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Abstract

Background

We aimed to investigate prospective associations of circulating or adipose tissue odd-chain

fatty acids 15:0 and 17:0 and trans-palmitoleic acid, t16:1n-7, as potential biomarkers of

dairy fat intake, with incident type 2 diabetes (T2D).

Methods and findings

Sixteen prospective cohorts from 12 countries (7 from the United States, 7 from Europe, 1

from Australia, 1 from Taiwan) performed new harmonised individual-level analysis for the

prospective associations according to a standardised plan. In total, 63,682 participants with

a broad range of baseline ages and BMIs and 15,180 incident cases of T2D over the aver-

age of 9 years of follow-up were evaluated. Study-specific results were pooled using

inverse-variance–weighted meta-analysis. Prespecified interactions by age, sex, BMI, and

race/ethnicity were explored in each cohort and were meta-analysed. Potential heterogene-

ity by cohort-specific characteristics (regions, lipid compartments used for fatty acid assays)

was assessed with metaregression. After adjustment for potential confounders, including

measures of adiposity (BMI, waist circumference) and lipogenesis (levels of palmitate, tri-

glycerides), higher levels of 15:0, 17:0, and t16:1n-7 were associated with lower incidence

of T2D. In the most adjusted model, the hazard ratio (95% CI) for incident T2D per cohort-

specific 10th to 90th percentile range of 15:0 was 0.80 (0.73–0.87); of 17:0, 0.65 (0.59–

0.72); of t16:1n7, 0.82 (0.70–0.96); and of their sum, 0.71 (0.63–0.79). In exploratory analy-

ses, similar associations for 15:0, 17:0, and the sum of all three fatty acids were present in

both genders but stronger in women than in men (pinteraction < 0.001). Whereas studying

associations with biomarkers has several advantages, as limitations, the biomarkers do not

distinguish between different food sources of dairy fat (e.g., cheese, yogurt, milk), and resid-

ual confounding by unmeasured or imprecisely measured confounders may exist.

Conclusions

In a large meta-analysis that pooled the findings from 16 prospective cohort studies, higher

levels of 15:0, 17:0, and t16:1n-7 were associated with a lower risk of T2D.

Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: FORCE Consortium
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Author summary

Why was this study done?

• Effects of dairy fat on type 2 diabetes (T2D) are not well established. While dairy fat con-

tains palmitic acid that could increase risk of T2D, it also contains several other types of

fatty acids and further reflects specific foods, such as cheese or yogurt, that could reduce

risk.

• Most prior studies of dairy foods and T2D have relied on self-reported dietary question-

naires, which may have errors or bias in memory as well as challenges in assessing less

apparent sources of dairy fat such as in creams, sauces, cheeses, and cooking fats in

mixed meals and prepared foods.

• Circulating and tissue biomarker concentrations of odd-chain saturated fats (15:0, 17:0)

and natural ruminant trans-fats (trans-16:1n7) at least partly reflect dairy fat consump-

tion, help capture multiple dietary sources without relying on memory or subjective

reporting, and reflect a complementary approach to investigate associations with T2D.

• A consortium strategy combining all available studies maximises statistical power and

generalizability, allows standardised analytical approaches and methods including of

key population subgroups, and minimises potential for publication bias.

What did the researchers do and find?

• We conducted a consortium project to pool new participant-level analyses of 16 cohort

studies as part of the Fatty Acids and Outcomes Research Consortium (FORCE),

including a total of 63,682 adults free of T2D at baseline, among whom 15,158 devel-

oped incident T2D over up to 20 years of follow-up.

• Participating studies conducted standardised analysis of the prospective associations

between fatty acid biomarkers (15:0, 17:0, trans-16:1n7, and their sum) and the risk of

developing T2D.

• Pooling all studies, each of the biomarkers and their sum were associated with lower

risk of developing T2D, independently of major risk factors for T2D, including age, sex,

race/ethnicity, socioeconomic status, physical activity, and obesity.

• For example, for the sum of these biomarkers, participants with higher levels experi-

enced 29% (95% CI 21% to 37%) lower risk of T2D than adults with lower levels, com-

paring between the midpoints of the top fifth and the bottom fifth of concentrations.

What do these findings mean?

• Higher circulating and tissue concentrations of odd-chain saturated fats and a natural

ruminant trans-fat are associated with lower risk of T2D.

