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Abstract

Background: The acute-phase increase in serum C-reactive protein (CRP) is used to diagnose and monitor infectious and
inflammatory diseases. Little is known about the influence of genetics on acute-phase CRP, particularly in patients with
chronic inflammation.

Methods and Findings: We studied two independent sets of patients with chronic inflammation due to rheumatoid arthritis
(total 695 patients). A tagSNP approach captured common variation at the CRP locus and the relationship between
genotype and serum CRP was explored by linear modelling. Erythrocyte sedimentation rate (ESR) was incorporated as an
independent marker of inflammation to adjust for the varying levels of inflammatory disease activity between patients.
Common genetic variants at the CRP locus were associated with acute-phase serum CRP (for the most associated haplotype:
p = 0.002, p,0.0005, p,0.0005 in patient sets 1, 2, and the combined sets, respectively), translating into an approximately
3.5-fold change in expected serum CRP concentrations between carriers of two common CRP haplotypes. For example,
when ESR = 50 mm/h the expected geometric mean CRP (95% confidence interval) concentration was 43.1 mg/l (32.1–50.0)
for haplotype 1 and 14.2 mg/l (9.5–23.2) for haplotype 4.

Conclusions: Our findings raise questions about the interpretation of acute-phase serum CRP. In particular, failure to take
into account the potential for genetic effects may result in the inappropriate reassurance or suboptimal treatment of
patients simply because they carry low-CRP–associated genetic variants. CRP is increasingly being incorporated into clinical
algorithms to compare disease activity between patients and to predict future clinical events: our findings impact on the
use of these algorithms. For example, where access to effective, but expensive, biological therapies in rheumatoid arthritis is
rationed on the basis of a DAS28-CRP clinical activity score, then two patients with identical underlying disease severity
could be given, or denied, treatment on the basis of CRP genotype alone. The accuracy and utility of these algorithms might
be improved by using a genetically adjusted CRP measurement.
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Introduction

Genetic variants at the CRP locus influence the low, basal levels

of serum C-reactive protein (CRP) in apparently healthy

individuals [1–5]. The primary motivation for these existing

studies has been the observation of a strong correlation between

basal CRP and future cardiovascular risk, and the possibility, now

looking less likely, that CRP has a causal role in this process [6,7].

The widespread clinical application of CRP measurement,

however, is not related to its low-level variation within the basal

range, but to the high levels seen as part of the human acute-phase

response. Serum CRP levels greater than 10 mg/l are generally

considered indicative of an infectious or inflammatory process [8].

CRP expression increases rapidly following an inflammatory

stimulus, leading to serum levels that may exceed 500 times

baseline, making CRP an ideal marker for the diagnosis and

monitoring of inflammatory processes. Serum CRP is extensively

used in all medical specialities for this purpose [8]. Surprisingly,

there has been little published data on the role of CRP variants in

determining the magnitude of this acute-phase response, and none

in the context of chronic active inflammation.

The demonstration of a strong, genetically determined and

hence lifelong, influence on the magnitude of acute-phase CRP in

any particular patient would have a number of important

implications. Firstly, as a diagnostic test, CRP thresholds are used

not only as a component of formal clinical algorithms, but also as

part of a physician’s intuitive decision-making process when

diagnosing inflammatory disease and making treatment decisions.

As we discuss later, this raises the possibility that false reassurance

could be given to a patient with disease, or optimal treatment

withheld, because they are genetically predisposed to only a

modest rise in acute-phase CRP. Secondly the demonstration of a

strong genetic effect on the acute-phase CRP response also raises

the possibility that this may have consequences in terms of

individual susceptibility to diseases in which the innate immune

system plays a protective (or deleterious) role.

The existing literature on the effects of CRP genetics on acute-

phase CRP levels consists of five studies, each of which measured

the magnitude of CRP rise following a single noxious stimulus [9–

13]. As we discuss later, this approach may be complicated by the

difficulty in quantifying or standardising stimuli between patients

or a difficulty in inducing a marked CRP rise. We have therefore

taken a different approach, which we believe offers distinct

advantages. We have studied genetic determinants of acute-phase

CRP in patients with rheumatoid arthritis, a chronic inflammatory

disease characterised by a marked acute-phase response.

