical areas of the

brain, once they have been measured.

Introduction

Cancer patients are typically monitored with serial imaging of the affected organ; timely detec-

tion of tumor recurrence can have profound implications for morbidity and survival. Low-

grade gliomas (WHO grade 2) constitute 15% of all adult brain tumors [1–3]. Patients diag-

nosed with low-grade gliomas are followed by serial magnetic resonance imaging (MRI) of the

brain. Fluid-attenuated inversion recovery (FLAIR) is the principle imaging sequence for

assessment of growth of low-grade gliomas [4].

At initial diagnosis, low-grade gliomas may be treated by surgery, with or without radiation

or chemotherapy [5–7]. More extensive resections of low-grade gliomas are associated with

improved overall survival time and progression-free survival time [8–14]. Some studies have

reported a correlation between radiation therapy and cognitive impairment in patients with

low-grade gliomas [15,16]; however, a recent European Organisation for Research and Treat-

ment of Cancer study found no difference in global cognition in patients treated by radiother-

apy versus chemotherapy [17]. At the time of growth detection, low-grade gliomas may

remain at the same grade or could have transformed to higher grades [18]; they may again be

treated by surgery with or without radiation therapy and chemotherapy [19,20].

Image segmentation and analysis are non-trivial problems because of the unpredictable

appearance and shape of brain tumors on MRI. Recently, several artificial intelligence methods

and configurations have been applied to brain diseases, including brain tumors [21]. We have

developed a method for image segmentation of medical images that extracts object boundaries
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in computer vision [22]. Our method applies non-negative matrix factorization and a modified

level set method; it does not use deep learning, training data, or neural networks. Detection of

abrupt changes in the characteristics of physical systems is a fundamental problem in signal

processing; applications include fault detection and diagnosis, safety of aircrafts, prediction of

earthquakes, and biomedical applications, like electroencephalogram, electromyography, and

ECG analysis [23,24].

At present, visual comparison of 2-dimensional (2D) FLAIR images with or without bi-

dimensional measurement is the gold standard for surveillance of low-grade gliomas. Physicians

compare 2D images from a series of longitudinal studies. Because the overall survival time of

low-grade glioma is measured in years, most of the patients have a large longitudinal series of

images over several years. Comparison of the current MRI with all prior imaging takes a very

long time for image interpretation, which is practically not feasible in the current standard of

practice. Furthermore, in a typical cancer center, be it in an academic setting or in a private set-

ting, multiple physicians are involved in assessment of tumor growth, introducing high interob-

server variability [25]. We hypothesized that detection of a change in the state of the tumor, i.e.,

tumor growth, could be improved by a computer-assisted diagnosis (CAD) procedure that digi-

tizes the tumor and directs the attention of the physician to a change in volume. This is impor-

tant because small tumor size is associated with less neurological morbidity [2,17].

Methods

Ethical approval

The Institutional Review Board of the University of Alabama at Birmingham approved the

research; waiver of informed consent was granted because the research involved no greater

than minimal risk and no procedures for which written consent is normally required outside

the research context. This study did not have a protocol.

Study design

This is a retrospective observational study of the accuracy of the diagnosis of glioma growth by

expert physicians who viewed MRI scans in a clinical setting and by 7 expert physicians who,

in addition, were provided segmented images, numerical volumes, and a statistical determina-

tion of growth by the change-of-point method.

Patient selection and study size

We reviewed 165 patients who had been diagnosed with WHO grade 2 gliomas, seen in the

neuro-oncology clinics at the University of Alabama at Birmingham from 1 July 2017 to 14

May 2018 (see flow diagram in Fig 1). The MRI scans were collected from the radiology PACS

during the spring and summer of 2018.

The inclusion criteria were (1) pathological diagnosis of grade 2 oligodendroglioma (oligo),

grade 2 astrocytoma (astro), or grade 2 mixed glioma in the brain excluding the pineal gland

and (2) at least 4 MRI scans available for review either after the initial diagnosis or after the

completion of chemotherapy with temozolomide (if applicable). The exclusion criteria were

(1) treatment with radiation therapy after the initial diagnosis or (2) radiological reports indi-

cating development of new enhancement without an increase in FLAIR signal. Patients treated

by radiation therapy were excluded because radiation may confound the results by causing an

independent increase in FLAIR signal. We excluded patients whose radiological reports

described new enhancing nodules without an increase in FLAIR signal because they are easily

detected by visual examination.

