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Abstract

Background

Resuscitated cardiac arrest is associated with high mortality; however, the ability to estimate

risk of adverse outcomes using existing illness severity scores is limited. Using in-hospital

data available within the first 24 hours of admission, we aimed to develop more accurate

models of risk prediction using both logistic regression (LR) and machine learning (ML) tech-

niques, with a combination of demographic, physiologic, and biochemical information.

Methods and findings

Patient-level data were extracted from the Australian and New Zealand Intensive Care Soci-

ety (ANZICS) Adult Patient Database for patients who had experienced a cardiac arrest

within 24 hours prior to admission to an intensive care unit (ICU) during the period January

2006 to December 2016. The primary outcome was in-hospital mortality. The models were

trained and tested on a dataset (split 90:10) including age, lowest and highest physiologic

variables during the first 24 hours, and key past medical history. LR and 5 ML approaches

(gradient boosting machine [GBM], support vector classifier [SVC], random forest [RF], arti-

ficial neural network [ANN], and an ensemble) were compared to the APACHE III and Aus-

tralian and New Zealand Risk of Death (ANZROD) predictions. In all, 39,566 patients from

186 ICUs were analysed. Mean (±SD) age was 61 ± 17 years; 65% were male. Overall in-

hospital mortality was 45.5%. Models were evaluated in the test set. The APACHE III and
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ANZROD scores demonstrated good discrimination (area under the receiver operating

characteristic curve [AUROC] = 0.80 [95% CI 0.79–0.82] and 0.81 [95% CI 0.8–0.82],

respectively) and modest calibration (Brier score 0.19 for both), which was slightly improved

by LR (AUROC = 0.82 [95% CI 0.81–0.83], DeLong test, p < 0.001). Discrimination was sig-

nificantly improved using ML models (ensemble and GBM AUROCs = 0.87 [95% CI 0.86–

0.88], DeLong test, p < 0.001), with an improvement in performance (Brier score reduction

of 22%). Explainability models were created to assist in identifying the physiologic features

that most contributed to an individual patient’s survival. Key limitations include the absence

of pre-hospital data and absence of external validation.

Conclusions

ML approaches significantly enhance predictive discrimination for mortality following cardiac

arrest compared to existing illness severity scores and LR, without the use of pre-hospital

data. The discriminative ability of these ML models requires validation in external cohorts to

establish generalisability.

Author summary

Why was this study done?

• Cardiac arrest is a frequent cause of admission to the intensive care unit and has a low

survival rate following admission to hospital.

• Current illness severity scores perform poorly in regard to predicting survival for this

specific group of patients.

• Machine learning involves the creation of algorithms that can learn from large datasets

to improve risk estimation, but can be biased by the data used.

• We aimed to use machine learning to predict death after admission to an intensive care

unit with a cardiac arrest, and then to use an ‘explainer’ model to make the decision-

making process transparent.

What did the researchers do and find?

• We analysed one of the largest international datasets of patients admitted to the inten-

sive care unit, comprising 1.5 million patients.

• We studied the data of patients admitted with cardiac arrest and developed several

machine learning algorithms to predict death, and then compared these with existing

scores.

• We found that the machine learning models were more accurate at estimating the risk

of death, and were able to use another algorithm to explain the reasoning behind the

risk estimate given for a particular patient.

Cardiac arrest mortality risk estimation and explanation with machine learning
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What do these findings mean?

• Using machine learning can increase the accuracy of estimating survival for intensive

care patients after a cardiac arrest.

• These raw estimates can then be further resolved on a per-patient basis to provide a

breakdown to understand the reasoning behind the algorithm’s decision, which could

help clinicians decide whether to trust the algorithm on a per-patient basis.

• These findings have only been assessed in a single large group of patients, and should be

validated in another separate group, with other predictors added.

Introduction

Out-of-hospital cardiac arrest (OHCA) occurs annually in over 300,000 adults in the United

States, with less than 11% of patients surviving to hospital discharge [1]. For those patients suc-

cessfully resuscitated in the field, in-hospital mortality remains high, being accounted for by

irreversible neurologic injury and by a post-cardiac arrest syndrome [2]. As a component of

the clinical care of the OHCA patient, an assessment of the probability of survival after OHCA

is performed to aid in the discussion between the clinical team and the patient’s family and to

guide interventions. In this context, several prognostic tools have previously been developed.