By studying patients with rheumatoid arthritis we made use of

the historical tendency to record the erythrocyte sedimentation

rate (ESR) alongside CRP as an alternative and independent

marker of inflammation. Although ESR has become less widely

used because of its slow response following an inflammatory

stimulus, this is not important in chronic inflammation where both

CRP and ESR are at a steady state. The factors contributing to

ESR are not fully understood, but seem to be related to intrinsic

erythrocyte membrane properties, notably the charge, with a lesser

influence from the concentration of large plasma proteins such as

immunoglobulin or fibrinogen [14,15]. There is no evidence that

serum CRP levels directly influence ESR: indeed the slow

fluctuation in ESR following the onset or resolution of inflamma-

tion is in stark contrast to the rapid expression and short half-life of

CRP [8,16,17]. The incorporation of ESR as a covariate in our

model fulfils two purposes. First, it provides an independent

adjustment for the underlying inflammatory status of each of our

patients (a consequence of their synovial joint inflammation).

Without this adjustment, the random error associated with

dramatically differing levels of inflammation across the cohort

(random with respect to either recruitment into the study, or with

respect to underlying CRP genotype) may be so great as to make

the relatively small effect of CRP genotype on CRP levels difficult

to demonstrate with any level of significance. Second, since most

physicians have an intuitive appreciation of the relationship

between CRP and ESR in a variety of inflammatory settings, the

incorporation of ESR into our models allows us to generate a

clinically interpretable estimate of the magnitude of genetic effect

at all levels of underlying inflammatory drive. Our results are

therefore directly relevant to the conditions in which CRP

quantification contributes to clinical decision making.

In this paper we study the association between genetic variants

at the CRP locus and acute-phase CRP in patients with chronic

active inflammation due to rheumatoid arthritis.

Methods

Study Participants
The discovery study was carried out in a cohort of 281 UK

rheumatoid arthritis cases (patient set 1). Details on the

recruitment of these patients have been published elsewhere

[18]. The mean age of participants was 61 y (SD 12), 79% were

female. Replication was performed in 414 rheumatoid arthritis

patients recruited in New Zealand (Wellington and Christchurch)

and Australia (Adelaide) (patient set 2). The mean age was 62 y

(SD 13) and 70% were female. All patients were of self-reported

white European ancestry and met 1987 ACR revised criteria for

the diagnosis of rheumatoid arthritis [19]. Data were available for

at least one pair of measurements for CRP and ESR (Westergren

method) collected simultaneously as part of routine clinical

management. For some of the individuals in patient set 2, data

were available for serial CRP/ESR pairs, measured at different

times. For these individuals, each CRP/ESR pair was arbitrarily

assigned an integer value, and a random number generator used to

identify one of these pairs at random to carry forward for analysis.

Ethical approval for the collection of DNA and patient data was

obtained locally at each recruitment site (from the Guy’s hospital

Research Ethics Committee, London UK, the University Hospital

Lewisham ethics committee, London, UK, the Upper South B

regional ethics committee of New Zealand, the MultiRegion

Ethics committee of New Zealand, and the Research and Ethics

committee, Repatriation General Hospital, Adelaide Australia).

Written informed consent was obtained from each patient. Patient

identity was encrypted at the site of collection and all data were

analysed anonymously.

SNP Selection and Genotyping
SNPs were selected to tag common variation at CRP. We used

previously published genotype data on 22 SNPs densely covering

CRP in 799 unrelated, healthy UK individuals as our reference

dataset for this population [20]. Using these data in turn captured

all of the CRP variation observed in the HapMap CEPH

population. Tagging SNPs were selected using the tagger facility

of Haploview (employing an aggressive tagging strategy, r2 = 0.9

threshold) [21].

