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Artificial intelligence (AI) as a field emerged in the 1960s when practitioners across the engi-

neering and cognitive sciences began to study how to develop computational technologies

that, like people, can perform tasks such as sensing, learning, reasoning, and taking action.

Early AI systems relied heavily on expert-derived rules for replicating how people would

approach these tasks. Machine learning (ML), a subfield of AI, emerged as research began to

leverage numerical techniques integrating principles from computing, optimization, and sta-

tistics to automatically “learn” programs for performing these tasks by processing data: hence

the recent interest in “big data.”

Although progress in AI has been uneven, significant advances in the present decade have

led to a proliferation of technologies that substantially impact our everyday lives: computer

vision and planning are driving the gaming and transportation industries; speech processing is

making conversational applications practical on our phones; and natural language processing,

knowledge representation, and reasoning have enabled a machine to beat the Jeopardy and Go

champions and are bringing new power to web searches [1].

Simultaneously, however, advertising hyperbole has led to skepticism and misunderstand-

ing of what is and is not possible with ML [2,3]. Here, we aim to provide an accessible, scientif-

ically and technologically accurate portrayal of the current state of ML (often referred to as AI

in medical literature) in health and medicine and its potential, using examples of recent

research—some from PLOS Medicine’s November 2018 Special Issue on Machine Learning in

Health and Biomedicine, for which we served as guest editors. We have selected studies that

illustrate different ways in which ML may be used and their potential for near-term transla-

tional impact.

ML-assisted diagnosis

Of the myriad opportunities for use of ML in clinical practice, medical imaging workflows are

most likely to be impacted in the near term. ML-driven algorithms that automatically process

2- or 3-dimensional image scans to identify clinical signs (e.g., tumors or lesions) or determine

likely diagnoses have been published, and some are progressing through regulatory steps

toward the market. Many of these use deep learning, a form of ML based on layered represen-

tations of variables, referred to as neural networks. To understand how deep learning methods

leverage image data to perform recognition tasks, imagine you are entering a dark room and
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looking for the light switch. From past experience, you have learned to associate light switches

with predictable locations within the configuration of a room. Many computer vision–based

image processing algorithms, including deep learning, mimic this behavior to identify factors

that are associated with the recognition task at hand. Deep learning is especially powerful in its

ability to interpret images because of the complexity of the factors it can consider.

The power of deep learning has been most evident within ophthalmology. Recently, Olaf

Ronneberger and colleagues applied a two-step process using deep learning to a clinically het-

erogeneous set of 3-dimensional optical coherence tomography (CT) scans from patients

referred to a major United Kingdom eye hospital [4]. They demonstrated performance in

making a referral recommendation that reaches or exceeds that of experts on a range of sight-

threatening retinal diseases after training on only 14,884 scans. In another effort, IDx, a health-

care automation company, has developed deep learning–based software to be used by health

providers who treat patients with diabetes to scan images for signs of diabetic retinopathy [5].

Their cloud-based, autonomous detection software has received regulatory approval by the

United States Food and Drug Administration (FDA). With the volume and complexity of

diagnostic imaging increasing faster than the availability of human expertise to interpret it

(especially in low-resource settings), screening for referable disease or detecting treatable dis-

ease in patients who would not otherwise receive eye exams may save both vision and money.

Radiologic diagnoses are also amenable to deep learning–based applications. In a study in

PLOS Medicine’s Special Issue, Pranav Rajpurkar and colleagues used a deep learning algo-

rithm to detect 14 clinically important pathologies including pneumonia, pleural effusion, pul-

monary masses, and nodules in frontal-view chest radiographs with internal performance

similar to practicing radiologists [6]. The algorithm, called CheXNeXt, was trained, tuned, and

internally validated on partitioned subsets of the National Institutes of Health (NIH) ChestX-

ray8 dataset (over 100,0000 chest radiographs from roughly 31,000 patients). The model’s per-

formance was compared to that of 9 radiologists (6 board-certified, 3 residents) using a held-

out partition of the dataset consisting of images hand-annotated by a panel of cardiothoracic

specialist radiologists. At comparable accuracies, the average time to interpret the 420 images

in the validation set was substantially longer for the radiologists (240 minutes) than for CheX-

NeXt (1.5 minutes). The model also localized parts of the image most indicative of each pathol-

ogy. A tool such as this, though still early in its development, offers a solution to fatigue-based

diagnostic error and lack of diagnostic expertise in the many areas of the world where radiolo-

gists are not available or are in short supply.

ML-driven triage and prevention

Prediction to aid preventative efforts is another promising frontier for improving outcomes

using ML. For example, in the Special Issue, a study from Kristin Corey and colleagues consid-

ered the potential for reducing complications and mortality within 30 days following particular

surgeries [7]. Using data from about 88,000 encounters extracted from June 2012 to June 2017,

they developed software (Pythia) that incorporates a patient’s age, race, sex, medication, and

comorbidity history to determine risk of complications or death post surgery. Overall, postsur-

gical complication rates were 16.0% for any complication within 30 days and 0.51% for death

within 30 days. In a separate validation set of 12,000 encounters, at a threshold selected to have

sensitivity of 0.75, Pythia achieves a positive predictive value of 0.35; in other words, 1 in 3

patients flagged by their approach have a postsurgical complication within 30 days. Compari-

son of Pythia’s scores to scores from The American College of Surgeons (ACS) National Surgi-

cal Quality Improvement Program (NSQIP) calculator on a smaller set of 75 encounters found

that Pythia identifies higher-risk patients. A tool like Pythia can enable surgeons and referring
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clinicians to identify high-risk individuals who may require targeted assessments and optimi-

zation as part of their preoperative care. For example, a patient with anemia at high risk for a

hematological complication such as bleeding may benefit from being put on iron transfused

with blood prior to surgery or have medications managed to help mitigate the risk of losing

blood during the procedure. The efficacy with which such algorithms can be operationalized

to improve clinical adoption is a key question. Unlike in medical imaging applications, here

the goal is to augment rather than automate existing workflows. Efforts testing such workflows

in sepsis, a leading cause of death and one of the costliest complications, are underway at insti-

tutions such as Johns Hopkins and Duke, with the former system beginning to demonstrate

benefit [8–10].