Several generic mortality prediction tools have been developed for intensive care unit (ICU)

patients [3,4], however none specifically developed for this population after admission to the

ICU. Such scores are valuable to benchmark outcomes between hospitals (particularly to

interpret changes in outcomes over time in the context of illness severity); inform patients,

families, and clinicians about prognosis; and identify subgroups that may be targets for inter-

ventions in trials, and compare intervention efficacy by allowing for appropriate baseline

stratification.

In contrast to the above constrained approaches, machine learning (ML) describes the use

of computer algorithms that learn non-linear associations retrospectively from the data to esti-

mate the risk of a specified outcome. This method has been increasingly used in medical

research recently for various purposes including image recognition [5–7] and patient pheno-

typing [8,9]. Outcome prediction has also been performed on a large scale with significant suc-

cess through automated mining of electronic health records, combined with deep learning

techniques [10]. Specifically in cardiovascular medicine, ML has been applied to imaging

through echocardiography [11] and computed tomography [12], as well as outcome prediction

in heart failure [13]. Although, as a whole, accuracy is gradually improving with ML tech-

niques, a significant limitation has been the varying interpretability of certain models (particu-

larly deep learning), and, due to their reliance on the data provided, such algorithms are

heavily susceptible to bias [14]. The choice of algorithm is critical in providing a balance

between interpretability and accuracy, although both of these terms are variably defined.

In this study, we utilised a large international registry [15] of intensive care admissions fol-

lowing cardiac arrest and applied a variety of ML methods to improve the prediction of out-

comes, and compared these methods with logistic regression (LR) in addition to existing gold

standard generic ICU illness severity scores. We hypothesized that ML techniques could pre-

dict early ICU mortality using basic demographic, physiologic, and biochemical data alone

better than pre-existing illness severity scores.

Cardiac arrest mortality risk estimation and explanation with machine learning
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Methods

Patient cohort

The Adult Patient Database is 1 of 4 clinical quality registries run by the Australian and New

Zealand Intensive Care Society (ANZICS) Centre for Outcome and Resource Evaluation. Of

the 214 ICUs in Australia and New Zealand, 186 have contributed data to the ANZICS Adult

Patient Database [15]. The database presently collects data on 90% of all ICU admissions in

Australia and New Zealand and contains information on over 2 million ICU episodes [16].

Institutional approval to undertake the study was provided by the Alfred Hospital Human

Research Ethics Committee (Melbourne, Victoria, Australia), with a waiver of individual

patient informed consent (Project No. 427/17). The study was commenced as part of the

ANZICS Critical Care Datathon in March 2017 in Melbourne, Victoria, Australia.

Variable selection

The following variables were extracted for ICU admissions between January 2006 and Decem-

ber 2016 (S1 Table): age, sex, comorbid conditions, and readmission status on admission to

ICU; individual components of the Glasgow Coma Score prior to administration of sedation;

urine output, highest and lowest physiologic and biochemical measures, and requirement for

mechanical ventilation, all within the first 24 hours of ICU admission; and number of hours in

the hospital prior to entering the ICU. The ANZICS database does not include continuous

measurement variables, resulting in only the maximum and minimum measures being used.

Electrocardiographic and echocardiographic data were not available. The APACHE III pre-

dicted risk of death—derived from a LR model developed from scoring the worst measure-

ments over the first 24 hours of admission [17]—was included for comparison. The Australian

and New Zealand Risk of Death (ANZROD) scoring system is the primary risk adjustment

method for comparing mortality outcomes within Australia and New Zealand [18] and has

been shown to provide better risk adjustment than the APACHE III scoring system [3], and so

was also included for analysis.

Patient selection

For this study, patients with an ICU admission diagnosis of cardiac arrest or who were listed

as having had a cardiac arrest in the previous 24 hours prior to ICU admission were included.

Primary diagnosis was determined using the ANZICS modification of the APACHE III diag-

nostic codes, determined at 24 hours post-admission by record review. Patients with elective

admissions, those transferred from other ICUs, and those with treatment limitations were

excluded. Patients with unknown mortality outcomes were also excluded. Mortality was deter-

mined as in-hospital death.

