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For influenza vaccine programs to be

optimal from the point of view of the

individual at risk of infection, two condi-

tions must be met. First, the vaccine must

contain antigens that are well-matched to

currently circulating strains [1]. Second,

the vaccine must be administered at the

right time: early enough that there is

sufficient time for antibodies to rise in

response to the vaccination, but not so

early that protection by the vaccine wanes

prior to infectious challenge [2]. The rate

of waning of vaccine-induced protection

against influenza is particularly high for

older adults, one of the groups most at-risk

of severe outcomes and often a top priority

for national vaccination programs. There-

fore, good knowledge of likely temporal

trends in the risk of influenza infection is a

necessary prerequisite for the design of

optimal vaccination programs.

In this week’s PLOS Medicine, Cécile

Viboud and colleagues [3] present an

extensive analysis of sentinel virological

surveillance of influenzas A(H3N2) and B

from China with the objective of finding

epidemiological patterns that support the

design of the country’s first national influ-

enza vaccination program. The authors use

time series of viral isolation data from a

network of sentinel hospitals, finding strong

evidence for key epidemiological features of

the incidence of influenza subtypes. Rather

than relying on syndromic definitions or

excess mortality, these biologically robust

outcomes identify the patterns of circulating

strains with high specificity. Despite vari-

ability in both the propensity of individuals

to seek treatment and the likelihood of them

being tested, virological surveillance data

accurately describe the timing of peak

incidence, the duration of elevated incidence

(the influenza season), and periods when

influenza is absent (provided testing levels

are high year-round).

In many temperate populations such as

the United States, knowledge of epidemi-

ological patterns of influenza incidence has

facilitated the robust design of vaccination

programs [4]: incidence is strongly sea-

sonal, with a very low risk of infection

during the summer. The vast majority of

infections are focused in a 6–8 week period

in the winter months. Therefore, vaccina-

tion programs that are expected to last ,6

weeks are initiated ,12 weeks prior to the

expected start of the season (the beginning

of October in the Northern Hemisphere

and the beginning of April in the Southern

Hemisphere).

At lower latitudes, patterns are far less

clear [5]. Equatorial populations such as

Singapore report almost constant year-

round incidence of influenza-like illness

[6], while some subtropical locations, such

as Hong Kong, exhibit weak biennial

cycles, with their seasonality characterized

primarily by a clear off-season [7]. A study

of influenza patterns in Brazil, a country

with a large population spanning a wide

range of latitudes, revealed wave-like

dynamics originating in the less populated

equatorial region and travelling out to-

wards larger temperate populations (based

on excess pneumonia and influenza mor-

tality) [8].

In their study, Viboud and colleagues

were able to separate China into three

epidemiological zones for influenza

A(H3N2). In the temperate north, inci-

dence peaked sharply during January and

February, while in the tropical south, a

longer epidemic with a lower peak was

observed during April and May. The

regions in the middle latitudinal zone

exhibited biannual cycles with smaller

incidence peaks temporally aligned with

their northern and the southern neighbors.

Intriguingly, there were clear differences

in the spatial patterns of influenza B

compared with those of influenza A.

There was little evidence of biannual

cycles for influenza B, with the timing of

the single peak each year closely correlated

with latitude: epidemics occurred first in

the north and then progressed steadily to

the south. Perhaps most striking, the

authors also found that the proportion of
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samples positive for influenza B in-

creased from less than 20% in the

northernmost provinces to almost 50%

in the southernmost provinces. These

observations point to fundamentally dif-

ferent circulation patterns between influ-

enzas A(H3N2) and B and should

motivate systematic phylogeographical

and serotype studies of influenza B at

the national scale in China.

The observed differences in circulation

patterns between influenzas A(H3N2) and B

present challenges for the design of vacci-

nation programs at middle and lower

latitudes in China. As the authors observe,

the timing of peaks in the southernmost

provinces is only marginally ahead of

Southern Hemisphere populations and sug-

gests that those provinces may wish to follow

the Southern Hemisphere timetable. How-

ever, such a decision might be slightly

premature: genetic data from even a small

subset of the viral isolates used for this study

could give a definitive picture of the

ancestral relationship between viruses circu-

lating in southern China relative to viruses in

northern China and Southern Hemisphere

populations.

A lasting legacy of the 2009 pandemic is

increased interest in novel methods of

manufacture for influenza vaccines [9].

Although the vast majority of vaccines

delivered today arise from egg-based pro-

duction systems (not substantially different

from those used for the first vaccine trials

,70 years ago), there are a number of

alternative production processes under in-

vestigation that may reduce both costs and

timelines [10,11,12]. When these technolo-

gies are fully developed, they could greatly

facilitate the redesign of vaccination pro-

grams for both seasonal and pandemic

influenza. As epidemiological and phyloge-

netic studies reveal more about the circula-

tion of specific influenza virus subtypes in

different regions of the world, it seems likely

that the current system of selecting only two

official vaccine strain sets per year will be

refined. The results presented by Viboud

and colleagues [3] suggest that rapidly

expanding vaccination programs in popu-

lous mid-latitude provinces of China may

provide an ideal setting in which to

investigate the possible benefits of rapid

vaccine production and locally-informed

strain selection.
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