Genotyping on patient set 1 was performed by matrix-assisted

laser desorption and ionization-time of flight (MALDI-TOF) mass

spectrometry (Sequenom) using the iPLEX assay. Genotyping on

patient set 2 was outsourced to Kbioscience Ltd using their variant

of competitive allele-specific PCR (KASPar) (www.kbioscience.co.

uk/chemistry/chemistry_application_note.html). Duplicate geno-

typing was performed on 5% of patients to ensure reproducibility
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(100% concordance observed). Predefined quality control exclu-

sion criteria were: any individual genotyped at ,90% of markers,

any marker genotyping in ,90% individuals, any marker with a

minor allele frequency ,5%, and any marker out of Hardy-

Weinberg equilibrium (p,0.01). Ten individuals were excluded

from patient set 2 because of poor genotyping, otherwise

genotyping quality control criteria were met and all markers were

in Hardy-Weinberg equilibrium. Population haplotype structure

was inferred using Haploview, and individual patient haplotypes

were inferred using PHASE v. 2.1 [21,22]. Only individuals for

whom haplotypes could be assigned with a posterior probability

.0.95 were carried forward for haplotype association analysis. Six

individuals were excluded after failing to meet this requirement.

Statistical Analysis
The standard CRP assay becomes nonlinear below 1 mg/l

leading to the common practice of reporting values as a range (i.e.,

,1) or rounded to an integer (i.e., ‘‘0’’). We assigned all CRP

measurements reported as ,1 mg/l a value of 0.5 mg/l. An initial

review identified four data outliers with very low ESR but

increased CRP; three from patient set 1 and one from patient set

2. We postulated that these individuals were in the early stages of

an acute inflammatory episode (when the rise in ESR lags behind

the rise in CRP) and excluded them from further analysis.

Both CRP and ESR distributions were positively skewed so a

log-transformation was applied for analysis. The association

between SNP genotype and the quantitative markers of inflam-

mation (CRP or ESR) was evaluated by linear model, with

genotype modelled as an additive allelic effect. All parameter

estimates given throughout the paper are expressed relative to the

major allele. An initial assessment was made of the association

between CRP SNPs and the ‘‘raw’’ serum CRP levels, unadjusted

for ESR. In addition, the direct association between CRP SNPs

and ESR itself was made. In all subsequent models the association

between CRP genotype (either at SNP or haplotype level) was

assessed with ESR, as an independent marker of background

inflammatory status, included as a covariate in the model. The

relationship between CRP and ESR was nonlinear, so the final

model included a significant quadratic term:

logCRP~b0z b1| logESRð Þz b2| logESR2
� �

z b3|genotypeð Þzerror:

Since patients and data in this study originated from four sites of

collection (South London, Wellington, Christchurch, and Ade-

laide), a random effects parameter was included where relevant to

reflect these clusters of data.

In the haplotype analyses, a comparison of haplotype effect was

achieved by simultaneously entering each haplotype into the

model with the remaining, commonest, haplotype (H1) acting as

the reference. Expected CRP values were derived from the

regression parameters by back-transforming to the original scale,

with the mean of the log-distribution reflecting the median of the

untransformed distribution.

Results

In patient set 1 the median serum CRP was 11 mg/l (range 1–

195; 5th, 95th centiles 5, 88). 51.8% of CRP measurements were

.10 mg/l. The median ESR was 22.5 mm/h (range 2–132; 5th,

95th centiles 4, 83). The six genotyped SNPs (with minor allele

frequency) were rs2808632 (0.28), rs3093059 (0.07), rs1800947

(0.08), rs1205 (0.35), rs876538 (0.23), and rs11265257 (0.40). In a

preliminary analysis, unadjusted for background inflammatory

status (ESR), significant associations between serum CRP and

SNPs rs1205, rs11265257, and rs1800947 were observed (Tables

S1 and S2). In contrast, ESR was not associated with any CRP

SNP (Table S3).

Table 1 shows the association of CRP SNPs with serum CRP

level, incorporating ESR as a covariate to adjust for the underlying

inflammatory status of that individual. A conservative Bonferroni

correction for six tests would require p,0.008 to achieve overall

significance, hence both rs1205 and rs1125257 are strongly

associated with CRP, with the minor allele associated with lower

CRP level. We looked for departure from a simple additive model

of allele effect but none was seen.

In patient set 2 the median CRP was 5 mg/l (range 0.25–334;

5th, 95th centiles 0.25, 60). 34.9% of CRP measurements were

.10 mg/l. The median ESR was 16 mm/h (range 2–106; 5th,

95th centiles 4, 58). Overall, the level of inflammation observed in

the patients in set 2 was therefore slightly less than that observed in

set 1, suggesting either less severe disease or better disease control;

this does not impact on the interpretation of our findings. The

SNP minor allele frequencies were rs2808632 (0.34), rs3093059

(0.05), rs1800947 (0.07), rs1205 (0.34), rs876538 (0.24), and

rs11265257 (0.41). Initial analysis of patient set 2 confirmed the

association of CRP genotype with ‘‘raw’’ serum CRP levels, but not

with ESR (Tables S1–S3). Table 1 demonstrates the replication in

patient set 2 of the significant association of rs1205 and

rs11265257 with ESR-adjusted serum CRP. It also shows strong

association for rs1800947, a more rare SNP with only borderline

association in patient set 1.