ML models and pre-processing

Six algorithms were explored in this study: LR, random forest (RF), support vector classifier

(SVC), gradient boosted machine (GBM), an ensemble approach, and an artificial neural net-

work (ANN). These models are the most commonly used for binary classification problems in

medicine, and we chose a wide selection to reflect this. In particular, GBMs often perform well

with classification; however, an ensemble was included specifically to improve robustness

when applied to an external dataset. Each model was supplied with the same input variables.

Grid and random hyper-parameter searches were then used to search for optimal hyper-

parameters for each model, with the area under the receiver operating characteristic curve

(AUROC) as the optimisation metric. Upper and lower bounds for the hyper-parameters in

Cardiac arrest mortality risk estimation and explanation with machine learning
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the search were broad (such as decision tree depth between 2 and 100), so as to result in some

underfitted models (with insufficient flexibility) and some overfitted models (which would not

generalise due to excessive sensitivity to noise). Full hyper-parameter search ranges and final

model hyper-parameters are available at the code repository online (https://github.com/

IntelliHQ/CardiacArrestMortality_ANZICS). These models have been explained elsewhere in

detail [19]; a brief summary is presented here. RFs utilise multiple decision trees to create a

series of divisions in the data and generate an output. Decision trees choose these divisions

based on maximising the decrease in impurity. GBMs are similar, involving a collection of

weak decision models (in this case, decision trees), and combining these together through a

process of iteratively training new models to address the weak points of the former models.

SVCs aim to identify classes by creating a hyperplane of decision within a higher feature space

in a non-linear fashion. The ANN uses a single hidden layer of neurons linking inputs to the

output neuron, with weights trained using backpropagation and gradient descent to best

approximate training data outputs [20]. The ensemble approach combined the RF, SVC, and

GBM in a voting framework, where the individual algorithms each create a classification, and

the most popular classification is taken to generate an overall prediction.

For missing value imputation, patients were separated into age group decades of life (<30,

30–39, 40–49, 50–59, 60–69, 70–79,�80 years), and missing values were imputed using the cor-

responding age group mean (for continuous variables) or mode (for categorical variables) for

each variable. Continuous variables were standardised to a mean of 0 and variance of 1, and the

dataset was split 90:10 into training and test sets. For training and tuning of the models, 5-fold

cross-validation across the training set was used. Long term mortality was not available.

Statistical methodology

We assessed model discrimination by calculating the AUROC. The Brier score (a measure of

the mean squared difference between estimated risks and the actual outcomes) was calculated

as a measure of model performance and calibration [21,22], and observed versus predicted

plots are presented. Model accuracy was assessed using the logarithmic loss function.

To identify potential relevant features on a per-patient basis, we assessed explainability

using local interpretable model-agnostic explanation (LIME). This method has been previously

described in detail [23], and represents a well-validated model with robust code libraries. In

brief, LIME generates a locally interpretable model for individual prediction from a complex

model using an explainer algorithm that perturbs the inputs (in this case, the specific variables

for a patient) together with an evaluation of the effects on the predictive model. This process

generates a learned explanation for an individual.

All ML analyses were conducted using open-source software libraries (Python version

3.6.3, scikit-learn 0.19.1 [24], pandas [25], and H2O.ai), and visualisations and statistical analy-

sis performed using R version 3.4.4 [26–28].

Results

A total of 1,484,536 admissions to Australian and New Zealand ICUs were examined, of which

48,165 had a diagnosis of OHCA. After exclusions, there were 39,566 patients included for

analysis, of whom 45.6% (18,019) did not survive to hospital discharge. Baseline characteristics

of the patient cohort, categorised according to survival status, are presented in Table 1. Non-

survivors were older (median 66 versus 63 years, p< 0.001), with a significantly higher peak

creatinine (median 146 [IQR 102–198] versus 101 [76–151] μmol/l, p< 0.001). Non-survivors

were more tachycardic (mean ± SD; peak heart rate 109 ± 26 versus 101 ± 23 bpm, p< 0.001)

and slightly more hypotensive (lowest mean ± SD arterial pressure 61 ± 15 versus 66 ± 11 mm

Cardiac arrest mortality risk estimation and explanation with machine learning
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Hg). Of note, both maximum and minimum recorded temperature were similar between the

2 groups. There was a greater proportion of males among the survivors (66.2% versus 64.5%,

p< 0.001).