In another Special Issue study relevant to prevention, Yizhi Liu and colleagues used real-

world clinical refraction data from about 130,000 individuals aged 6 to 20 years derived from

electronic medical record (EMR) systems in 8 ophthalmic centers from 2005 to 2015 to predict

myopia progression [11]. Myopia has reached epidemic levels among young adults in East and

Southeast Asia, affecting an estimated 80%–90% of high school graduates, with approximately

20% of them having high myopia. Various preventative interventions, including atropine eye

drops and orthokeratology, have been proposed to control myopia progression; however,

these approaches confer significant side effects. Therefore, it is essential to identify those at

greatest risk who should undergo targeted therapy. On a large multisite dataset, Liu and col-

leagues’ approach was able to predict the refraction values and onset of high myopia at 18

years of age as early as 8 years in advance with clinically acceptable performance (the authors

considered ±0.75 dioptres clinically acceptable accuracy). This model is now ready for evalua-

tion in prospective studies to determine whether behavioral or clinical interventions can delay

progression of myopia among high-risk school-aged children in China.

Clustering for discovery of disease subtypes

The definitions of diseases and disease subtypes we use today are based largely on the original

symptom-based descriptions offered in the 17th century by Sydenham and Linnaeus and the

organ-based definitions developed by Osler in the 20th century. It is, however, now possible to

move beyond these observational approaches to more data-driven approaches to diagnosis

and disease classification. In a series of experiments, Adnan Custovic and colleagues have been

pursuing this approach in the context of asthma and allergy. Using unsupervised ML, the

group analyzed data from the Manchester Asthma and Allergy Study (MAAS) population-

based birth cohort and were able to identify novel phenotypes of childhood atopy [12].

Through further interrogation of this same dataset, the authors have now identified clusters of

component-specific immunoglobulin E (IgE) sensitization using network and hierarchical

cluster analysis that can help better predict risk of childhood asthma [13]. We believe there are

considerable opportunities to employ similar data-driven approaches to aid diagnostic pro-

cesses in other disease areas, and using ML methods to find new actionable disease subsets will

be critical to advance precision medicine [14].

Reducing medication errors via anomaly detection

Medication errors are responsible for considerable—and potentially preventable—morbidity,

mortality, and healthcare costs. These errors can be identified through a variety of means,

including expert chart reviews, use of triggers, rules-based approaches to screening EMRs, and

significant event audits. However, these approaches are associated with a number of chal-

lenges: suboptimal sensitivity and specificity, time consumption, and expense. ML-based

anomaly detection techniques begin by developing a probabilistic model of what is likely to
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occur in a given context by using historical data. Using this model, a new event (e.g., medica-

tion given at a particular dose) within a specific context (e.g., individual patient characteristics)

is flagged as anomalous if its probability of occurring within that context is very small. MedA-

ware is a commercially available system that uses anomaly detection to generate medication

error alerts. In a recent study, Gordon Schiff and colleagues used medical chart review to ana-

lyze the validity and clinical utility of these alerts [15] and found that three-quarters of the

alerts generated by the screening system were valid according to the charts. Of these validated

alerts, the majority (75.0%) were found to be clinically useful in flagging potential medication

errors or issues. Such findings indicate that this approach has the potential to be incorporated

into clinical use, although Schiff and colleagues do caution that the utility of this system is

highly dependent on the quality and comprehensiveness of the underlying data.

The ML-augmented physician

We have discussed several examples of ML’s potential to transform medical care. However,

naive implementation of ML without careful validation can also harm patients and the public.

Consider, as an example, a hypothetical effort to predict the risk of emergency hospital admis-

sions using a model trained on past admissions data for patients with various characteristics

and symptoms. Actual admissions are often subject to bed availability, the type of insurance an

individual is carrying, and reimbursement practices. Whereas this trained model might enable

population-level resource planning, attempting to use it for individual-level triage may incor-

rectly classify an individual as not requiring an admission. To some extent, an ML algorithm

can replicate past decisions, including biases around race and sex that may have influenced

clinical judgement about the level of care given. “Irrational extrapolation”—the assumption

that algorithms trained on an easy-to-obtain set of patients or data will lead to accurate models

that act in each patient’s best interest—must be stringently avoided until algorithms can cor-

rect for such biases and use clinical data to reason about disease severity and trajectory.

Another pitfall of naive implementation lies in the capacity of ML, and particularly deep

learning, to overfit to data—that is, to identify associations in the training dataset that are not

truly intrinsic to the clinical prediction and will not be relevant externally [16]. Techniques

that leverage causal factors are less likely to be prone to such overfitting (e.g., [17]), and consci-

entious construction of training datasets and multiple external validation efforts for each

trained model can provide some assurance that ML-based models are valid. These develop-

ments within computer science, alongside high standards for validation among medical data

scientists, are crucial if ML is to benefit future patient care. In parallel, clinicians and clinical

researchers who remain aware of successes and needs in the field can be an invaluable force in

the optimal development and implementation of these powerful approaches. The new genera-

tion of practitioner should not unnecessarily fear ML but rather should learn how to under-

stand, develop, and ultimately leverage it so as to improve patient care.
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