Having replicated the initial genetic associations, we performed

a combined analysis using pooled data from both cohorts. In

addition to the inclusion of a ‘‘cohort’’ term in our combined

Table 1. Single CRP SNP effects on acute-phase serum CRP.

SNP Discovery Cohort (Patient Set 1) Replication Cohort (Patient Set 2) Combined Cohorts

b (logCRP) 95% CI p-Value b (logCRP) 95% CI p-Value b (logCRP) 95% CI p-Value

rs2808632 20.004 20.070 to 0.062 0.906 20.026 20.098 to 0.045 0.473 20.017 20.070 to 0.035 0.522

rs3093059 0.122 0.011 to 0.232 0.031 20.003 20.162 to 0.155 0.967 0.047 20.057 to 0.151 0.372

rs1800947 20.095 20.195 to 0.005 0.062 20.273 20.406 to 20.140 ,0.0005 20.169 20.259 to 20.078 ,0.0005

rs1205 20.095 20.155 to 20.035 0.002 20.116 20.188 to 20.045 0.001 20.109 20.159 to 20.058 ,0.0005

rs876538 0.000 20.069 to 0.070 0.991 20.038 20.118 to 0.043 0.360 20.026 20.083 to 0.032 0.382

rs11265257 20.096 20.155 to 20.037 0.001 20.114 20.185 to 20.044 0.002 20.106 20.157 to 20.056 ,0.0005

doi:10.1371/journal.pmed.1000341.t001
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model (as outlined in the Methods section), we also looked for

potential SNP 6 cohort interactions that might complicate the

interpretation of this analysis. None of the key SNP effects we

observed differed significantly from one cohort to another. This

combined analysis again emphasised the high level of significance

attached to our identified SNPs (Table 1).

While Table 1 shows the highly significant associations between

SNPs at CRP and serum CRP level, it does not provide easily

interpretable parameter estimates. In Table 2 we have therefore

shown the geometric mean and 95% confidence intervals (CIs)

modelled for each genotype (with reference to the major allele

homozygotes) at the associated SNPs, in our combined dataset. It

should be reiterated that the geometric mean of the log-

transformed CRP distribution can be considered equivalent to

the median of the untransformed CRP distribution. Since the

predicted CRP levels depend on the background inflammatory

status (as assessed by ESR) in this model, we have illustrated

expected geometric mean CRP at two levels of background

inflammation (ESR 40 mm/h and ESR 80 mm/h).

Considerable evidence, from the basal CRP literature, supports

the hypothesis that there are multiple functional SNPs at the CRP

locus [23–25]. We tested this hypothesis directly in the combined

dataset by performing an analysis conditioned on the most

significant SNPs and were able to demonstrate an independent

association from three SNPs entered simultaneously into the

regression model (Table S4). It is therefore evident that an analysis

of the effect of CRP genotype on serum CRP based on individual

SNPs alone is likely to markedly underestimate the overall effect

size. We therefore performed a haplotype analysis. This approach

has the advantage of providing a realistic estimate of the integrated

effect of multiple SNPs on acute-phase serum CRP levels, while

also only considering those SNP combinations that are actually

found in the population and are of direct clinical relevance.

Table 3 demonstrates the inferred haplotype structure and

haplotype frequencies in the two patient sets. Table 4 demonstrates

the association of CRP haplotypes with serum CRP level, with

reference to the commonest haplotype, H1, which is set as the baseline.

Once again, individual haplotypes were consistently associated with

acute-phase serum CRP with high levels of significance in both patient

sets individually and in a combined analysis.