Application of currently available illness severity models in the study population yielded an

AUROC of 0.80 for the APACHE III score and 0.81 for ANZROD (Fig 1). Five ML models

together with a LR model were tested and compared with the APACHE III and ANZROD

scoring systems (Table 2).

Statistical and ML models

LR outperformed both the APACHE III and ANZROD scoring systems, with a slightly higher

AUROC (0.82, p< 0.01 using DeLong test for both comparisons; full parameter weights

Table 1. Demographic characteristics and physiologic parameters in the first 24 hours after out-of-hospital cardiac arrest.

Characteristic Survivors

(n = 21,547)

Non-survivors

(n = 18,019)

p-Value

Age (years) 63 [50–73] 66 [52–77] <0.001

Male sex 14,255 (66.2%) 11,629 (64.5%) 0.001

Intubated 15,846 (73.5%) 15,512 (86.1%) <0.001

Highest temperature (Celsius) 37.05 (1.04) 36.75 (1.49) <0.001

Lowest temperature (Celsius) 35.07 (1.47) 34.50 (1.60) <0.001

Highest heart rate (bpm) 101 (23) 109 (26) <0.001

Lowest heart rate (bpm) 65 (17) 69 (21) <0.001

Highest respiratory rate (breaths per minute) 21 [18–25] 22 [18–27] <0.001

Lowest respiratory rate (breaths per minute) 12 [10–14] 13 [12–15] <0.001

Highest SBP (mm Hg) 146 (25) 142 (32) <0.001

Lowest SBP (mm Hg) 94 (17) 87 (21) <0.001

Highest DBP (mm Hg) 74 (15) 73 (18) <0.001

Lowest DBP (mm Hg) 52 (10) 49 (13) <0.001

Highest MAP (mm Hg) 99 (17) 96 (21) <0.001

Lowest MAP (mm Hg) 66 (11) 61 (15) <0.001

Highest sodium (mmol/l) 140 (4) 140 (5) <0.001

Lowest sodium (mmol/l) 137 (4) 137 (5) 0.006

Highest potassium (mmol/l) 4.7 (0.8) 4.8 (0.9) <0.001

Lowest potassium (mmol/l) 3.8 (0.6) 3.9 (0.7) <0.001

Highest bicarbonate (mmol/l) 23 (4) 21 (5) <0.001

Lowest bicarbonate (mmol/l) 20 (5) 17 (5) <0.001

Highest creatinine (μmol/l) 101 [76–151] 146 [102–198] <0.001

Lowest creatinine (μmol/l) 88 [65–126] 122 [86–150] <0.001

Highest WCC (109/l) 15.3 [11.3–19.4] 17.2 [13.0–22.0] <0.001

Lowest WCC (109/l) 12.0 [8.9–14.2] 13.1 [10.0–16.5] <0.001

Highest platelet count (109/l) 236 (85) 233 (92) 0.01

Lowest platelet count (109/l) 199 (72) 195 (79) <0.001

Highest glucose (mmol/l) 11.7 (5.3) 13.6 (6.2) <0.001

Lowest glucose (mmol/l) 6.5 (2.3) 7.2 (3.8) <0.001

Data are presented according to survival to hospital discharge. Parametric continuous variables are presented as mean (SD) and compared using Student t test; non-

parametric variables are reported as median [IQR] and compared using the Wilcoxon signed rank test. Categorical variables are represented as number (percentage

within category).

DBP, diastolic blood pressure; MAP, mean arterial pressure; SBP, systolic blood pressure; WCC, white cell count.

https://doi.org/10.1371/journal.pmed.1002709.t001
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available at https://github.com/IntelliHQ/CardiacArrestMortality_ANZICS). Each of the ML

models also attained a higher AUROC, with a very similar result between the GBM and the

ensemble methods (AUROC = 0.87, p = 0.78). Brier scores were lower for LR and ML models,

suggesting better calibration, with best results for the GBM and ensemble models (0.15 for

both). Calibration plots are provided in S1 Fig.

Fig 1. Receiver operating characteristic curves for existing prediction models and the ensemble ML model.

ANZROD, red; APACHE III, blue; ensemble ML model, black. p-Value for comparison represents DeLong test.