• While these biomarkers are known to reflect dairy fat consumption, their levels could

also be influenced by other unknown factors. The findings support the need for

Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: FORCE Consortium
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investigation of determinants of levels of these fatty acids as well as health effects of

dairy fat in interventional studies.

• Despite the several advantages of evaluating fatty acid biomarkers, the results cannot

distinguish between different types of dairy foods (e.g., milk, cheese, yogurt, others),

which could have differential effects.

• The findings provide the strongest evidence to date for relationships of these fatty acid

biomarkers with T2D, informing the potential health effects and corresponding dietary

recommendations for consumption of selected dairy products.

Introduction

Regular consumption of dairy products is widely recommended in national and international

guidelines as a major source of calcium and other minerals and vitamins as well as in low-

income countries as a source of calories and protein. At least in high-income nations, fat-

reduced dairy products are further recommended, rather than whole-fat products, with the

aim of limiting calories and saturated fat [1]. However, these latter recommendations are pri-

marily based on nutrient profiles of low-fat and whole-fat dairy products rather than empirical

evidence on clinical effects of dairy fat from prospective observational studies or trials [2–8].

In clinical trials, consuming low-fat or free-fat dairy products does not consistently improve

intermediate risk factors compared to consuming whole-fat or overall dairy products [2–4]. In

observational studies, total dairy consumption has not been associated with cardiovascular dis-

eases, without consistent distinction based on dairy fat content. Regardless of fat content, total

dairy consumption has been associated with lower incidence of type 2 diabetes (T2D) [8],

whereas evidence is inconsistent for different types of dairy foods such as milk, yogurt, and

cheese.

Studies assessing dairy consumption using self-reported dietary questionnaires may be

partly limited by misclassification or bias in reporting [9]. In addition, the common use of

dairy products such as butter, milk, cheese, and cream in cooking, in mixed dishes (e.g., pizza),

and bakery products (e.g., cakes) may substantially impede an accurate assessment of exposure

to dairy fat. To reduce these limitations, measured biomarkers correlated with dairy fat con-

sumption can be used, including circulating and adipose proportions of pentadecanoic acid

(15-carbon saturated fatty acid, 15:0), heptadecanoic acid (17:0), and trans-palmitoleic acid

(t16:1n7) [10–20]. Levels of these biomarkers correlate with self-reported consumption of total

dairy, high-fat dairy, and dairy fat (r = 0.4 to 0.7) based on 24-hour recalls or 7-day food rec-

ords [16–18]; are significantly increased in response to dairy consumption or decreased in

replacing high-fat dairy with low-fat dairy in trials [19,20]; and are correlated with each other

even though they represent two distinct fatty acid classes (the odd-chain saturated fats 15:0

and 17:0; the natural ruminant trans-fat t16:1n7) with divergent chemical structures and

metabolism.

To date, several individual cohorts have published on associations of the odd-chain satu-

rated fatty acids only [21] or odd-chain fatty acids and t16:1n7 together [13,14,22] with inci-

dence of T2D. However, potential for publication bias cannot be excluded; individual studies

may be underpowered to detect potential differences in associations by sex or other character-

istics [8]. To address these limitations and provide new evidence on relationships between
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these biomarkers and T2D, we conducted a pooling project to test the hypothesis that higher

concentrations of 15:0, 17:0, and t16:1n7 would be associated with lower incident T2D, evalu-

ating adults free from T2D in prospective cohorts participating in the Fatty Acids and Out-

comes Research Consortium (FORCE).

Methods

Cohorts and study variables

FORCE was formed within the framework of the Cohorts for Heart and Aging Research in

Genomic Epidemiology consortium fatty acid working group to focus on relationships

between fatty acid biomarkers and health outcomes (http://force.nutrition.tufts.edu/about)

[23,24]. FORCE cohorts were identified through expert contacts with existing large cohorts

and publications, with updating over time when new cohort publications were identified. For

the current investigation, we included 16 prospective studies (cohorts, nested case-control

studies, or nested case-cohort studies) that met the following inclusion criteria and agreed to

participate: adult aged 18 years or older free from diabetes at the time of fatty acid assessment;

circulating or adipose 15:0, 17:0, or t16:1n7; and follow-up for incident T2D (S1 Text). Other

cohorts participating in FORCE [23,24] did not contribute to this study because data on these

fatty acids and/or incident T2D were not available. All cohorts obtained institutional review

board approval and informed consents from participants. Authors FI and AF have full access

to the data that are available upon request to the central committee of FORCE.