Regression parameters were used to illustrate expected CRP

values depending on background inflammatory status (defined this

by ESR) and CRP haplotype. In the setting of chronic

inflammation we would expect both ESR and CRP to be at

steady state and in equilibrium. Figure 1A illustrates the expected

geometric mean (median) CRP (95% CI) for individuals

homozygous for haplotype H1 compared with the expected

median for H4 homozygotes. H1 homozygotes have a median

CRP 232% higher than H4 homozygotes at each level of

inflammation (p,0.0005).

The percentage of the population carrying any specific

haplotype pair is modest (7% for H1 homozygotes and 1% for

H4 homozygotes), so we illustrate that the effect on CRP level is

not confined solely to rare haplotype pairs but can also be

demonstrated between larger groupings in the population. In

Figure 1B, we have compared individuals carrying any combina-

tion of the H1 or H5 haplotypes (i.e., H1 H1, H1 H5, or H5 H5),

with individuals carrying any combination of the remaining

haplotypes. The H1/H5 group, constituting 11% of the

population have an acute-phase CRP 82% higher than the 45%

of individuals carrying two of the remaining haplotypes

(p,0.0005). Individuals with one haplotype from each of these

two groups will naturally have a CRP level falling somewhere in

the middle.

We have observed that the magnitude of CRP haplotypic effect

on serum CRP, over and above the variation in CRP expected due

to underlying inflammatory status, is therefore large. To exclude

the possibility that these observations were being unduly

influenced by rare data outliers we performed additional analyses.

Firstly we reran the model after excluding the 5% of individuals

with the highest or lowest overall CRP levels. No meaningful

changes to the observed significance levels or parameter estimates

were observed (Table S5). Secondly we assessed the impact of

individuals to the model by their Cook’s distances. All Cook’s

distances were ,1, and in addition an exclusion of the 5% of

individuals with the greatest Cook’s distance again resulted in no

material change to the overall effect sizes and significance levels

(Table S6).

Discussion

Summary and Comparison with Current Literature
We have shown a highly significant association between CRP

genotype and acute-phase serum CRP level, and to our knowledge

we are the first to demonstrate this in a group of patients that

includes a considerable number with chronic active inflammation

(40% have serum CRP .10 mg/l). We believe that the size of the

genetic effect we have observed is large enough to have a clinically

Table 2. CRP parameter estimates (geometric mean) from the combined cohorts.

SNP Genotype Genotype Frequency Parameters when ESR = 40 Parameters when ESR = 80

Geometric Mean
CRP (mg/l) 95% CI

Geometric Mean
CRP (mg/l) 95% CI

rs1800947 G G 0.85 26.1 ref 42.2 Ref.

G C 0.13 17.7 14.4–21.8 28.6 23.2–35.3

C C 0.01 12.0 7.9–18.2 19.4 12.8–29.5

rs1205 G G 0.43 28.2 Ref. 45.7 Ref.

G A 0.45 21.9 19.5–24.6 35.5 31.7–40.0

A A 0.12 17.0 13.5–21.6 27.6 22.0–35.0

rs11265257 G G 0.35 29.2 Ref. 47.6 Ref.

G A 0.50 22.9 20.4–25.7 37.3 33.1–41.8

A A 0.15 17.9 14.1–22.6 29.2 23.1–36.7

doi:10.1371/journal.pmed.1000341.t002
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relevant impact on the assessment of inflammatory disease activity,

which in turn may influence therapeutic decision making.

A key issue in the study of acute-phase CRP genetics is how to

quantify the level of inflammatory stimulus driving the acute-phase

response. Without this adjustment, random error introduced by

varying levels of inflammation across our study population may be

so large as to mask the genetic effects owing to variation at the CRP

locus. We explained in the introduction that we believe that the

incorporation of ESR into our analysis enables us to quantify the

background level of inflammation in the chronic inflammatory

setting. We hypothesized that there is no biological plausibility for

a causal link to underlie the normal CRP/ESR correlation. The

data from this study provide additional support for this

assumption, by showing no association between CRP polymor-

phisms and ESR, and therefore support the hypothesis that CRP

and ESR are highly correlated, but truly independent, markers of

inflammation.

