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Abstract

Background

Pythia is an automated, clinically curated surgical data pipeline and repository housing all

surgical patient electronic health record (EHR) data from a large, quaternary, multisite

health institute for data science initiatives. In an effort to better identify high-risk surgical

patients from complex data, a machine learning project trained on Pythia was built to predict

postoperative complication risk.

Methods and findings

A curated data repository of surgical outcomes was created using automated SQL and R

code that extracted and processed patient clinical and surgical data across 37 million clinical

encounters from the EHRs. A total of 194 clinical features including patient demographics

(e.g., age, sex, race), smoking status, medications, comorbidities, procedure information,

and proxies for surgical complexity were constructed and aggregated. A cohort of 66,370

patients that had undergone 99,755 invasive procedural encounters between January 1,

2014, and January 31, 2017, was studied further for the purpose of predicting postoperative

complications. The average complication and 30-day postoperative mortality rates of this

cohort were 16.0% and 0.51%, respectively. Least absolute shrinkage and selection opera-

tor (lasso) penalized logistic regression, random forest models, and extreme gradient

boosted decision trees were trained on this surgical cohort with cross-validation on 14 spe-

cific postoperative outcome groupings. Resulting models had area under the receiver opera-

tor characteristic curve (AUC) values ranging between 0.747 and 0.924, calculated on an
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out-of-sample test set from the last 5 months of data. Lasso penalized regression was identi-

fied as a high-performing model, providing clinically interpretable actionable insights. High-

est and lowest performing lasso models predicted postoperative shock and genitourinary

outcomes with AUCs of 0.924 (95% CI: 0.901, 0.946) and 0.780 (95% CI: 0.752, 0.810),

respectively. A calculator requiring input of 9 data fields was created to produce a risk

assessment for the 14 groupings of postoperative outcomes. A high-risk threshold (15% risk

of any complication) was determined to identify high-risk surgical patients. The model sensi-

tivity was 76%, with a specificity of 76%. Compared to heuristics that identify high-risk

patients developed by clinical experts and the ACS NSQIP calculator, this tool performed

superiorly, providing an improved approach for clinicians to estimate postoperative risk for

patients. Limitations of this study include the missingness of data that were removed for

analysis.

Conclusions

Extracting and curating a large, local institution’s EHR data for machine learning purposes

resulted in models with strong predictive performance. These models can be used in clinical

settings as decision support tools for identification of high-risk patients as well as patient

evaluation and care management. Further work is necessary to evaluate the impact of the

Pythia risk calculator within the clinical workflow on postoperative outcomes and to optimize

this data flow for future machine learning efforts.

Author summary

Why was this study done?

• Most postoperative complication risk prediction models use American College of Sur-

geons (ACS) National Surgical Quality Improvement Program (NSQIP) data.

• Few published postoperative risk prediction models using electronic health record

(EHR) data exist.

• Creating and updating manual datasets such as ACS NSQIP are intensive processes

with regards to time, labor, and cost.

What did the researchers do and find?

• A curated data repository of postoperative outcomes was created that extracted and pro-

cessed patient clinical and surgical data across 37 million clinical encounters in EHRs

into 194 clinical features.

• Machine learning models were built off this dataset to predict risk of postoperative com-

plications. Models were able to classify patients at high risk of postoperative complica-

tion with high sensitivity and specificity.

• An online calculator requiring input of 9 data fields was created to produce a risk assess-

ment within the clinic environment.

Pythia: EHR data repository for surgical risk modeling
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What do these findings mean?

• Machine leaning models built off an automatically extracted and curated EHR surgical

dataset have strong predictive performance for detecting surgical complications.

• The long-term cost of updating this surgical dataset is lower than that of manually

updated datasets.

Introduction

Complications arise in 15% of all US surgical procedures performed, with high-risk surgeries

having complications in up to 50% of cases [1]. In addition to worsening quality of life, surgical

complications in the US cost on average over $11,000 per major 30-day complication [2]. With

an estimated 19 million surgeries performed each year [3], the total cost of surgical complica-

tions per year in the US is approximately $31.35 billion. In response, efforts to enhance preop-

erative and perioperative support for high-risk and high-cost patients are increasing

nationwide [4]. Targeted preoperative intervention clinics for high-risk individuals have been

shown to improve 30-day postoperative outcomes at a multisite, quaternary health center [5].

However, the task of identifying these patients within a preoperative setting is challenged by

difficulties in timely access to pertinent patient care data and lack of robust predictive models.

The most widespread pre-surgical high-risk patient identification program is the National

Surgical Quality Improvement Program (NSQIP) calculator developed by the American Col-

lege of Surgeons (ACS). This online risk prediction calculator represents national surgical data

from 393 different institutions [6]. It has been shown that predictive models built from nation-

ally derived databases have limited local accuracy due to an average effect derived from aggre-

gating data from many different institutions, populations, and regions. Cologne et al.

demonstrated that NSQIP postoperative risk predictions differed significantly in terms of

length of stay, surgical site infections, and major complications from actual rates at a single

institution [7]. Moreover, Etzioni et al. and Osborne et al. demonstrated that enrollment in

and feedback from NSQIP are not associated with improved postoperative outcomes or lower

Medicare payments among surgical patients [8,9]. This indicates the need for institution-spe-

cific improvement efforts driven by highly curated institution-specific data.