Growth Detection in Gliomas
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A total of 56 gliomas met the inclusion criteria, including 19 oligos, 26 astros, and 11 mixed

gliomas; only 2 patients received temozolomide (Table 1). All of the oligos had the 1p/19q co-

deletions except for 1 with a single deletion of 19q. At the time of retrospective review (14 May

2018), 34/56 patients had been diagnosed with clinical progression while the remaining 22/56

Fig 1. Flow diagram and analysis plan. CP, clinical progression; CS, clinically stable; LLG, low-grade glioma.

https://doi.org/10.1371/journal.pmed.1002810.g001

Table 1. Patient characteristics.

Pathology Number of patients Mean age (years) Number of males Number of females Number treated with temozolomide

Oligodendroglioma 19 47 11 8 1

Astrocytoma 26 46 14 12 1

Mixed glioma 11 53 5 6 0

All 56 48 30 26 2

https://doi.org/10.1371/journal.pmed.1002810.t001
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were diagnosed as being clinically stable by visual comparison of the most recent MRI per-

formed at the last clinic visit. We reviewed the records of 8 patients followed in our clinics for

an imaging abnormality without pathological diagnosis; 1 patient was excluded because of lack

of follow-up information. All 7 imaging abnormality patients were considered clinically stable

at the time of review of this study.

Time to growth detected by standard clinical care

Different board-certified neuro-radiologists at the University of Alabama at Birmingham Hos-

pital generated the radiological reports after evaluating each longitudinal MRI scan. We retro-

spectively calculated the time to growth detection from the impressions of the radiological

reports of these patients.

Tumor segmentation

A total of 627 MRI scans were analyzed. Segmentation of the FLAIR sequence was performed

by 2 procedures: First, an automated algorithm classified and contoured the different regions

in the image; it applied non-negative matrix factorization and a modified level set method

(NMF-LSM) as detailed in Dera et al. [22]. This automated segmentation generated 8 segments

for every image (see [22]), which were ranked by their maximal intensities. Second, the final

tumor margins were obtained by combining the regions whose maximal intensities were

above the level of the gray matter. A physician reviewed and approved the final tumor margins.

Detailed information on the segmentation method and combining the segments to compute

tumor margins is presented elsewhere [26]. The organizers of the Multimodal Brain Tumor

Segmentation (BraTS) Challenge (https://www.med.upenn.edu/sbia/brats2018/data.html)

have independently evaluated the accuracy of this method in the segmentation of the hyperin-

tense areas in T2/FLAIR MRI (i.e., whole tumor label) [27]. Tumor volumes were computed

by multiplying the sum of the tumor segments in all axial images by the distance between

images. The computations were performed at the Cheaha supercomputer of the University of

Alabama at Birmingham (https://docs.uabgrid.uab.edu/wiki/cheaha).

Online abrupt changes of point

To exclude FLAIR changes due to the evolution of post-surgical changes, the baseline volume

in the longitudinal series was the first minimum after surgical resection. To identify an abrupt

change of volume, we applied the function findchangepts in Matlab (Mathworks), detecting a

change in the root-mean-square level at a minimum threshold of 500/(volume at baseline) and

a minimum of 2 samples between change points. The number 500 corresponds to 5% of the

rounded median of the baseline volume.

In the clinical setting, a physician reviews the current MRI scan and compares it to MRI

scans performed on earlier dates. To simulate a clinic visit, the online change of point consid-

ers only past measurements. The time to growth detected by the CAD method corresponds to

the period of time between the dates of the baseline MRI and the first change of point.

Review of growth detection by the change-of-point method

Growth detected by the statistical change-of-point method was reviewed by 7 physicians who

are board-certified in neuro-radiology (AKB), neuro-imaging (LBN), neuro-oncology (HMF,

LBN, PPW, XH), radiation oncology (MB), and neurosurgery (JM). For 63 cases, the physi-

cians were provided with (1) the tumor volumes, (2) determination of growth or stability by

the change-of-point method, and (3) the images with segmentation, obtained at (1) baseline

Growth Detection in Gliomas
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(as defined in the previous section), (2) the time point of growth detection by the statistical

change-of-point method, if different than the last visit, and (3) the last visit. The images

included a red line contouring the tumor margins, delineated by the segmentation method

(see S1 Data). The physicians were asked to determine if the tumor had grown compared to

baseline or not. These MRI scans and volumes, including the segmentation data, are available

in S1 Table and S1 and S2 Datas.