The use of ESR allowed us to find, with high levels of

significance, SNPs and haplotypes associated with high and low

acute-phase CRP expression. Existing studies addressing this

question have all measured the magnitude of CRP rise following a

single noxious stimulus. The largest of these looked at the

postmyocardial infarction CRP rise and, like us, found higher

levels in carriers of the rare allele of rs3093059 and also the A allele

of rs3091244, which is on the same haplotype. Conversely lowest

CRP increases were seen in carriers of the rare alleles of rs1800947

and rs1205 and the haplotype (H4), which contains both of these

SNPs [12]. Other studies have found an association of rs1800947

with lower serum CRP after coronary artery bypass surgery and

after oesophagectomy, and rs1130864 with higher serum CRP

postcoronary artery bypass surgery [10,11,13]. All these studies

are complicated by the inability to reliably compare surgical

trauma from one procedure to another. Early studies also showed

an association between rs1130864 and CRP levels following

periodontal therapy and following strenuous exercise, but these

stimuli only elicited a low-grade acute-phase response [9,13]. The

findings reported in this study therefore confirm those of earlier

reports, but extend them to demonstrate highly significant genetic

effects on CRP levels in the setting of chronic inflammation.

In terms of the magnitude of the genetic effect, there is a great

deal of variability in the literature discussed above. For example in

the cardiac surgery study of Brull and colleagues individuals

homozygous for the common allele of rs1130864 had CRP levels

that were only 20% higher than heterozygotes or individuals

homozygous for the rare allele (164 versus 194 mg/l) [13]. In

contrast Suk et al., who examined the increase in CRP

concentration following myocardial infarction saw almost 600%

difference between genotypes associated with low and high CRP

concentrations (11 versus 77 mg/l) [12]. Much of this difference

can undoubtedly be explained by the SNP chosen for the study,

and also methodological issues such as the level of control for

underlying inflammatory stimulus. It is clear, however, that the

large effect of CRP genotypes that we have observed in this study

in the setting of chronic inflammation, is consistent with large

effects that have already been described following acute stimuli

(such as those described by Suk et al. [12].).

There is also consistency between the SNPs we find associated

with elevated CRP in chronic inflammation and those document-

ed in basal CRP studies. In particular both rs1205 and rs1800947

have been widely associated with lower basal CRP expression [2–

5]. Similar to the acute-phase literature, there is also variation in

the magnitude of genotype effects in basal CRP studies, ranging

from an approximate 50% difference to a difference of more than

500% in CRP concentrations between high and low CRP

associated genotypes, from study to study and depending on

which SNP or haplotype is examined [1,2,5]. It is possible,

therefore, that the effect we report in the setting of chronic

inflammation is simply an extension of the same effect that is

observed with basal CRP. This observation is of interest, because it

suggests that the low grade stimulation of CRP expression by

Table 3. CRP haplotype architecture and frequency.

Haplotype rs11265257 rs876538 rs1205 rs1800947 rs3093059 rs2808632
Frequency
(Patient Set 1)

Frequency
(Patient Set 2)

H1 G G G G T A 0.29 0.26

H2 A G A G T A 0.27 0.27

H3 G A G G T C 0.22 0.24

H4 A G A C T A 0.08 0.07

H5 G G G G C A 0.06 0.05

doi:10.1371/journal.pmed.1000341.t003

Table 4. CRP haplotype effect on acute-phase serum CRP.

Haplotype Discovery Cohort Replication Cohort Combined Cohorts

b 95% CI p-Value b 95% CI p-Value b 95% CI p-Value

H1 Ref. — — Ref. — — Ref. — —

H2 20.053 20.096 to 20.009 0.018 20.254 20.403 to 20.105 0.001 20.144 20.209 to 20.079 ,0.0005

H3 20.033 0.080 to 20.014 0.172 20.250 20.396 to 20.104 0.001 20.105 20.173 to 20.038 0.002

H4 20.102 20.166 to 20.038 0.002 20.557 20.776 to 20.339 ,0.0005 20.261 20.359 to 20.162 ,0.0005

H5 0.032 20.038 to 0.101 0.372 20.106 20.366 to 0.154 0.423 20.044 20.066 to 0.154 0.431

doi:10.1371/journal.pmed.1000341.t004

The Genetics of Acute-Phase CRP

PLoS Medicine | www.plosmedicine.org 5 September 2010 | Volume 7 | Issue 9 | e1000341



‘‘metabolic stress’’ may share a common pathway with the

expression of CRP in response to classical inflammatory stimuli

[2,26].