The aggregation of health data within each local institution’s electronic health records

(EHRs) serves as fertile ground for machine learning to transform healthcare. Machine learn-

ing models utilizing EHR data to predict in-hospital length of stay and mortality as well as

postoperative complications can be more accurate than prediction models built from manually

collected data [10–12]. However, despite the maturation of methodological approaches to

working with health data, there has been limited impact on provider productivity and patient

outcomes [13]. Current health information technology infrastructure does not facilitate rapid

transmission of data between EHRs and model applications. Furthermore, building technolo-

gies that integrate with current EHR systems requires significant financial investment [14,15].

The primary aim of this study was to demonstrate an initial use case of machine learning

leveraging an institute-specific surgical data pipeline and repository derived from EHRs,

Pythia, to identify patients at high risk of post-surgical complications. Pythia was built as part

of an innovation initiative to efficiently curate high-volume, high-quality data to monitor sur-

gical care and outcomes. Although EHR data can be inaccurate or incomplete [16], models

Pythia: EHR data repository for surgical risk modeling
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that are developed and validated on local, structured data in EHRs are best positioned for

deployment to support clinical workflows [17]. Pythia was designed to both promote the devel-

opment of machine learning models and bridge the translational gap to enable rapid deploy-

ment of validated models. The secondary aim of this study was to describe machine learning

model design decisions that supported clinical interpretability and rapid development of a

decision support tool to be used within the preoperative clinic workflow. This decision support

tool enables surgeons and referring clinicians to identify high-risk patients who may require

targeted assessments and optimization as part of their preoperative care.

Methods

This project was approved by the Duke Institutional Review Board (Pro00081702), with waiver

of informed consent. This was a single-center, retrospective study at Duke University Health

System (DUHS), a large, quaternary, multisite hospital system that had 68,000 inpatient stays

and more than 2 million outpatient visits in 2017 [18]. This study is reported as per the Trans-

parent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis

(TRIPOD) guidelines (S1 Checklist) [19].

Training dataset for models

A cohort of 163,599 patients was identified in the DUHS EHR system who had undergone any sur-

gical procedure between June 1, 2012, and May 31, 2017. Clinical patient data were extracted from

the EHR Oracle database across all inpatient and outpatient encounters using SQL queries. Outpa-

tient and inpatient medications, vital signs, diagnoses, procedures, and orders were extracted

across 37,195,164 inpatient and outpatient encounters. Patient demographic and social history

data including age, sex, BMI, race, and smoking status were also extracted (Fig 1).

A cohort of 90,145 patients that had undergone 145,604 invasive procedures between Janu-

ary 1, 2014, and January 31, 2017, was identified to develop machine learning models to pre-

dict post-surgical complications. Patients under the age of 18 years were excluded from the

cohort. Encounters with a CPT code included in the Surgery Flag Software [20] were defined

as invasive procedures and included in the cohort. All CPT codes for invasive procedures were

grouped into 128 procedure groupings (S1 Table). Predictor variables for the models included

comorbidities, number of CPT codes recorded during the invasive procedure, outpatient med-

ications, and demographics. Patient comorbidities were identified by surveilling all ICD codes

within 1 year preceding the date of the procedure. These diagnosis codes were then classified

into 29 binary comorbidity groupings (S1 Table) as defined by the Elixhauser Comorbidity

Index [21]. Patients’ active outpatient medications recorded during medication reconciliation

at preoperative visits were classified into 15 therapeutic binary indicator groupings (S1 Table),

along with a separate feature that counted the total number of active medications. Surgical

complications were defined by diagnosis codes occurring within 30 days following the surgical

procedure. In total, 271 diagnosis codes (S2 Table) were grouped into 12 groupings that

aligned with prior studies evaluating post-surgical complications [5]. A composite variable,

“any complication,” for each procedure was created by aggregating across all 12 complication

groupings, and mortality was identified as death occurring within 30 days of the index proce-

dure date. Mortality was captured in the EHRs during encounters (for in-hospital deaths) or

uploaded from the Social Security Death Index (for out-of-hospital deaths). In total, 99,755

encounters had complete information on the set of 194 predictors and 14 postoperative out-

come groupings, including any complication and 30-day mortality. Encounters missing EHR

data were deemed not missing at random and were therefore excluded from the model devel-

opment cohort. This cohort was used for training, validating, and testing model prediction

Pythia: EHR data repository for surgical risk modeling
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algorithms. SQL and R code were subsequently written to extract, clean, and curate patient

data from the EHRs to the surgical data repository. Efforts to automate this process are cur-

rently underway.

Machine learning methods

Due to the high dimensionality of the input features and the large sample size, machine learn-

ing methods were used to model the likelihood of post-surgical complications. Least absolute

shrinkage and selection operator (lasso) penalized logistic regression [22], random forest [23],

and extreme gradient boosted decision tree [24] models were trained on 88,255 surgical

encounters from the Pythia data repository for each of the 14 postoperative outcomes (13 out-

come groupings and 30-day mortality). Lasso is an l1-penalized regression method that per-

forms both regularization and variable selection, which results in a regression solution with

improved interpretability and prediction accuracy compared to other regression approaches.