Mathematical model of gliomas

The authors have recently reported a system of partial differential equations (PDEs) that

model glioma growth at the scale of MRI and pathology. The equations include the rates of

replication (mitosis), brain invasion, angiogenesis, and a threshold for hypoxia; the numerical

methods used to solve the system of PDEs are detailed elsewhere [18,28,29].

Statistical analysis and curve fitting

The p-values were generated by the Mann–Whitney–Wilcoxon 2-tail test. Curve fitting was

done in Matlab using the fit function and the poly1 (y = p1 � x + p2) and exp1 (y = a � exp(b � x))

models. Normalized volumes were computed by subtracting the baseline volume and dividing

by the most recent volume. Time intervals from baseline were normalized by dividing by the

largest. To identify tumors with exponential model growth, we selected a normalized curve if its

nonlinear sum of squares due to error (sse) was less than 0.6 � linear sse (0.6 was chosen as it

yields an exponential model fit of r2> 0.85 for the normalized data of all the selected curves).

Results

Patient description

The CAD method was applied to the longitudinal MRI scans of a total of 63 patients, including

56 patients with gliomas; the mean age and the proportions male and female are shown in

Table 1. The range, mean, and median of the follow-up were 150.2, 46.6, and 33.6 months,

respectively. There were 3 groups of patients: 34 patients with grade 2 gliomas with a known

clinical progression, 22 patients with grade 2 gliomas who were clinically stable by visual com-

parison, and 7 patients with an imaging abnormality, who were also clinically stable by visual

comparison. The clinical progression group included 7 oligos, 18 astros, and 9 mixed gliomas.

The clinically stable tumor group included 12 oligos, 8 astros, and 2 mixed gliomas.

CAD detects growth earlier

In the clinical progression group, the median time to growth detected by visual comparison

for the oligos, astros, and mixed gliomas was 79 months, 33 months, and 56 months, respec-

tively. CAD aided the physicians in detecting growth statistically significantly earlier in 7/7 oli-

gos (median = 19 months), 14/18 astros (median = 12 months), and 8/9 mixed gliomas

(median: 16 months; Table 2). Furthermore, tumors were significantly larger at the time point

of detection when growth was detected by standard of care radiological assessment compared

to CAD, with median values of 163% versus 52%, 155% versus 50%, and 286% versus 69% for

oligos, astros, and mixed gliomas, respectively (Table 2 and Fig 2).

Time to growth in clinically stable grade 2 gliomas

In the clinically stable grade 2 glioma group, CAD aided the physicians in detecting growth in

7/12 oligos, 4/8 astros, and 2/2 mixed gliomas; the median period of follow-up was, respec-

tively, 37 months and 19 months for the grade 2 gliomas that exhibited growth versus
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remained stable by the CAD method (Table 3). The median time to growth detected by the

CAD method for oligos, astros, and mixed gliomas was 15 months, 12 months, and 8 months,

respectively (Table 3 and Figs 2 and 3).

Three of these 13 gliomas exhibited additional tumor growth during the follow-up period

after the time point of growth detection by CAD. In light of the CAD results, the patient whose

longitudinal MRI scans are shown in Fig 3D–3F elected to have a resection; pathological exam-

ination revealed a WHO grade 3 oligo, a diagnosis that mandates therapeutic intervention.

The treating neurosurgeon noted that whereas the current surgical option was a subtotal resec-

tion (Fig 3F), a gross total resection would have been a possibility at the time point of growth

detection by CAD (Fig 3E).

Imaging abnormality group

CAD did not detect growth in any of the 7 patients followed for an imaging abnormality. These

patients were followed for an average of 79 months (IQR = 68.5 months) after the first MRI.

Review of predictions of change-of-point method

The 7 expert physicians reviewed and agreed with the determinations of growth (true positives,

n = 34 + 13) and no growth (true negatives, n = 7 + 9) at the times predicted by the statistical

online change-of-point method (Fig 3). The MRI data with segmentation results (S1 Data) and

volumetric measurements (S2 Data) with corresponding time intervals are available to the

reader (see S1 Table).