Clinical Implications of the Data
By incorporating ESR we can use the model parameters to

calculate the expected median CRP for an individual carrying any

combination of CRP haplotype at any level of background

inflammation. This finding showed that the genetic associations

translated into marked and clinically relevant effects on acute-

phase CRP. Although serum CRP is interpreted as part of a

complete clinical picture, we propose that, for a newly symptom-

atic patient, a CRP of 9 mg/l would be reassuring and might

trigger a different clinical decision from a CRP of 30 mg/l;

similarly for a patient with known inflammatory disease a CRP of

15 mg/l may be observed, but a CRP of 50 mg/l is likely to

trigger a change in treatment; yet our data suggest that these CRP

differences could occur simply owing to genetics, independent of

any difference in underlying disease activity.

In addition to these intuitive examples, it is worth considering

specific clinical algorithms that incorporate CRP. For example,

rheumatoid arthritis disease activity is frequently assessed using the

Figure 1. Predicted acute-phase CRP level (95% CI), stratified by haplotype, and according to the ESR-defined level of background
inflammation. Annotated by the haplotype pair (A), or grouping (B), represented on the graph, with the population frequency of that combination.
Data from the combined cohorts.
doi:10.1371/journal.pmed.1000341.g001
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DAS-28 score (incorporating a count of tenderness and swelling at

28 specific joints, a global assessment of disease activity by visual

analogue scale [VAS], and a biochemical marker of inflammation,

either ESR or CRP [http://www.reuma-nijmegen.nl/www.das-

score.nl/index.html]). In the United Kingdom a DAS-score

threshold is used to determine who receives funding for expensive

biological therapies. While the DAS28-ESR is more frequently

used at present, it seems inevitable that the DAS28-CRP will

increase in popularity, and this is where the effect of genetics

becomes important [27]. A patient with a genetically determined

CRP of 66 mg/l, six swollen and tender joints, and a VAS of

50 mm will have a DAS score of 5.24. A patient with a genetically

determined low acute-phase CRP of 20 mg/l, and an identical

VAS would require an additional five tender or ten swollen joints

to achieve this DAS score. In other words, a patient with

genetically determined low CRP would be required to have

considerably worse disease to be considered for the same

treatment as a patient with genetically determined high CRP.

A review of the recent literature reveals multiple studies

proposing a predictive value for acute-phase CRP; including the

prediction of all-cause hospital mortality, death and complications

in various critical care scenarios, cancer relapse, and the

progression of inflammatory arthritis [28–35]. Our data do not

contradict these study findings, but they suggest that in some

situations the predictive ability of CRP could be significantly

improved by the provision of a genetic adjustment. Ironically,

while CRP measurement offers many advantages over ESR, we

have demonstrated a potential drawback in that common genetic

variants strongly influence serum levels. In contrast ESR, which is

determined by a number of different physiological processes (as

discussed earlier), would seem less likely to be strongly influenced

by any individual genetic variant or locus (this, of course, remains

to be tested).

Although our study was conducted only in patients of white

European ancestry, a comparison with existing studies in different

ethnic groups raises the possibility of population differences in the

acute-phase CRP response, because of population differences in

the haplotype architecture at CRP. Of the trans-ethnic mapping

studies we are aware of, the most extreme difference appears to be

between African American and Filipino populations [36,37]. In

African Americans haplotypes tagged by the minor allele of

rs180097 (H4) are very rare (,1%), but in Filipinos this haplotype

is common (10%). Similarly haplotypes with the common allele of

rs1800974 but the rare allele of rs1205 (H2) are found on 16% of

African American but on 43% of Filipino chromosomes. Both

these haplotypes are associated with lower acute-phase CRP, and

it is intriguing to question whether this would translate into a

global tendency towards lower acute-phase CRP in Filipinos

compared with African Americans. This hypothesis clearly

requires experimental confirmation.

We would also like to speculate on the wider issue of whether

the magnitude of acute-phase CRP rise in response to inflamma-

tory stimuli has any implications for patients in terms of the

physiological or pathological response to disease. Producing more

CRP may offer benefits, perhaps by enhancing clearance of

pathogenic bacteria, or by enhancing the clearance of apoptotic

cells and reducing susceptibility to systemic autoimmunity [8].