Random forests are an ensemble learning method in which multiple decision trees are con-

structed and averaged to form a solution that is resistant to overfitting to the training data.

Lastly, boosted decision trees are another ensemble decision tree approach that aims to opti-

mize a differential loss function; in our case, the loss function is the area under the receiver

operator characteristic curve (AUC). The latest set of 11,500 (11.5%) encounters, from October

1, 2016, to January 31, 2017, was excluded from the complete set of 99,755 encounters, for vali-

dation testing. This was done in order to provide estimates of how the models would perform

if put into operations currently within our local setting.

Ten-fold cross-validation was used within the training set to train lasso models, using the R

package glmnet [25] to find the optimal shrinkage hyperparameter for each of the 14

Fig 1. SQL and R code were written to extract, clean, and curate patient data from the electronic health record (EHR) data warehouse. Extracted raw data elements

included inpatient and outpatient encounter information, Current Procedural Terminology (CPT) codes, patient demographics, International Classification of Diseases

(ICD) codes, medications, and vitals. These elements were curated into clinical features to feed into a cleaning data pipeline to populate Pythia’s data repository. Vars,

variables.

https://doi.org/10.1371/journal.pmed.1002701.g001
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outcomes. Random forests were trained using the R package randomforest [26]. The number

of trees was set to 500, and the number of candidate splits was determined using cross-valida-

tion across a range of possible values. Lastly, extreme gradient boosted decision tree models

were trained using the R package XGboost [27], where the learning rate, eta, and depth of trees

were chosen by cross-validation across possible ranges of values. The chosen hyperparameters

were cross-validated for each individual outcome across these 3 model types.

Lasso penalized logistic regression, random forest models, and extreme gradient boosted

decision trees were chosen specifically due to their ability to provide variable importance and

interpretability. By providing model users with additional information about predictor

weights, clinicians can glean insights into potential patient risk mitigation strategies. During

experiments, elastic net penalized logistic regression models were built as well, but their per-

formance was almost identical to that of the lasso models and they were therefore omitted.

Furthermore, by comparing different approaches, clinician users can understand how different

types of machine learning models perform on large complex EHR patient data.

Superior models were chosen based on predictive performance measured by AUC, sensitiv-

ity, and specificity, with a focus on clinical interpretability. After model selection, an online

calculator was built using R Shiny [28] for use in the clinic. The calculator was organized into

3 sections requiring patient information: (1) procedure details, (2) demographic and social his-

tory, and (3) patient comorbidities and outpatient medications. The calculator ran the selected

machine learning models to provide complication risk scores for all 14 outcomes. Complica-

tion risks greater than 5% were displayed on the user interface, as requested by clinical part-

ners. A high-risk threshold that maximizes the sum of sensitivity and specificity for the “any

complication” outcome was chosen in order to identify high-risk patients requiring further

evaluation.

Results

Table 1 displays summary statistics for all invasive procedures within Pythia and the machine

learning model cohort. In the model cohort, 45% of encounters involved male patients, and

the average age was 62.1 years. The most common comorbidities were hypertension (47.4%),

tumor without metastasis (13.8%), and uncomplicated diabetes (13.4%). The most common

outpatient medications were cardiovascular drugs (68.2%), analgesics (40.0%), and antiplatelet

drugs (32.8%). Post-surgical complication rates were 16.0% for any complication within 30

days and 0.5% for death within 30 days. Characteristics between the 2 groups were consistently

similar. Pythia encounters excluded from the machine learning model cohort were most often

missing active outpatient medications.

The resulting 42 models (lasso, random forest, and extreme gradient boosted decision trees

for 14 outcomes) overall demonstrated strong predictive performance, with AUCs ranging

between 0.747 and 0.924 (Table 2) calculated on a non-random, out-of-sample test set of the

latest patient encounters from a different time period than the training set data. The size of

this test set was 11,500 encounters. However, the lasso penalized logistic regression performed

slightly superiorly to the random forest models, with AUCs ranging from 0.747 to 0.903. Lasso

and extreme gradient boosted decision tree models performed very similarly. However, lasso

outperformed extreme gradient boosted decision trees in 8 outcome models (any complica-

tion, 30-day mortality, gastrointestinal, genitourinary, hematological, integumentary, renal,

and shock), while extreme gradient boosted decision trees outperformed lasso in 5 of the

remaining outcome models (cardiac, endocrine, pulmonary, sepsis, and vascular). Neurologi-

cal outcome models had the same AUC performance (0.810) in lasso and extreme gradient

boosted decision trees. The receiver operator characteristic curves in Fig 2 display the resulting

Pythia: EHR data repository for surgical risk modeling
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Table 1. Baseline and clinical characteristics of invasive surgical procedures.