A standardised analysis protocol (S2 Text) was developed and was provided to each partici-

pating cohort. It included inclusion criteria (adults aged 18 years or older, not with diabetes,

and with data on fatty acids and incident T2D), exposures, covariates, effect modifiers, out-

comes, and longitudinal analyses. Following this harmonised protocol, each cohort performed

new analysis of individual-level data. Study-specific results were entered to a standardised elec-

tronic form and compiled centrally; the results were then pooled in meta-analysis [25].

Details of participating cohorts, study participants, fatty acid assessment, ascertainment of

incident T2D, and relevant citations are presented in S1 Text; fatty acid concentrations were

assessed with gas chromatography in each cohort in one or more lipid compartments, includ-

ing erythrocyte phospholipids, plasma phospholipids, plasma cholesteryl esters, plasma triglyc-

erides, total plasma, or adipose tissue. Fatty acid concentrations in each cohort were expressed

as a percent of total fatty acids in each lipid fraction. In extended analysis of prior work [22],

within-person correlations of phospholipid fatty acids were moderate over 6 and 13 years

(n = 607) (r = 0.64 and 0.46 for 15:0, respectively; 0.66 and 0.47 for 17:0; and 0.59 and 0.45 for

t16:1n7), consistent with other biometric risk factors such as blood pressure [26].

In most cohorts, incident T2D was ascertained based on one or more criteria (S1 Text),

including fasting glucose�126 mg/dL (7.0 mmol/L); 2-hour post oral glucose tolerance test

glucose�200 mg/dL (11.1 mmol/L); new use of insulin or oral hypoglycaemic medication

assessed by participant reports, medication inventories, or registries (S1 Text); and fasting or

nonfasting HbA1C concentration�6.5%. In the Melbourne Collaborative Cohort Study

(MCCS) [27] and the Alpha Omega Cohort (AOC) [28], incident T2D was defined by self-

reported physician diagnosis, use of antidiabetic medication, or both. InterAct defined inci-

dent T2D by adjudicating self-reported diagnosis of T2D or data linkage to disease registry

[21]. In studies with time-to-event data, follow-up time was calculated from baseline (time of

fatty acid measurement) to date of development of incident T2D, death from any cause, loss to

follow-up, or censoring at end of follow-up—whichever came first.
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Statistical analysis in individual studies

Statistical analyses were prespecified to describe population characteristics and conduct pro-

spective analyses of associations of the fatty acid biomarkers and incident T2D. The primary

exposure variables were 15:0, 17:0, t16:1n7, and their sum (or if only two were available, the

sum of the two). The sum was considered a biomarker of dairy fat intake, given the available

evidence that these each of these fatty acids at least partly reflects dairy fat intakes [11–20] and

that these fatty acids are mutually intercorrelated [12–16,22]. Pearson correlation coefficients

were calculated between these fatty acids in each study and between fractions in different lipid

compartments when available in the same cohort.

For prospective associations, Cox proportional hazard regression models were fitted to data

from cohort or nested case-cohort studies. In the MCCS [27] without detailed time-to-event

data for participants, logistic regression was used. The fatty acids were evaluated as a continu-

ous linear variable in units of the study-specific 10th to 90th percentile range and, in a separate

model, as a dummy categorical variable (quintile categories).

Covariates in all multivariable-adjusted analyses were prespecified. The primary model

included age, sex, field site, race, education, occupation, physical activity, smoking, alcohol

use, prevalent hypertension (treated or self-reported), prevalent dyslipidaemia (treated or self-

reported), prevalent coronary heart disease, and self-reported health status. We obtained mea-

sures of association from two additional models: one further adjusting for adiposity measures

(BMI and waist circumference) and the other further adjusting for circulating concentrations

of triglycerides and palmitate (16:0), markers of hepatic de novo lipogenesis. Study-specific

approaches were allowed for modelling some covariates (e.g., numbers of education categories,

imputation for missing covariates), depending on availability and prior established cohort-spe-

cific approaches, to minimise confounding bias within each cohort [25]. Using the multivari-

able-adjusted model including adiposity measures, we obtained study-specific measures of

effect modification by age, sex, BMI, and race/ethnicity (indicator categories with white race as

the reference group) by evaluating the coefficient of a crossproduct term between each fatty

acid variable and each of the prespecified factors.