Nonlinear stationary growth

The data demonstrate that time to growth detected with the aid of the CAD method can be

several years shorter than that detected by visual comparison (Table 2), hence the importance

of the rate of tumor growth. Simulations of the mathematical model of gliomas reveal that

growth can be either nonlinear or almost linear as a function of the mitotic rate (Fig 2G); small

mitotic rates generate nonlinear curves. Using the normalized data of the 47 tumors with

growth (n = 47; 34 of Table 2 and 13 of Table 3), we identify 14/47 tumors whose normalized

growth curves fit a nonlinear exponential model (Fig 2H, r2 = 0.86). We note that though 22/

29 tumors in the clinical progression group continued to grow after the time point of growth

detection by the CAD method (Fig 2A), 7 low-grade gliomas remained in a stationary phase of

slow growth (S2 Table), which lasted for longer than 3 years in 3 gliomas (Figs 2B and 3A–3C),

18 months in 2 gliomas, 14 months in 1 glioma, and 9 months in 1 glioma.

Table 2. Clinical progression glioma group.

Pathology Number ΔG Time to growth (months), median (IQR) ΔV, median (IQR)

CAD VC p-Value CAD VC p-Value

Oligodendroglioma 7 7 19 (13–23) 79 (48–101) <0.001 52% (36%–72%) 163% (141%–479%) 0.001

Astrocytoma 18 14 12 (10–16) 33 (26–44) <0.001 50% (37%–76%) 155% (120%–257%) 0.001

Mixed glioma 9 8 16 (10–20) 56 (31–70) <0.001 69% (46%–116%) 286% (203%–537%) <0.001

All 34 29 14 (11–20) 44 (30–68) <0.001 57% (36%–77%) 174% (134%–342%) <0.001

ΔG: number of patients whose glioma time to growth detected by computer-assisted diagnosis (CAD) was shorter than that detected by visual comparison (VC). ΔV:

percent change in tumor volume from baseline to time point of growth detection. The p-values were generated by the Mann–Whitney–Wilcoxon 2-tail test. The results

of CAD were identical to that of VC in 5 patients.

https://doi.org/10.1371/journal.pmed.1002810.t002
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3D growth is nonhomogeneous

Currently, clinical trials compute the size of a glioma as the bi-dimensional product of the 2

largest perpendicular diameters in the 2D section that includes the largest tumor component.

This practice assumes that a glioma grows homogeneously in 3D, i.e., it grows at equal rates in

Fig 2. Growth curves of grade 2 gliomas. (a and b) The tumor volumes of 2 patients in the clinical progression group, diagnosed with

oligos. (c and d) The tumor volumes of 2 patients in the clinically stable group diagnosed with an oligo and an astro, respectively. The

volumes at the time to growth detected by CAD and visual comparison are colored yellow and red, respectively. (e and f) The tumor

volumes of 2 patients in the clinically stable group by CAD and visual comparison, diagnosed with an astro and an oligo, respectively. The

x-axis in (a–f) corresponds to the time interval from the baseline MRI. (g) The results of simulations of the mathematical model for grade 2

gliomas, showing percent of brain invaded by the tumor (y-axis) as a function of the parameter for mitotic rate (per hour) in the presence

of a low angiogenesis rate (0.1/hour), see Scribner et al [18]. (h) The curve fit of the normalized data of 14 patients with nonlinear growth

using the model f(x) = a � exp(b � x), coefficients (with 95% confidence bounds): a = 0.03751 (0.02759, 0.04743), b = 2.98 (2.69, 3.27), sum

of squares due to error = 1.3701, r2 = 0.8580. astro, astrocytoma; CAD, computer-assisted diagnosis; oligo, oligodendroglioma.

https://doi.org/10.1371/journal.pmed.1002810.g002
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all directions. Fig 4 shows a counterexample, where tumor growth is not homogeneous in 3D

because the tumor grows faster at sections away from the largest axial tumor component.