Baseline characteristic Invasive procedures within Pythia (Jan 2014–Jan 2017)

(N = 145,604)

Machine learning model cohort

(N = 99,755)

Patients 90,145 66,370

Age (years) 59.69 (±14.33) 62.10 (±14.36)

Sex male 45% 45%

Procedure codes

Total Current Procedural Terminology codes 192,300 131,800

Unique codes 2,664 2,450

Unique procedure classes 128 127

Race

White 104,846 (72.0%) 72,657 (72.8%)

Black or African American 30,798 (21.2%) 21,230 (21.3%)

Asian 2,264 (1.6%) 1253 (1.3%)

2 or more races 1,304 (0.8%) 701 (0.7%)

American Indian or Alaska Native 599 (0.4%) 432 (0.4%)

Other/missing 5,793 (4.0%) 3,482 (3.5%)

Comorbidities

Hypertension 58,592 (40.2%) 47,273 (47.4%)

Solid tumor without metastasis 18,885 (13.0%) 13,799 (13.8%)

Diabetes without chronic complications 16,480 (11.3%) 13,361 (13.4%)

Chronic pulmonary disease 15,661 (10.8%) 11,877 (11.9%)

Obesity 15,542 (10.7%) 11,405 (11.4%)

Deficiency anemias 14,055 (9.7%) 10,103 (10.1%)

Depression 13,188 (9.1%) 10,007 (10.0%)

Hypothyroidism 12,212 (8.4%) 9,264 (9.3%)

Fluid and electrolyte disorders 11,951 (8.2%) 8,608 (8.6%)

Diabetes with chronic complications 11,834 (8.1%) 8,586 (8.6%)

Renal failure 11,744 (8.1%) 8,781 (8.8%)

Other neurological disorders 8,905 (6.1%) 6,452 (6.5%)

Peripheral vascular disease 8,790 (6.0%) 6,593 (6.6%)

Congestive heart failure 7,601 (5.2%) 5,465 (5.5%)

Valvular heart disease 7,143 (4.9%) 5,337 (5.4%)

Psychoses 4,895 (3.4%) 3,694 (3.7%)

Rheumatoid arthritis 4,711 (3.2%) 3,795 (3.8%)

Coagulation deficiency 4,114 (2.8%) 2,872 (2.9%)

Weight loss 3,885 (2.7%) 2,695 (2.7%)

Pulmonary circulation disorders 3,719 (2.6%) 2,585 (2.6%)

Metastatic cancer 3,227 (2.2%) 2,330 (2.3%)

Drug abuse 3,114 (2.1%) 2,331 (2.3%)

Liver disease 3,049 (2.1%) 2,338 (2.3%)

Alcohol abuse 1,633 (1.1%) 1,096 (1.1%)

Blood loss anemias 1,314 (0.9%) 829 (0.8%)

Lymphoma 1,256 (0.9%) 966 (1.0%)

Paralysis 1,156 (0.8%) 790 (0.8%)

HIV or AIDS 318 (0.2%) 246 (0.3%)

Peptic ulcer disease 47 (0.0%) 40 (0.0%)

Complications within 30 days

Any complication 22,554 (15.5%) 15931 (16.0%)

(Continued)

Pythia: EHR data repository for surgical risk modeling
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curve for each modeling method across all complications. This visualization confirms that

lasso, random forest, and extreme gradient boosted decision trees performed very similarly.

These well-established and interpretable models achieved strong performance on structured

data that are highly available within our EHR system, paving the way for rapid deployment of

an application to impact patient care.

High-risk thresholds were determined with the aim of identifying patients needing referrals

to targeted perioperative optimization treatment programs. Fig 3 displays predicted probabili-

ties for patients who experienced a postoperative complication and for those who did not for

each machine learning model. This plot demonstrates a clear delineation between the 2

Table 1. (Continued)

Baseline characteristic Invasive procedures within Pythia (Jan 2014–Jan 2017)

(N = 145,604)

Machine learning model cohort

(N = 99,755)

Cardiac 8,439 (5.8%) 6,086 (6.1%)

Genitourinary 3,669 (2.5%) 2,644 (2.7%)

Pulmonary 3,616 (2.5%) 2,420 (2.4%)

Hematological 3,121 (2.1%) 2,198 (2.2%)

Neurological 2,634 (1.8%) 1,770 (1.8%)

Gastrointestinal 2,432 (1.7%) 1,706 (1.7%)

Renal 2,358 (1.6%) 1,678 (1.7%)

Endocrine 2,136 (1.5%) 1,650 (1.7%)

Vascular 2,057 (1.4%) 1,247 (1.3%)

Integumentary 1,930 (1.3%) 1,373 (1.4%)

Sepsis 1,902 (1.3%) 1,302 (1.3%)

Shock 911 (0.6%) 664 (0.7%)

Death 768 (0.5%) 508 (0.5%)

Falls 494 (0.3%) 326 (0.3%)

Inpatient procedures 42,228 (29.0%) 30,426 (30.5%)

Active medications

Cardiovascular 73,640 (68.0%) 68,013 (68.2%)

Analgesics 43,557 (40.2%) 39,946 (40.0%)

Antiplatelet drugs 35,688 (32.9%) 32,702 (32.8%)

Diuretics 26,713 (24.7%) 24,538 (24.6%)

Cardiac drugs 26,214 (24.2%) 24,103 (24.2%)

Central nervous system drugs 24,209 (22.3%) 22,393 (22.4%)

Antihyperglycemics 23,328 (21.5%) 21,331 (21.4%)

Antibiotics 17,974 (16.6%) 16,765 (16.8%)