Meta-analysis

Study-specific regression coefficients and measures of precision (standard errors) from each of

continuous and categorical terms were pooled with an inverse-variance–weighted meta-analy-

sis to estimate summary relative risks (RRs) per the 10th to 90th percentile range and quintile

categories. Between-study heterogeneity was expressed as I-squared [29]. Odds ratios esti-

mated in a study without information on time to event were considered to approximate RRs,

and RRs were assumed to represent hazard ratios as well. Four cohorts assessed fatty acids in

two lipid compartments: the Prospective Investigation of the Vasculature in Uppsala Seniors

(PIVUS) and the AOC evaluated plasma cholesteryl esters and plasma phospholipid fatty

acids, and the Nurses’ Health Study (NHS) and the Health Professionals’ Follow-up Study

(HPFS) evaluated total plasma and red blood cell phospholipid fatty acids. In the primary

meta-analysis, not to double-count estimates from these cohorts, we used estimates of phos-

pholipid fatty acids that were likely to reflect a longer-term exposure than the other compart-

ments [30]. Estimates from separate fractions were obtained separately as stratified analysis by

lipid fractions.

Cohort-specific coefficients of crossproduct terms were pooled by inverse-variance–

weighted meta-analysis to test potential interactions. Because analyses of potential interactions

by age, sex, race/ethnicity, or BMI were exploratory, we corrected for multiple testing with

two-tailed alpha = 0.0031 (0.05; 4 fatty acid variables; 4 potential effect modifiers). Because
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interactions by sex were significant, we post hoc estimated sex-specific RRs by obtaining rele-

vant statistics from each cohort. We also conducted metaregression and stratified meta-analy-

ses to examine whether associations varied by study-specific characteristics, including lipid

compartment, region (the United States, Europe/Australia, Asia), mean prevalence of dyslipi-

daemia, and numbers of fatty acids assessed. Meta-analyses were performed using Stata soft-

ware version 14.2 (Stata Corp., College Station, Texas) with alpha = 0.05 unless otherwise

specified.

Results

The 16 prospective studies (7 in the US, 7 in Europe, 1 in Australia, 1 in Taiwan) included

63,682 participants without known diabetes at baseline, among whom 15,180 incident T2D

cases were identified during an average 9 years of follow-up (Table 1). All studies followed

middle-aged or older adults with baseline mean age in each cohort ranging from 49 to 76

years. Average BMIs ranged from 25.0 to 28.4 kg/m2 except for Taiwan with an average BMI

of 23.3 kg/m2. Most studies included predominantly white participants, although meaningful

numbers of nonwhites were included in the Cardiovascular Health Study (CHS; 11.0% non-

white), the Multi-Ethnic Study of Atherosclerosis (MESA; 71.6% nonwhite), the Women’s

Health Initiative Memory Study (WHIMS; 11.6% nonwhite), and the Taiwanese study (100%

Asian).

Relative concentrations of 15:0, 17:0, and t16:1n7 were generally low (0.1% to 0.5 mol% of

total fatty acids), as previously described (Fig 1) [13,14,21,22]. Correlations between 15:0, 17:0,

and t16:1n7 ranged from 0.3 to 0.8, with the exception of r = 0.0 in the Insulin Resistance Ath-

erosclerosis Study and WHIMS (S1 Table). Correlations of each of the fatty acids between two

lipid fractions (e.g., phospholipids and total plasma; phospholipids and cholesteryl esters) were

also moderate to strong (r = 0.39 to 0.75) (S2 Table).

In meta-analysis of 15:0 (16 cohorts, 59,701 participants, 14,658 cases), higher 15:0 levels

were associated with 26% lower risk of T2D (per 10th to 90th percentile range, pooled

RR = 0.74 [95% CI 0.68–0.80]) adjusted for demographic, clinical, socioeconomic, and lifestyle

variables (S1 Fig); 20% lower risk (RR = 0.80 [95% CI 0.74–0.87]) when further adjusted for

adiposity measures (Fig 2); and 20% lower risk (RR = 0.80 [95% CI 0.73–0.87]) when further

adjusted for biomarker concentrations of palmitic acid and triglycerides (S2 Fig). Inverse asso-

ciations were also observed for 17:0 (13 cohorts, 50,579 participants, 13,720 cases), t16:1n7 (8

studies, 18,901 participants, 1,636 cases), and the sum of dairy biomarker fatty acids (15 stud-

ies, 53,550 participants, 14,175 cases). In post hoc sensitivity analyses excluding the study with

the largest weight (InterAct or WHIMS, Fig 2), results were not substantially altered: RR per

10th to 90th percentile range (95% CI) for 15:0, 0.75 (95% CI 0.62–0.92); for 17:0, 0.73 (95% CI

0.55–0.96); for t16:1n7, 0.84 (95% CI 0.72–0.98); and for their sum, 0.75 (95% CI 0.57–0.99).