Discussion

Visual comparison of longitudinal radiological studies is widely used in oncology. In all cases,

physicians examine 2D computed tomography or magnetic resonance images to diagnose

4-dimensional objects, i.e., a change in volume over time. Here, we screened 165 gliomas and

analyzed the data of a total of 63 patients, including 627 MRI scans; unexpectedly, we found

large differences in growth detection by visual comparison and by physicians aided by the

CAD method. Because low-grade gliomas are followed for several years, physicians are tasked

with comparing the current MRI to all previous studies. Reasons for missing growth by visual

inspection include (1) the large number of prior studies, which take a very long time for image

interpretation, (2) the current practice of comparing the current MRI to a couple of MRI scans

immediately preceding it, (3) the lack of determination of the baseline MRI, (4) small changes

from one study to the next that add up over time, (5) that comparing single 2-dimensional

images misses growth in the third dimension (Fig 4), i.e., in sections away for the largest

tumor component (e.g., cases 4384, 4385, 6936, 7492, 7505, and 7736 in S1 Data), and (6) that

baseline volume appears to be a factor for detecting growth by visual comparison; for example,

the tumor in Fig 2C (case 7504), whose baseline volume is 42% of that of the tumor in Fig 2B

(case 7490), was deemed stable after growing 6-fold whereas the growth of the tumor in Fig 2B

was detected after it grew by only 2-fold.

The retrospective analysis of radiological reports in this study yields an unaltered view of

the landscape of the diagnostic imaging of gliomas at a tertiary brain tumor center. In analyz-

ing longitudinal measurements of tumor volumes, the problem concerns both detecting

whether or not a change in tumor volume has occurred and identifying the time of any such

change. These questions are addressed by combining tumor segmentation with the change-of-

point analysis. Several segmentation methods including computer vision have recently been

developed [3]. CAD improves the detection of growth in grade 2 gliomas by contouring the

tumor margins and generating a signal that directs the attention of the physician towards a

change of point (Fig 3). The method used in this paper is semi-automated, i.e., the final tumor

contouring requires human approval. This method has been ranked among the top 3 algo-

rithms, statistically equivalent with 2 other algorithms competing in the BraTS 2016 challenge

[27]. Our segmentation method differs from deep learning algorithms as it does not require

offline training of a library of reference images. The online change-of-point method is a well-

Table 3. Clinically stable glioma group.

Pathology Number CAD G CAD TTG FU G FU S CAD ΔV

Oligodendroglioma 12 7 15 (11–24) 81 (26–86) 19 (16–26) 51% (45%–97%)

Astrocytoma 8 4 12 (8–16) 22 (18–24) 18 (6–50) 78% (64%–126%)

Mixed glioma 2 2 8 (7–9) 87 (73–101) N.A. 42% (26%–58%)

All 22 13 13 (9–17) 37 (22–88) 19 (8–34) 58% (46%–86%)

CAD G: number of patients in the clinically stable group whose tumors were detected to have grown by computer-assisted diagnosis (CAD). CAD TTG: median (IQR)

time to growth (TTG) detected by CAD (months). FU G: median (IQR) time interval between baseline and last MRI scan for patients diagnosed with tumor growth by

CAD (months). FU S: median (IQR) time interval between baseline and last MRI scan for patients whose tumors were stable by CAD (months). CAD ΔV: median (IQR)

percent change in tumor volume from baseline to growth detection. N.A., not applicable. A statistical analysis comparing CAD TTG and visual comparison (VC) TTG is

not applicable here because the latter is not known; nonetheless, VC TTG will be larger than FU G. The Mann–Whitney–Wilcoxon 2-tail test comparing the CAD TTG

and FU G of all 13 patients yields p< 0.001. The results of CAD were identical to VC in 9 patients.

https://doi.org/10.1371/journal.pmed.1002810.t003
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suited statistical method to simulate the clinic visit as it considers only past measurements at

each time point. It is better suited than the fixed threshold method because it handles all types

of time-ordered data, including data from non-normal distributions and data with outliers

[23,24]. To exclude changes caused by surgical intervention, the baseline MRI is taken as the

one that corresponds to the first minimal volume after resection.

Analysis of the 117 measurements of the 16 true-negative growth curves, i.e., stable by CAD

and confirmed by expert physician review, yields a mean and standard deviation percent vol-

ume change of 0.99% and 26.54%, respectively (curves for 2 such cases shown in Fig 2E and

Fig 3. Time to growth detected by computer-assisted-diagnosis and visual comparison. (a–c) Axial FLAIR MRI scans of

a patient in the clinical progression group, diagnosed with an oligo, whose tumor volumes are shown in Fig 2B, at baseline

(a), the time point of growth detection by computer-assisted diagnosis (b), and the time point of detection by visual

comparison (c). (d–f) Axial FLAIR MRI scans of a clinically stable patient diagnosed with a grade 2 oligo, whose tumor

volumes are shown in Fig 2C, at baseline (d), the time point of growth detection by computer-assisted diagnosis (e), and the

last follow-up MRI, considered to be stable by visual comparison (f). Our panel of physicians reviewed the images and

agreed that the tumor had grown. This patient elected to have a resection; the pathological diagnosis revealed grade 3 oligo.