Hormones 15,516 (14.3%) 14,404 (14.4%)

Anticoagulants 6,519 (6.1%) 5,830 (5.8%)

Antineoplastics 4,305 (4.3%) 3,985 (4.0%)

Antivirals 4,116 (3.8%) 3,803 (3.8%)

Autonomic drugs 3,325 (3.1%) 3,061 (3.1%)

Immunosuppressants 2,821 (2.6%) 2,627 (2.6%)

Anesthetics 2,225 (2.1%) 2,063 (2.1%)

Average number of active medications 3.94 (±2.66) 3.93 (±2.65)

Data are given as n, percent, n (percent), or mean (±SD). Left column shows the summary statistics for the set of all invasive surgical encounters, whereas the right

column shows the same statistics for the set of encounters with complete predictor information that was used for the training and testing cohorts. Active outpatient

medication percentages are over the non-missing rows (N = 108,400).

https://doi.org/10.1371/journal.pmed.1002701.t001

Pythia: EHR data repository for surgical risk modeling

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002701 November 27, 2018 8 / 19

https://doi.org/10.1371/journal.pmed.1002701.t001
https://doi.org/10.1371/journal.pmed.1002701


populations, with patients experiencing postoperative complications having higher risk predic-

tions. Due to the differences in distributions displayed, the high-risk threshold was purpose-

fully chosen as a percent risk value bordering between the 2 population distributions, resulting

in a strong cutoff. Specifically, the thresholds were chosen by maximizing the sum of sensitivity

and specificity. The resulting sensitivities and specificities are displayed in Table 3. Under a

threshold of 0.142 (14.2% risk of any complication), a sensitivity of 0.775, specificity of 0.749,

and positive predictive value (PPV) of 0.362 were achieved with lasso modeling. The resulting

sensitivities and specificities were similar across methods. A threshold of 14.9% was chosen for

random forest models, and a threshold of 17.4% for extreme gradient decision tree models,

resulting in a sensitivity of 0.757 and 0.725, a specificity of 0.744 and 0.792, and a PPV of 0.351

and 0.390, respectively. Consequently, lasso and extreme gradient boosted decision tree mod-

els identified a more concentrated group of patients with higher complication rates (36% and

39%) than random forest (35%). Furthermore, lasso and extreme gradient boosted decision

tree models have a higher PPV (36.2% and 39.0%) compared to random forest (35.1%),

thereby better identifying high-risk patients who then have postoperative complications. How-

ever, in order to optimize model performance for healthcare providers by providing clinically

interpretable insights regarding risk factors, and identifying a more targeted number of

patients, we chose the 14 lasso models to predict complication risk through the online web

application for DUHS clinicians. This was done because lasso models allow for better

interpretability of which particular health predictors will affect a patient’s risk of postoperative

complication, as well as how much each predictor affects the predicted postoperative outcome.

Our clinical partners wanted this insight within this decision support tool.

In order to test model stability over time, the observed versus predicted rate of any compli-

cation in our data was plotted (Fig 4). Using a high-risk threshold of 14.4% risk of complica-

tion, the machine learning models predict that approximately 35% of procedures will result in

a complication, while the actual rate of complications is approximately 17% at DUHS over

time. This rate difference was intentional, to increase sensitivity to capture more high-risk

patients for perioperative optimization. Our clinical and operational partners felt that targeted

Table 2. AUCs and 95% CIs for lasso, random forest, and extreme gradient boosted decision trees for 14 postoperative outcomes.

Outcome AUC (95% CI)

Lasso Random forest Extreme gradient boosted decision trees

Any complication 0.836 (0.825, 0.846) 0.829 (0.819, 0.840) 0.835 (0.825, 0.846)

Cardiac 0.880 (0.867, 0.893) 0.879 (0.860, 0.888) 0.883 (0.871, 0.896)

30-day mortality 0.916 (0.883, 0.950) 0.832 (0.761, 0.903) 0.861 (0.805, 0.917)

Endocrine 0.815 (0.779, 0.850) 0.798 (0.760, 0.837) 0.828 (0.795, 0.861)

Gastrointestinal 0.820 (0.790, 0.849) 0.781 (0.749, 0.813) 0.804 (0.774, 0.836)

Genitourinary 0.781 (0.752, 0.810) 0.747 (0.717, 0.777) 0.772 (0.744, 0.801)

Hematological 0.908 (0.890, 0.925) 0.886 (0.865, 0.908) 0.906 (0.889, 0.924)

Integumentary 0.845 (0.813, 0.876) 0.789 (0.749, 0.829) 0.826 (0.791, 0.860)

Neurological 0.890 (0.864, 0.917) 0.884 (0.859, 0.909) 0.890 (0.866, 0.913)

Pulmonary 0.871 (0.851, 0.891) 0.844 (0.817, 0.870) 0.875 (0.854, 0.895)

Renal 0.910 (0.891, 0.930) 0.903 (0.881, 0.925) 0.909 (0.888, 0.930)

Sepsis 0.835 (0.795, 0.875) 0.814 (0.773, 0.855) 0.850 (0.815, 0.885)

Shock 0.924 (0.901, 0.946) 0.864 (0.821, 0.908) 0.904 (0.873, 0.936)

Vascular 0.878 (0.843, 0.913) 0.886 (0.852, 0.921) 0.890 (0.861, 0.920)

AUC, area under the receiver operator characteristic curve; lasso, least absolute shrinkage and selection operator.

https://doi.org/10.1371/journal.pmed.1002701.t002
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interventions could comfortably accommodate 35% of patients undergoing invasive proce-

dures. In addition, Fig 4 demonstrates that our model captures underlying patient patterns

that occur within our local setting, without information about seasonal or time trends.