Results were similar evaluating risk across quintile groups of each fatty acid including in

each multivariable model (Fig 3). Comparing the top to the bottom quintile of fatty acid levels

in the fully adjusted model, RRs (95% CI) were 0.63 (0.52–0.76) for 15:0, 0.64 (0.47–0.87) for

17:0, 0.83 (0.62–1.11) for t16:1n7, and 0.65 (0.51–0.83) for their sum. Moderate to high hetero-

geneity was evident (I2 ranging from 60% to 90%) (Fig 2, S1 Fig, S3 Fig), except for t16:1n7 (I2

0% to 7.7%). Results of post hoc analysis estimating random effects were similar (S3 Table).

In exploratory analyses, the inverse association with T2D was stronger in women than

in men for 15:0 (pinteraction = 0.0003), 17:0 (pinteraction = 0.003), and the sum of the fatty acids

(pinteraction = 0.0003), with women experiencing a 20% to 27% lower risk than men (S3 Table).

For example, RR (95% CI) per 10th to 90th percentile range for 15:0 was 0.76 (0.69–0.84) for

women and 0.93 (0.85–1.01) for men. Metaregression did not identify any other significant
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sources of heterogeneity (pinteraction > 0.1 each), including by geographic region, measured

lipid compartment, prevalence of dyslipidaemia, or the number of fatty acids assessed (S3

Table).

Discussion

This harmonised pooling project of participant-level data among 16 prospective cohort studies

provides, to our knowledge, the most comprehensive evidence for associations of biomarker

levels of 15:0, 17:0, and t16:1n7 with risk of T2D. Comparing the top to the bottom quintile of

participants in each cohort, we found that higher levels of the sum of these fatty acids were

associated with approximately 30% lower risk of developing T2D. This relationship remained

significant after adjustment for demographic characteristics, socioeconomic status, lifestyle

factors, medical history, adiposity measures, and biomarkers of de novo lipogenesis.

Measured circulating and tissue levels of 15:0, 17:0, and t16:1n7 are free from bias in rela-

tion to memory or reporting. Compared with estimated dairy fat intake from self-reported

questionnaires, direct measurement also facilitates assessment of exposure to numerous ‘hid-

den’ sources of dairy fat in the food supply, e.g., as found in many dishes that include varying

Table 1. Baseline characteristics of 16 studies of the pooling analysis of fatty acid biomarkers (15:0, 17:0, trans-16:1n7) and incident T2Da.

Study Country Study

design

Baseline

year

Follow-up

years, median

N adults (N
cases)

Age, mean

years

Sex, %

women

BMI, mean

(kg/m2)

Biomarker

compartment

N fatty acids

assessed

CHS United States Cohort 1992 10.6 3,179 (284) 75.1 61.5 26.4 PL 45

MESA United States Cohort 2000–2002 9.3 2,252 (309) 61.0 53.9 27.6 PL 27

IRAS United States Cohort 1992–1997 5.3 719 (146) 55.1 55.8 28.4 Total plasma 34

FHS United States Cohort 2005–2008 5.8 2,209 (98) 64.4 57.2 27.8 RBC PL 33

WHIMS United States Cohort 1996 11.0 6,510 (502) 70.1 100 28.1 RBC PL 22

NHS United States Cohort 1990 16.9 1,760 (177) 60.4 100 25.3 RBC PL, total

plasma

37

HPFS United States Cohort 1994 11.1 1,519 (112) 64.1 0 25.8 RBC PL, total

plasma

37

InterActb Eight European

countries

Case

cohort

1993–1997 12.3 27,296

(12,132)