ANZROD, Australian and New Zealand Risk of Death; AUC, area under the curve; ML, machine learning.

https://doi.org/10.1371/journal.pmed.1002709.g001

Table 2. Performance of scoring systems and ML approaches for the estimation of in-hospital mortality in

patients with an out-of-hospital cardiac arrest.

Model Predicted mortality AUC (95% CI) Brier score Log loss

Actual mortality 45.5%

APACHE III risk of death 52.8% 0.80 (0.79–0.82) 0.190 0.57

ANZROD 39.9% 0.81 (0.80–0.82) 0.182 0.55

Logistic regression 45.4% 0.82 (0.81–0.83) 0.170 0.51

Artificial neural network 46.7% 0.85 (0.84–0.86) 0.158 0.48

Random forest 45.7% 0.86 (0.84–0.87) 0.156 0.47

Support vector classifier 45.4% 0.86 (0.85–0.87) 0.153 0.47

Ensemble 45.5% 0.87 (0.86–0.88) 0.148 0.45

Gradient boosted machine 45.3% 0.87 (0.86–0.88) 0.147 0.45

Results presented are based on test set (n = 3,957).

ANZROD, Australian and New Zealand Risk of Death; AUC, area under the curve; ML, machine learning.

https://doi.org/10.1371/journal.pmed.1002709.t002
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Probability curves were created for each of the models (Fig 2). Amongst non-survivors, the

APACHE III score estimated a higher probability of death, with low variance in probability

attributed to all survivors. The converse was apparent for the ANZROD score. The ML

Fig 2. Probability curves for each model. Survivors indicated in green, and non-survivors in red. p< 0.001 for ensemble versus other models. ANZROD,

Australian and New Zealand Risk of Death.

https://doi.org/10.1371/journal.pmed.1002709.g002
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models—in particular the GBM, ANN, and ensemble models—demonstrated significant sepa-

ration of the curves, with the lowest overlap in probability curves and greatest separation of

the 2 groups.

Model comparisons with respect to mortality risk estimation were also performed across

age groups (Fig 3). The APACHE model tended to overestimate mortality, particularly in

patients over the age of 60 years, whereas the ANZROD model underestimated mortality in

the youngest patients. The LR and ML models overall performed well.

Model explainability

We next applied the LIME explainer model to data generated by the ensemble ML model, par-

ticularly to explore misclassification. Cases with high and low predicted mortality rates were

compared. The top 10 features for each case are presented in Fig 4, with the weight of each fea-

ture represented in either green or red depending on whether it favoured survival or death.

Each weight can be interpreted in the context of the original probability; if a feature was absent

for a patient, it can be numerically added to or subtracted directly from the initial probability.

In the first correctly predicted case (Fig 4A), we show a specific individual with a high proba-

bility of survival (83%). The high scores for the motor (~21% impact favouring survival) and

verbal components of the Glasgow Coma Score, absence of chronic respiratory disease,

absence of hypothermia, and relatively preserved creatinine were all favourable; conversely,

although this patient survived, negative prognostic factors included a minimum heart rate

over 75 bpm (8% increased probability of death) and lowest respiratory rate over 14 breaths

per minute.

In the second case (Fig 4B), again correctly predicted, the predicted probability of survival

was 27%. The explainer algorithm notes that the lack of a motor response (20% increased

probability of death), low urine output (less than 850 ml in 24 hours, 13% increased probability

of death), hypothermia, and higher age were all markedly negative prognostic factors, with the

lack of respiratory and hepatic disease and the presence of bradycardia being protective.

Fig 3. Sensitivity analysis comparing model performance across age groups. True mortality for each group is

indicated in red. ANZROD, Australian and New Zealand Risk of Death.

https://doi.org/10.1371/journal.pmed.1002709.g003
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Fig 4. Local interpretable model explainer for 3 individual cases. (A) A correctly classified survivor, (B) a correctly classified

non-survivor, and (C) an incorrectly classified non-survivor (predicted to survive). Features with a green bar favoured survival, and
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The explainer was then applied to incorrectly predicted patients. In the case presented in

Fig 4C, the patient was attributed a survival probability of 78% however did not survive.

Favourable features such as intact neurologic status and lack of chronic respiratory disease or

hepatic failure led the algorithm toward survival; however, the explainer notes that the

markedly elevated creatinine (>171 μmol/l), tachypnoea, and higher age (82 years) were all

negative prognostic factors.