In response to requests made by peer reviewers, we further assessed Pythia’s model perfor-

mance through a local validation analysis by comparing our methods to expert clinical criteria

for a geriatric preoperative optimization intervention within our healthcare system. Expert

clinical criteria for geriatric high risk included patients taking more than 5 medications or

with multiple comorbidities, neurological disorders, or recent weight loss, as previously

described [5]. A new test set (n = 5,734) was identified using our original test set of all patients

on or after October 1, 2016, and filtering for geriatric patients (age > 65 years). Our model

identified 1,933 patients with risk scores above our model’s high-risk threshold. In compari-

son, we identified 3,102 geriatric patients using expert clinical criteria within the same test set.

The mean complication rate for high-risk patients identified by our model was 37.99%, while

Fig 2. Graphs displaying the resulting receiver operator characteristic curves for each modeling method across all 14 complications. comp, complication; endo,

endocrine; gastro, gastrointestinal; genit, genitourinary; hemat, hematological; lasso, least absolute shrinkage and selection operator; neuro, neurological; pulm,

pulmonary.

https://doi.org/10.1371/journal.pmed.1002701.g002
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the mean complication rate for patients identified by clinical criteria was 16.55%, indicating

that our model identified a more specific high-risk cohort of patients. The sensitivity,

Fig 3. Boxplots displaying the model predicted probabilities for patients who experienced a postoperative complication versus those who did not.

Any postoperative complication (category = 1) versus no complications (category = 0). Thresholds (dashed lines) were chosen based on these population

delineations. lasso, least absolute shrinkage and selection operator.

https://doi.org/10.1371/journal.pmed.1002701.g003

Table 3. Resulting threshold, sensitivity, specificity, and PPV for each of the 3 modeling methodologies for the composite outcome, any complication.

Method Threshold Sensitivity Specificity PPV High-risk patients (%)

Lasso 0.144 0.775 0.749 0.362 36%

Random forest 0.149 0.757 0.744 0.351 35%

Extreme gradient boosted decision trees 0.174 0.725 0.792 0.390 39%

The percent of high-risk patients selected by each method is also displayed. All results were calculated on the held-out test set of 11,500 encounters.

lasso, least absolute shrinkage and selection operator; PPV, positive predictive value.

https://doi.org/10.1371/journal.pmed.1002701.t003
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specificity, and PPV for each methodology of risk stratification were also determined, with our

model having a sensitivity of 77.24%, specificity of 74.92%, and PPV of 37.92% compared to a

sensitivity of 73.45%, specificity of 49.74%, and PPV of 22.47% for the expert clinical criteria.

In order to directly compare our model predictions to the ACS NSQIP model predictions,

we input preoperative health information from 75 patients in the ACS NSQIP calculator and

then in Pythia’s risk calculator. These patients were real patients from our local setting who

were randomly selected and were not present within our models’ training set. We upsampled

patients with postoperative mortality (16%) to provide more stable estimates of AUC, sensitiv-

ity, and specificity. We compared the risk predictions and performance of the 30-day postop-

erative mortality model and found that Pythia’s model outperformed the NSQIP model by

0.12 AUC (Pythia 0.79 versus NSQIP 0.67) (Fig 5). Furthermore, sensitivity (0.9167 versus

0.7500), specificity (0.5873 versus 0.5556), and PPV (0.2973 versus 0.2432) were also higher for

Pythia’s 30-day mortality risk prediction.

Discussion

We demonstrated that machine learning models built from highly curated, clinically meaning-

ful features from local, structured EHR data were able to achieve high sensitivity and specificity

for classifying patients at risk of post-surgical complications. The models and accompanying

application can be easily deployed to identify patients for targeted perioperative treatment.

We chose the 14 lasso models to predict complication risk through an online web applica-

tion built for local clinicians to identify high-risk patients. Our results show that the

Fig 4. Predicted 30-day complication rate based on lasso model versus observed complication rates. January 2014–September 2016 shows predicted complication

rates of the training data, and October 2016–January 2017 displays projected complication rates based on a non-random, out-of-sample test set from a different time

period. lasso, least absolute shrinkage and selection operator.