52.3 62.3 26.0 PL 37

AGESR Iceland Cohort 2002–2006 5.2 753 (28) 75.5 59.5 27.0 PL 41

Three C France Cohort 1999–2000 8.0 565 (39) 76.0 64.3 25.0 RBC PL 35

AOC The Netherlands Cohort 2002–2006 2.5 760 (37)c 68.9 20.4 27.4 RBC PL, CE 38

ULSAM Sweden Cohort 1970–1973 21.4 2,009 (396) 54.4 0 25.2 Adipose tissue 17

PIVUS Sweden Cohort 2001–2004 10.0 879 (67) 72.5 51.0 26.7 PL, CE 16

METSIM Finland Cohort 2006–2010 5.5 1,302 (71) 57.3 0 26.4 PL 22

MCCS Australia Case

cohort

1990–1994 4.0 6,151 (490) 56.3 53.9 27.0 PL 53

CCCC Taiwan Cohort 1992–1993 6.0 1,838 (128) 58.7 40.0 23.2 Total plasma 29

aCharacteristics at the time of fatty acid biomarker measurement.
bUpon a decision within the cohort, InterAct provided pooled estimates from eight European countries: France, Spain, the United Kingdom, Sweden, Germany, Italy,

Denmark, and the Netherlands.
cThe AOC evaluated 1,741 participants (201 incident cases) with CE measures that were analysed in secondary analyses.

Abbreviations: AGESR, Age, Genes, Environment Susceptibility Study (Reykjavik); AOC, Alpha Omega Cohort; CCCC, Chin-Shan Community Cardiovascular Cohort

Study; CE, cholesteryl ester; CHS, Cardiovascular Health Study; FHS, Framingham Heart Study; HPFS, Health Professionals’ Follow-up Study; MCCS, Melbourne

Collaborative Cohort Study; MESA, Multi-Ethnic Study of Atherosclerosis; METSIM, Metabolic Syndrome in Men Study; NHS, Nurses’ Health Study; PIVUS,

Prospective Investigation of the Vasculature in Uppsala Seniors; PL, phospholipid; RBC, red blood cell; Three C, Three City Study; ULSAM, Uppsala Longitudinal Study

of Adult Men; WHIMS, Women’s Health Initiative Memory Study.

https://doi.org/10.1371/journal.pmed.1002670.t001
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Fig 1. Proportions of fatty acid biomarkers for dairy fat consumption. Plots represent median (diamond) and ranges of the 10th to 90th percentiles

(horizontal bar). See Table 1 for the abbreviations of cohorts. CE, cholesteryl ester; NL, the Netherlands; PL, phospholipid; RBC, red blood cell; t16:1n7, trans-
16:1 n-7; US, United States.

https://doi.org/10.1371/journal.pmed.1002670.g001
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Fig 2. Prospective associations of fatty acid biomarkers for dairy fat consumption with the risk of developing T2D. RR and 95% CIs per

cohort-specific range from the 10th to 90th percentiles are presented: dots from individual studies and diamonds as summary estimates pooled

by inverse-variance–weighted meta-analysis. The sizes of the grey shaded areas represent relative contributions of each cohort to that summary

estimate. Cohort-specific association was assessed in multivariable models in each cohort adjusting for sex, age, field site (if appropriate), race,

socioeconomic status (education, occupation), smoking status, physical activity, alcohol consumption, family history of diabetes,

dyslipidaemia, hypertension, menopausal status (only for women), prevalent coronary heart disease, BMI, and waist circumference. Models
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amounts of sauces, creams, and butter, milk, or cheese as mixed or prepared meals. Odd-chain

saturated fats can be found in other foods, such as meat or fish [31,32], and their blood levels

are measurable among self-reported vegans [10]. However, levels among vegans are signifi-

cantly lower than among lacto-ovo vegetarians, supporting a sensitivity of the biomarkers to

dairy fat consumption [10]. Several additional lines of evidence support a role of these fatty

acids as biomarkers reflecting consumption of dairy fat and high-fat dairy products. First,

among different food groups, correlations of these fatty acid biomarkers are strongest with

dairy foods and dairy fat [12,15,16]. Such correlations are generally low to modest (r = 0.1 to

0.5) in studies using food-frequency questionnaires (which may miss many ‘hidden’ sources of

dairy fat) [12,13,21] but much stronger (r = 0.4 to 0.7) in studies evaluating 24-hour recalls or

7-day food records, which much more completely capture the types and details of specific

foods consumed [16–18]. Second, in controlled interventions, levels of these fatty acids are sig-

nificantly increased or decreased in response to even moderate changes in dairy fat consump-

tion [11,19]. Third, these two very different classes of fatty acids—the odd-chain saturated fats

15:0 and 17:0, and the natural ruminant trans-fat t16:1n7—are intercorrelated with each other

and also similarly associated with T2D. If either endogenous metabolic influences or non-

dairy dietary sources were a primary determinant of their levels, little plausible rationale would

exist for a meaningful interrelation of these biochemically and metabolically unrelated fatty

acids. Finally, while as a biomarker of dairy fat the circulating levels of these fatty acids could

also be influenced by meat or fish consumption [10], such foods are not associated with lower

risk of T2D in Western populations (and red meat is associated with higher risk) [33,34], so

that such influences would weaken associations of these fatty acids with T2D.