Discussion

In this study, we demonstrated that modern ML approaches using physiologic and biochemi-

cal data collected during the first 24 hours after hospital admission for OHCA provide superior

predictive capacity compared to existing illness severity models. To date, established tools such

as the APACHE score have been used to provide prognostic information in critically unwell

patients. In the current study, we showed that while these tools performed well in OHCA, they

were less accurate than ML methods.

Mortality prediction in cardiac arrest

In cardiac arrest, pre-hospital data are useful to explain much of the variation in survival to

discharge [1], particularly in regard to factors such as witnessed cardiac arrest, initial rhythm,

and bystander CPR. The OHCA score [29], a multivariate LR model developed on 130

patients, achieved an AUROC of 0.82 (0.88 in the validation cohort), although the sample size

was small and there was significant class imbalance. Furthermore, the OHCA model requires

knowledge of the periods of time with circulatory no flow and low flow, limiting its use to

when pre-hospital data are known. Follow-up validation in a 173-patient cohort treated with

therapeutic hypothermia demonstrated lower discrimination (AUROC 0.74), although the

OHCA score still outperformed an existing illness severity score (SAPS II at 48 hours; AUROC

0.72) [4]. In another 21-variable LR model, an AUROC of 0.83 was obtained, with key predic-

tors being pre-hospital variables (number of minutes to sustained restoration of spontaneous

circulation and first rhythm) [30]. Biomarkers in smaller studies have also shown promise

[31].

The accurate assessment of prognosis in OHCA patients is important for several reasons. In

an effort to evaluate new therapeutic tools, the ability to select similar risk groups would be of

utility in clinical trial design. From the perspective of healthcare utilisation, early identification

of patients with a high risk prognosis may better assist in the timing of relevant changes in the

clinical treatment objectives. Finally, for information dissemination to family and friends of

the patient, the provision of an accurate estimation of prognosis is important.

This study differs from previous work in several domains. First, training ML models

requires large amounts of well-curated data, whereas smaller datasets are inherently more

prone to bias [14]. In this study, we used one of the largest intensive care databases in the

world to generate our cardiac arrest subset. Second, a traditional strength of ML models is the

ability to combine a large and diverse array of variables that often need to be entered manually,

which may be laborious and impractical; in this study we were able to use maximum and mini-

mum variables available at 24 hours after ICU admission only, with no pre-hospital data, and

improve accuracy beyond existing models. This study extends previous work in outcome pre-

diction in cardiac arrest, where models have been limited in predictive accuracy or have

those with a red bar were predictive of mortality. The x-axis shows how much each feature added or subtracted to the final

probability value for the patient (i.e., a feature with a weight of 0.2 is equivalent to a 20% change in the probability of survival).

https://doi.org/10.1371/journal.pmed.1002709.g004
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required vast amounts of pre-hospital data. Furthermore, this work extends further to add

patient-level explanations to the ML approaches.

Explainability

Traditionally, there has been an inherent trade-off between accuracy and interpretability in

modelling (Fig 5); simpler statistical models such as regression techniques have provided easy-

to-understand models with significant heterogeneity in accuracy, while ML models have dem-

onstrated remarkable accuracy with reduced interpretability, such that these models are often

deemed to be ‘black boxes’. Increasing attention is being paid to the explainability of ML algo-

rithms [23,32].

At this time, explainer models are not provided to provide a change to therapeutic choices;

rather, explainer models may be used to understand how an algorithm came to its conclusion.

Broadly speaking, interpretability enhances the model by increasing transparency—can a

model’s decisions be trusted? Interpretability may assist the user in recognising data bias; how-

ever, it does not prevent it, as bias is fundamentally dependent on the quality and breadth of

the data used to generate the algorithm.

By understanding a model’s predictive reasoning, researchers and clinicians can begin to

explore whether the model’s decisions were made based on biases within the data (inevitable,

particularly in registry-based data) by reflecting on their own clinical judgement. These biases

can then be specifically targeted to improve the model. If augmented decision-making is to

occur through the implantation of these algorithms, then the imperative is on the algorithm

controller to provide meaningful information about the logic involved, and the consequences

of predictions must be clearly understood. Of note, the recent General Data Protection Regula-

tion applied in Europe has clearly stated that individuals who have decisions made about them

by algorithms have a right to know the basis of the decision and the factors that influenced this

in the predictive model.