https://doi.org/10.1371/journal.pmed.1002701.g004
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performances of lasso, random forest, and extreme gradient boosted decision tree models on a

non-random, out-of-sample test set from a later time period are nearly identical. However,

lasso models performed superiorly to the random forest and extreme gradient boosted deci-

sion tree models as a whole, while also returning interpretable coefficients that provide clini-

cians insights into why patients are at high risk for complications. Lasso models also perform

variable selection, minimizing the number of data inputs required in the web application. The

variable selection used for the initial pilot of the application, during which manual entry of

input features is required, will enable rapid use during clinic visits. The tool requires the input

of 9 patient features, curated by grouping the reduced set of covariates chosen by our lasso

models, to produce risk scores for 14 postoperative outcome groupings. For example, the

comorbidities feature within our calculator is comprised of the 29 binary Elixhauser group-

ings. This comorbidities feature contains a dropdown menu where multiple comorbidities can

be selected if needed. Moreover, Fig 6 demonstrates how the structure of the calculator inputs

aligns well with the information collected during surgical clinic visits and with the typical pre-

surgical evaluation workflow. As all fields are available as structured data in the EHR system, if

Fig 5. Plotted AUCs for 30-day postoperative mortality in Pythia versus ACS NSQIP. ACS, American College of Surgeons;

AUC, area under the receiver operator characteristic curve; NSQIP, National Surgical Quality Improvement Program.

https://doi.org/10.1371/journal.pmed.1002701.g005
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the initial pilot is successful, Pythia will enable the rapid deployment of an automated pipeline

to extract patient data and calculate risk to notify relevant providers.

Through our sensitivity analysis comparing expert clinical criteria to Pythia’s models, we

were able to demonstrate that machine learning models trained from local data can identify

individuals at high risk of complications and high cost within the local patient population.

Pythia’s models were shown to perform at a higher sensitivity and specificity through this anal-

ysis. By specifically targeting a narrower population of patients needing preoperative optimiza-

tion, our healthcare system can better utilize clinical resources while lowering clinic costs.

Currently, the NSQIP calculator is the most widely used pre-surgical risk prediction model.

Recent publications predict postoperative complication risks using ACS NSQIP data [29–33].

These data are manually extracted from EHRs, making them high fidelity but very difficult to

update with new patient data or to adjust by adding new variables. Two studies compare mod-

els using automatically extracted (EHR) data versus manually collected data. Comparable

AUCs were reported by Anderson et al. [34] for multivariate logistic regression models trained

on 66 manually collected NSQIP variables versus 25 EHR NSQIP variables. Differences ranged

from −0.0073 to 0.1944 across specific surgery procedures for mortality and from 0.0198 to

0.0687 for morbidity [34]. In Amrock et al., the AUCs were 0.813 for mortality and 0.629 for

morbidity in multivariate logistic regression models utilizing manually collected data versus

0.795 for mortality and 0.629 for morbidity in the same type of models utilizing EHR data

[35]. Both studies found that models using EHR data perform similarly to models using manu-

ally extracted data in predicting postoperative morbidity and mortality. However, deploying

machine learning models in operations at scale requires automated pipelines for structured

EHR data to calculate risk scores and trigger clinical workflows.

The NSQIP calculator uses a logistic regression model using random intercepts per hospital

[6], while our models incorporate machine learning via lasso, random forest, and extreme gra-

dient boosted decision trees. We specifically decided not to utilize logistic regression due to

the complexity of our patient data. Due to the high collinearity within our dataset and inherent

sparsity of many of the covariates, we found that logistic regression suffers from inflated vari-

ance of the learned coefficients. Benefits of the lasso model include its ability to perform vari-

able selection, thereby helping to reduce multicollinearity while providing clinical clarity into

which predictors cause an increase of specific complication risks. Beyond differences in model

choice, the data and validation methodologies differ significantly between the 2 calculators.

The ACS NSQIP calculator reports strong predictive in-sample performance, with AUCs of

0.944 for mortality and 0.816 for morbidity [6]. Because the ACS NSQIP models are trained

and tested on the same cohort of patients, it is difficult to discern whether these results indicate

accurate model predictions or overfitting, limiting the NSQIP calculator’s clinical use capabili-

ties. In comparison, Pythia’s calculator is validated on a non-random, out-of-sample test set

from a different time period derived from our health system’s EHRs, with similar AUCs dem-

onstrating strong potential performance in clinical practice with appropriate validation

methods.

Our analysis directly comparing the 30-day postoperative mortality models from ACS

NSQIP and Pythia demonstrates the superior performance of Pythia’s predictions on our local

patients. Many publications have demonstrated the inability of the ACS NSQIP calculator to

accurately depict postoperative complication risks in many different patient populations [30–

33]. However, very few publications propose superior methods. Not only does this direct com-

parison between the 2 models provide further evidence that the ACS NSQIP calculator does

not perform strongly on our local patients, but it also puts forth a new methodology of local

data extraction, curation, and modeling. This new methodology is shown to be superior to

ACS NSQIP’s for predicting postoperative complications in a local setting.