(g and h) Axial FLAIR MRI scans of a clinically stable patient diagnosed with an astro, whose tumor volumes are shown in

Fig 2D, at baseline (g) and the time point of growth detection by computer-assisted diagnosis (h). astro, astrocytoma;

FLAIR, fluid-attenuated inversion recovery; oligo, oligodendroglioma.

https://doi.org/10.1371/journal.pmed.1002810.g003
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2F). FLAIR images have variable quality; however, lower quality images are more likely to

yield underestimation than overestimation of tumor growth because CAD uses a physician-in-

the-loop approach whereby a physician must review and confirm both the segmentation

results and the determination of growth. Because the reviewing physician eliminates false posi-

tive segmentations and outliers, we believe that in cases where consecutive volumes show a

large variation, the higher measurement is more accurate than the lower volume. The main

objective of the CAD method employed here is to point the attention towards a potential

growth event; the physician has the final responsibility to confirm or not. We argue that mini-

mizing false negatives (even at the cost of potential false positives) is prudent and in the best

interest of patients. For instance, if we consider a case similar to the one shown in Fig 2A, it is

possible that a physician may not confirm the first growth signal. However, the numerous and

continuous alerts starting at month 19 would hopefully make it impossible for the tumor to be

allowed to grow unchecked until month 80. We did not encounter false positive signals in our

datasets as the reviewing physicians in all cases agreed with the change-of-point detection (S1

Data). Nonetheless, if physician-endorsed false positives are frequent, one could increase the

Fig 4. Growth away from the largest tumor section. (a–e) MRI of tumor 4385 (see S1 and S2 Datas) at time 0. (f–j)

MRI at the time point of growth detection by CAD. The surface areas of the tumor segments in (a–j) are 268, 1,174,

1,240, 962, 246, 718, 1,262, 1,764, 994, and 282 pixels2, respectively. The tumor exhibits larger percent growth from

baseline in the third dimension (compare a and f: 268 and 718) away from the section containing the largest tumor

component at baseline (compare c and h: 1,240 and 1,764). The second MRI was deemed stable by visual comparison.

https://doi.org/10.1371/journal.pmed.1002810.g004
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stringency of the change-of-point method by varying the threshold or by considering the sec-

ond or third change of point.

Tumor assessments in 2D and 3D differ with respect to magnitude. This study evaluated

and compared longitudinal volumes of low-grade gliomas. In clinical trials, tumor progression

is currently assessed by studying 2D sections of the brain that include the largest component of

the tumor; progression is determined when the product of 2 perpendicular lines increases by

25%. For example, a 12% increase in each of 2 dimensions generates a 25% increase in the

product in 2D (1.122 = 1.25). Multiplying by a third dimensional increase of 12% leads to a

41% increase in the volume (1.123 = 1.41). Similarly, 20% and 25% increases in each dimension

produce 73% and 95% increases in volume, respectively. Conversely, a 300% increase in vol-

ume can be generated by a 44% increase in each dimension (1.443 = 3).

The numerical growth charts suggest that low-grade gliomas may be distinguished not only

by their pathological diagnosis but also by their rate of growth (Fig 2). For example, the tumor

shown in Fig 2A grew at a faster rate than the tumors shown in Fig 2B–2D. The volumetric anal-

ysis permits the computation of the rate of growth of low-grade gliomas over time, which may

turn out to be a biological marker that may enhance tumor classification and guide therapy.

Although the current study demonstrates the utility of CAD in helping physicians detect

growth of grade 2 gliomas following initial observation, additional work is likely needed to

develop models for progression after some therapies. Though none of the patients in this study

had received radiation therapy, radiation therapy and immunotherapy may be associated with

new FLAIR signal that does not represent tumor growth.

The main limitation of this study was its retrospective design since the time point of tumor

growth detection was determined by retrospective review of the radiological reports. The find-

ings unequivocally point towards shortcomings of the current state of clinical practice that

allowed a significant increase in tumor volumes from baseline before growth was detected.