Fig 5. Trade-off between predictive accuracy and explainability.

https://doi.org/10.1371/journal.pmed.1002709.g005
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Put simply, explainer algorithms significantly improve understanding of how algorithms

arrive at a decision (such as through visualisation with LIME), allowing clinicians to then

interpret whether they agree with the methodology before interpreting the conclusion. Recent

landmark papers have incorporated explainability for this reason [7].

Limitations

First, despite the large size of the dataset we used (~1.5 million records), the cardiac arrest sub-

set was relatively small (n = 39,566), and as such these methods warrant repeating in a larger

dataset. Second, as pre-hospital variables play a major prognostic role, the inclusion of pre-

hospital observations may markedly improve accuracy and provide a better explanation for

poor outcomes. By definition, the model already incorporates the end result of interventions

prior to the time at which observations or measurements were made. Accordingly, the model

includes a vector component triggered by an earlier intervention. Third, we recognise that this

dataset pertains to the Australian and New Zealand population, both in regard to patient and

system characteristics, and that our findings may not be applicable to other jurisdictions.

Other intensive care datasets such as MIMIC-III [33] and eICU (from the US), together with

specific cardiac arrest datasets (such as INTCAR or CARES), provide further opportunities for

validation, particularly as they include all variables across the time of admission, rather than

just highest and lowest physiologic measures. Imputation in this dataset was performed using

age categories, relevant to cardiac arrest specifically, but more advanced imputation techniques

such as chained equations should be considered in future work. Our dataset also had no infor-

mation on therapies or on end-of-life practices or preferences, and changes in practice over

time and their impact on outcomes were not assessed.

Clinical translation

Accurate prediction models allow for improved clinician prognostication, better risk adjust-

ment and hospital benchmarking, earlier identification of outlier centres, and improved

patient–physician–family communication. There are multiple ways to report model perfor-

mance; good discrimination suggests that a model separates survivors from non-survivors

well, while good calibration refers to the agreement between the outcomes and the predictors—

both are necessary for clinical translation of predictive models.

To improve clinical utility, prognostic scoring systems would ideally use data immediately

available at the time of decision-making. Models such as those demonstrated here could be

meaningfully used to perform risk adjustment between hospitals and, where available, pre-hos-

pital data could be added to a trained GBM or ensemble model to produce accurate compara-

tor data with respect to the management of cardiac arrest. Similarly, if models are being used

for early prognostication, then both pre-hospital and in-hospital data up to the point of deci-

sion should be utilised. In this study, variables collected reflected the highest and lowest values

for the first 24 hours of inpatient admission, with no pre-hospital data included. By using in-

hospital data and basic demographic variables only, there is the potential for the algorithms

shown here to be automated, deriving variables from the electronic health records of the facil-

ity at the end of the 24-hour period following admission. Finally, a key component of accep-

tance of ML models in practice revolves around explainability. Fundamentally, medical

decision-making is based on a trust of the data provided, and in view of the potential conse-

quences of medical decisions, understanding the reasoning behind predictions is essential.

Clinicians are unlikely to blindly trust an algorithm that is not both well validated and easily

explainable. Explainer models can provide evidence of the machine’s thought process to arrive

at the final prediction conclusion, which in the first instance can allow the clinician to
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determine whether the conclusion should be believed at all. Datasets will grow richer, and

explanations more complex, as algorithms form part of the electronic medical record, rather

than requiring manual data entry post hoc; this integration could potentially create new ‘bio-

markers’ calculated frequently to alert clinicians to clinical deterioration. Eventually, well-

explained predictions could be linked to physiologic pathways (through a process of pheno-

mapping) to focus targeted therapies and improve patient outcomes.

Conclusion

ML models based only on data from the first 24 hours of patient admission after cardiac arrest

significantly improve the accuracy of prediction for in-hospital mortality, compared with

existing illness severity scores. Explainer models provide patient-level explanations for ML

predictions, for clinician interpretation of accuracy. These findings may improve individual

prognostication, assist information provision, and prove useful for hospital-level risk adjust-

ment in regard to the management of cardiac arrest.
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