Pythia: EHR data repository for surgical risk modeling
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Few published postoperative risk prediction models utilizing EHR data exist. SORT (Surgi-

cal Outcome Risk Tool) was developed by Protopapa et al. and predicts 30-day mortality utiliz-

ing 6 predictor variables using logistic regression, with AUCs ranging from 0.82 to 0.96 for

surgical subspecialty groups [36]. To our knowledge, the only other studies utilizing EHR

extracted data to build and train machine learning models for postoperative risk predictions

are Weller et al. [11] and Soguero-Ruiz et al. [12]. Weller et al. built 5 different types of

machine learning models to predict postoperative superficial skin infection, ileus, and bleeding

in colorectal surgery cases. However, due to small sample size, their reported AUCs were not

as strong, with the exception of random forest models predicting postoperative bleeding com-

plications (AUC 0.8) [11]. Similarly, Soguero-Ruiz et al. used EHR data to predict postopera-

tive anastomosis leakage in colorectal surgeries. Their reported AUC was strong (0.92) using a

support vector machine (SVM) model [12]. Our body of work, however, differs greatly from

these previously generated postoperative risk prediction models. Not only do we utilize EHR-

data-driven machine learning models, but our models have strong predictive performance

while predicting postoperative outcomes across a broad range of surgical procedures. In addi-

tion, our calculator is based on real-time data extraction from a pipeline from the EHR system

that can be continuously and automatically updated and does not rely on manual extraction.

The current study addresses a substantial breadth of surgical complications, providing diverse

opportunity to intervene on high-risk patients and improve outcomes.

Limitations of our work include missing data, resulting in 99,755 encounters being used to

build these models. This number is reduced from the total 145,604 invasive procedure encoun-

ters within the data repository. While this is a large reduction in the original data, it still pro-

vides a large and sufficient sample to model and predict complications with great accuracy.

Fig 6. R Shiny application hosting the preoperative risk prediction calculator to use for preoperative patient evaluation in clinic. The calculator includes 9 input

fields and calculates a percent risk for each of the 14 postoperative outcomes per patient. The calculator also identifies patients who meet the determined high-risk

threshold.

https://doi.org/10.1371/journal.pmed.1002701.g006
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We chose not to consider imputation methods due to the underlying difficulties of imputing

clinical data. Specifically, the most frequent missing variables were outpatient medication lists.

The complication groupings within our models are also defined broadly, limiting the user’s

ability to understand exactly which type of complication the patient is at risk for within the

groupings. For example, cardiac complications include a wide range of ICD-9 and ICD-10

diagnosis codes. Possible missing data also include outpatient death data. The Social Security

Death Index excludes a portion of state reported deaths due to public data restrictions as of

2011 [37]. Pythia is a current project that requires optimization with regards to missing data

and further curation of fields from additional tables in the EHR database. Efforts to develop

strategies for effective imputation, data curation, and the addition of other quality data sources

are priorities for future iterations.

Further analytical limitations include our 30-day mortality model comparison to ACS

NSQIP’s model performance. This analysis was based on a random sample of 75 patients.

Analyses with larger patient sample sizes will be needed in the future.

Although our proposed data collection methodology is less burdensome due to non-manual

data extraction reducing cost and time, as with all data collection methods, there are limita-

tions. Over time, standards of data collection within the EHR system may change as well as

clinical practice trends, both altering the way data are represented in large EHR data reposito-

ries. Monitoring systems that are able to catch these variations need to be put in place as these

healthcare repositories continue to grow over long periods of time. Efforts to develop the mon-

itoring architecture around EHR repositories are also priorities for future iterations of this sur-

gical data repository.

Our work demonstrates that we can better identify patients who are high risk and high cost

within our referral base by creating a site-specific surgical data pipeline and repository to fuel

our clinical calculator. Our calculator is unique and personalized to our institution because it

is derived from our local patient population, with our university-affiliated surgeons. As stated

by Bates et al., “algorithms are most effective and perform best when they are derived from

and then used in similar populations” [38], thus further highlighting the need for local data to

drive healthcare insights. By leveraging our local institution’s EHR data, not only are we able

to easily build machine learning models to improve healthcare delivery to our patients, but we

also have the ability to enhance our education for trainees and build future quality improve-

ment initiatives. In addition, our calculator is in the form of a clinical portal on a web applica-

tion for easy usability. By quickly inputting a surgical patient’s information into the 9 fields of

the calculator, a clinician can see if the patient is deemed high risk, thereby requiring further

preoperative evaluation and prompting referral to a high-risk clinic. Displays of the risk attrib-

utable to a given disease or medication can also help the team prioritize preoperative interven-

tions and postoperative monitoring and care that have been shown to significantly lower

postoperative complications as well as length of stay [5]. Use of the tool may also promote

more specific discussions about the benefits and risks of surgery with patients, enhance shared

decision-making, and advance care planning. If implemented thoughtfully within a preopera-

tive clinic workflow, this tool has the ability to help support decisions made by a patient’s care

team. Hosted through a simple web application, our risk calculator can be easily incorporated

into the EHR system and can be automatically populated as patient features are being input

into the chart. Plans to integrate this calculator into our institute’s EHR system are currently

underway. Once fully implemented, the models would be updated on a yearly basis by retrain-

ing and validating them with the latest patient data. Through this yearly retrain and validation

plan, we will be able to track any changes made to our EHR data collection system and deter-

mine whether our models are performing strongly over time. Furthermore, as a project within

our institute’s learning health system, we plan to reevaluate our implementation as a whole
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and make correctional adjustments on a continual basis to best support our providers in their

decision-making process. We believe that our methods for building a data pipeline from EHRs

in order to develop machine learning models create a prototype for an institutional learning

health system. In the future, our methods can be disseminated to develop infrastructure and

best practices to extend to other institutions and patient populations in order to improve

patient care at other healthcare institutions.
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