Because of ethical considerations, these large magnitudes of tumor growth would not be per-

mitted in a prospective design as coordinators would have to address the signals of growth

generated by CAD. Another limitation was the fact that the physicians who validated the volu-

metric results did not review all the longitudinal MRI scans in the absence of segmentation:

They viewed the volumes and the segmented images of the baseline and last MRI scans and the

MRI deemed to have tumor growth by CAD (if any); they were offered the option of viewing

additional segmented images if they desired. The reason for this design was that the time

needed to review 627 MRI scans is both significant and prohibitive; for the same reason, prac-

titioners currently compare the current MRI to a couple of MRI scans immediately preceding

it. The number of glioma patients (n = 56) is a limitation; however, it is equivalent to the num-

ber of patients in phase II clinical trials. Another limitation is the fact that all patients were

adults; we plan to study pediatric patients in the future.

It is evident that the volumetric data of the CAD method help physicians detect growth of

low-grade gliomas significantly earlier than the current gold standard practice of visual com-

parison (Tables 2 and 3). However, this study does not address the questions of whether to

treat or not and which treatment modality is optimal. Nonetheless, early detection sets the

stage for future clinical studies to address these questions and whether early therapeutic inter-

ventions prolong survival and improve quality of life. In general, earlier growth detection and

detection at smaller tumor volumes are desirable because there is evidence that smaller tumors

are associated with smaller fields of radiation, optimal surgical resections (see Fig 3D–3F), and

longer survival with less neurological morbidity [8–14,19,20]. We suggest studying early inter-

ventions for cases where (1) the new growth is in the proximity of key nonsurgical structures

like the corpus callosum, (2) the rate of growth is elevated, or (3) the tumor is sensitive to

chemotherapy.
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Because low-grade gliomas grow at variable but slow rates, clinicians need to compare a

large number of longitudinal images spanning several months or years to detect growth, lead-

ing to significant delays in detection of tumor enlargement. Readily available computer-gener-

ated tumor outlines combined with longitudinal volumetric data and the identification of a

statistically significant change of point aid a rapid diagnosis of tumor enlargement. Hence,

CAD could avoid unpredictable delays and improve the determination of efficacy of new ther-

apeutic interventions. Furthermore, early growth detection holds the potential of lowering the

morbidity, and perhaps mortality, of patients with low-grade gliomas, a possibility that needs

to be tested in prospective studies.

Supporting information

S1 Data. MRI data. The .zip file includes .pdf files labeled as follows, using case number 4224

as an example: 4224_t0.pdf includes the MRI data with segmentation of case number 4224 at

baseline. 4224_t1_CAD_G_VC_S.pdf includes the MRI data with segmentation of case num-

ber 4224 at time 1, i.e., the time point of growth detection by the change-of-point method

when the time point was different from the most recent MRI. 4224_tend_CAD_G_VC_G.pdf

includes the MRI data with segmentation of case number 4224 at the most recent MRI.

CAD_G and CAD_S mean that the change-of-point method predicted growth (G) or stability

(S), respectively. VC_G and VC_S mean that the visual comparison detected growth (G) or

stability (S), respectively.

(ZIP)

S2 Data. Volumetric measurements. The Excel sheet lists the tumor volumes (pixels^3) and

corresponding time intervals from baseline (months) for each case number.

(XLSX)

S1 STROBE checklist.

(DOC)

S1 Table. Summary of the MRI data. The case numbers correspond to the same numbers on

the labels of the .pdf files that include the MRI data (S1 Data). Interval to last MRI refers to the

interval of time from the baseline MRI to the most recent MRI. CAD Dx and VC Dx refer to

the determination of growth or not (i.e., stable) by the CAD method and visual comparison

(VC), respectively. Time 1 denotes the time point at which CAD detected growth earlier than

the last MRI, if any. Groups 1, 2, and 3 refer to patients with known radiological tumor pro-

gression, stable glioma, and imaging abnormality, respectively. As compared to VC, CAD

detected earlier growth in 29 group 1 gliomas (blue) and 13 group 2 gliomas (red).

(XLSX)

S2 Table. Stationary growth in the clinical progression group. Number of patients in the

clinical progression group with stationary/slow growth after the time point of growth detection

by CAD lasting for 9 months, 14 months, 18 months, and longer than 3 years.

(XLSX)
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