A small crossover trial (n = 16) recently evaluated potential endogenous production of 15:0

and 17:0 from dietary fibre (inulin) and propionate (a short-chain [3-carbon] fatty acid) in

comparison to cellulose [35,36]. The primary randomised comparison did not identify any sig-

nificant effect of these factors on 15:0 or 17:0 levels. In secondary analyses evaluating pre-post

without the adiposity measures and models including palmitate (16:0) and triglycerides did not alter the results materially (S1 Fig). See Table 1

for the abbreviations of cohorts. NL, the Netherlands; RR, relative risk; T2D, type 2 diabetes mellitus; US, United States.

https://doi.org/10.1371/journal.pmed.1002670.g002

Fig 3. Prospective associations of quintile categories of fatty acid biomarkers for dairy fat consumption with the risk of developing T2D. Cohort-specific

associations by quintiles were assessed in multivariable models in each cohort and pooled with inverse-variance–weighted meta-analysis. Cohort-specific multivariable

adjustment was made. In the first model (open diamond), estimates were adjusted for sex, age, smoking status, alcohol consumption, socioeconomic status, physical

activity, dyslipidaemia, hypertension, and menopausal status (only for women). Then, the estimates were further adjusted for BMI (grey diamond) and further

adjusted for triglycerides and palmitic acid (16:0) as markers of de novo lipogenesis (black diamond). To compute p-values for a trend across quintiles, each fatty acid

was evaluated as an ordinal variable in the most adjusted model. T2D, type 2 diabetes mellitus.

https://doi.org/10.1371/journal.pmed.1002670.g003
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(nonrandomised) levels, inulin intake was associated with higher levels of 17:0, while propio-

nate was associated with higher 15:0 and 17:0; this was further supported by an accompanying

in vitro–controlled experiment suggesting elongation of propionate into 15:0 and 17:0 using

liver cancer cells [35]. The major dietary source of propionate is cheese (157 mg per 100 g), in

particular Swiss cheese (311 mg per 100 g), with far lower levels in other dairy foods such as

milk, yogurt, and cream (2–9 mg per 100 g) and even lower levels in other major food groups

(<1 mg per 100 g) (S4 Table) [37]. High levels in cheese are plausibly related to the presence of

propionate-producing bacteria and the use of sodium propionate and other propionate salts as

natural preservatives and mould inhibitors in cheese [37]. These findings further support the

role of odd-chain saturated fatty acids as biomarkers of dairy fat consumption, both as con-

tained in dairy fat and as potentially synthesised from propionate in cheese [35,36].

While 15:0 has a modestly stronger correlation with self-reported dairy foods than 17:0 in

some prior studies [10,12,13,16–18], we found that 17:0 was more strongly associated with

lower risk of T2D. Reasons for this are unclear but could reflect differences in blood lipid com-

partments assessed, 17:0 being a better measure of ‘hidden’ dairy fat in mixed foods, or possi-

ble differences in metabolic influences as mentioned above [35,38].

Our findings support the need for careful investigation to elucidate the potential biological

mechanisms underlying the observed lower risk of T2D. Odd-chain fatty acids and t16:1n7

have structural similarity to 16:0 and may interfere with lipotoxic effects of 16:0 on the pan-

creas [39]; it has also been hypothesised that t16:1n7 may mimic cis-16:1n7 and suppress

hepatic de novo lipogenesis [13]. These fatty acids may also be a marker for other beneficial

compounds in dairy fat or dairy-fat–rich foods such as cheese [40]. Examples of relevant con-

stituents could include magnesium, which appears to improve hyperglycaemia and insulin

resistance [41], and oestrogens, which are naturally present in dairy products [42,43] and

which may reduce the risk of T2D [43], as shown in two trials recruiting postmenopausal

women [44,45]. However, these prior trials tested supradietary doses of magnesium (>250

mg/day) and oestrogens (3 mg/day) [41,44,45] compared with typical doses in dairy foods,

approximately 20 mg and<0.01 mg, respectively, in 150 g of milk or yogurt, for example

[42,43]. Probiotics such as in yogurt lower glucose and HbA1c in trials [40,46], suggesting rele-

vant interactions between probiotics, short-chain fatty acids, gut microbiota, and T2D [35,40].

Fermented milk and cheeses are also linked to lower risk of T2D [47], suggesting potential

metabolic benefits of vitamin K2 or other compounds produced during fermentation [40].

Other constituents of dairy hypothesised to improve metabolic risk include vitamin D and cal-

cium, but for which supplement trials do not support antidiabetic effects [48], branched-chain

amino acids, but for which limited evidence suggests potential harms on insulin sensitivity

[49], and animal protein, but which is not associated with lower risk of T2D [50]. Given the

prevalence of dairy foods in the food supply and the prevailing conventional wisdom to avoid

dairy fat, our results indicate a clear need for further clinical and biochemical investigations on

15:0, 17:0, t16:1n7, and other components of dairy fats to clarify the mechanisms underlying

our observations and help better understand roles of dairy consumption for the prevention of

T2D and related diseases.

In exploratory analyses, the inverse association of 15:0 and 17:0 with T2D was stronger in

women than in men. Consistent with this, a meta-analysis of self-reported consumption of

dairy products suggested stronger protective associations of yogurt consumption with T2D

risk in women than in men (RR per 50 g/day = 0.89 in women and 0.97 in men; pheterogeneity =

0.03) [8]. If confirmed in future studies, such an interaction may help elucidate potential

mechanisms of benefit, e.g., pathways related to sex steroids [51] or starch and sugar intake (as

a substitute for dairy fat) [52] and corresponding effects on atherogenic dyslipidaemia, visceral

adiposity, and insulin resistance [52].
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Our analysis has several strengths. Use of biomarkers provided measures free of limitations

in self-reported dietary exposure. The similar results from several fatty acids linked to dairy fat

increased confidence in the specificity of our findings. Our collaborative pooling of cohorts

across different continents led to large numbers of studies, participants, and events, increasing

both generalisability and statistical power. The pooling of all available cohorts minimised

potential for publication bias of just the few individually significant cohorts. The standardised

definitions and modelling of the populations, exposures, outcomes, and multivariable-adjusted

analyses minimised bias and heterogeneity due to methodological considerations.

Potential limitations deserve consideration. The timing of diagnosis of T2D can be delayed,

causing misclassification of timing in survival analysis. However, most cohorts included regu-

lar study visits and many included regular glycaemic measurements, reducing such misclassifi-

cation in comparison to clinical practice. Also, any delays in diagnosis would likely be random

with respect to baseline measures of fatty acid biomarkers, causing bias toward the null and

increased uncertainty in estimates. Fatty acid biomarkers were assessed at baseline in each

cohort, and variability over time would lead to regression dilution bias of associations toward

the null. The biomarkers, despite several advantages, cannot distinguish between different

food sources of dairy fat (e.g., cheese, yogurt, milk) or other foods. As an alternative to pooling

of standardised participant-level analysis, all individuals could have been combined into a sin-

gle dataset. Such an analysis would have a larger statistical power than our two-stage approach

but require stronger assumptions, such as about covariate effects being constant across all

studies [25]. Unmeasured or imprecisely measured factors may cause residual confounding,

although we adjusted for major potential confounders including obesity and triglyceride levels

and confirmed little difference in results across different models. Additionally, while high con-

sumption of dairy products may be correlated with health consciousness or healthy dietary

patterns in some populations [53], health-conscious consumers may have been more likely to

consume low-fat than whole-fat dairy during the time periods of these studies given the pre-

vailing dietary recommendations. Therefore residual confounding, if present, may cause

underestimation of the strength of the inverse associations. As in many meta-analyses,

between-study heterogeneity was evidenced and could not be fully explained. The large num-

bers of cases in many cohorts increased the precision of each within-study estimate, which

increases the chances of finding even unimportant heterogeneity. Heterogeneity could also

partly relate to varying degrees of intercorrelations between fatty acids and between tissues as

well as underlying differences in populations, dietary patterns, and varieties of dairy products,

including processing and fat contents. We had more limited data in nonwhite populations,

requiring further research in diverse populations for which different types of dairy products

may be consumed with different preparation methods.

In summary, our consortium of 16 prospective cohort studies identified significant associa-

tions of higher concentrations of 15:0, 17:0, and t16:1n7 with lower incidence of T2D. These

novel findings support the need for additional clinical and molecular research to elucidate the

potential effects of these fatty acids on glucose–insulin metabolism and the potential role of

selected dairy products for the prevention of T2D.
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