However excessive CRP production may also have deleterious

consequences, by promoting inflammation and tissue damage in

unwanted situations. This finding has been demonstrated in a rat

model of myocardial infarction, where injection of human CRP is

associated with a poor outcome; a situation that can be reversed by

synthetic CRP inhibitors [23]. Whether naturally occurring,

genetically determined variation in the level of acute-phase

response translates into differing outcomes in these varied clinical

situations remains to be tested.

Study Limitations
We recognise the limitations to our study. There may be

considerable heterogeneity within our study populations, which

were recruited over four different sites, with CRP and ESR

quantified in four different laboratories. We recognise that

although patients self-reported white European ancestry, there

may be subtle differences in population ancestry, particularly

between patients recruited from the Northern and Southern

hemispheres, and that this has not been accounted for by a

principle components analysis. In addition we were unable to

account for variables such as medication history, which may be

important given the reported effect of drugs such as statins on

basal CRP levels.

Although our study aim was to assess the influence of genetics

on the acute-phase CRP response, we appreciate that 60% of our

study participants had a serum CRP concentration of #10 mg/l

and only 8% had very high serum concentration of CRP

(.50 mg/l). The recruitment of patients with uncontrolled

inflammation is of course difficult as these patients tend to be

aggressively treated.

As this study was conducted in patients with rheumatoid

arthritis we need to question whether or not our data can be

extrapolated to other chronic inflammatory diseases. CRP itself has

never been reported as a susceptibility gene in rheumatoid arthritis

and, although we did not perform a disease association study here,

the allele frequencies we observe in our patient sets are very close

to those widely reported elsewhere for non-rheumatoid arthritis

patients. We therefore have no reason to suppose that rheumatoid

arthritis is a ‘‘special case’’ in terms of its influence on the acute-

phase response. We would therefore hypothesize that our findings

can be extrapolated to other chronic inflammatory diseases.

Conclusion
CRP can be measured easily and standard assays offer great

accuracy. While the extreme sensitivity and rapid response to

changing levels of inflammation make CRP measurement an

invaluable clinical tool, our data introduce a note of caution.

Acute-phase CRP may be strongly influenced by common genetic

variants and CRP concentrations should therefore be interpreted

in light of this. If technology advances to the stage of allowing

rapid bedside genetic testing, then a personalised, genetically

adjusted CRP level may prove to be a useful diagnostic and

predictive biomarker.
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Editors’ Summary

C-reactive protein (CRP) is a serum marker for inflammation or
infection and acts by binding to a chemical (phosphocholine)
found on the surface of dead or dying cells (and some types of
bacteria) in order to activate the immune system (via the
complement system). Fat cells release factors that stimulate
the liver to produce CRP, and serum levels greater than
10 mg/l are generally considered indicative of an infectious or
inflammatory process. After an inflammatory stimulus, serum
CRP levels may exceed 500 times baseline, so CRP is used in all
medical specialities to help diagnose inflammation and
infection. Although patients with chronic inflammatory
diseases, such as rheumatoid arthritis, have raised levels of
CRP, levels of CRP are still highly variable. Some studies have
suggested that there may be genetic variations of CRP (CRP
variants) that determine the magnitude of the acute-phase
CRP response, a finding that has important clinical implica-
tions: CRP thresholds are used as a diagnostic component of
formal clinical algorithms and play an important role in a
clinician’s decision-making process when diagnosing inflam-
matory disease and choosing treatment options. Therefore, it
is possible that false reassurance could be given to a patient
with disease, or optimal treatment withheld, because some
patients are genetically predisposed to have only a modest
increase in acute-phase CRP.

Why Was This Study Done? Although some studies have
looked at the CRP gene variant response, few, if any, studies
have examined the CRP gene variant response in the context
of chronic inflammation, such as in rheumatoid arthritis.
Therefore, this study aimed to determine whether CRP gene
variants could also influence CRP serum levels in rheumatoid
arthritis.

What Did the Researchers Do and Find? The authors
studied two independent sets of patients with chronic
inflammation due to rheumatoid arthritis (total 695 patients):
one patient set used a cohort of 281 patients in the UK, and the
other patient set (used for replication) consisted of 414
patients from New Zealand and Australia. A genetic technique
(a tagSNP approach) was used to capture common variations

at the CRP locus (haplotype association analysis) at both the
population and the individual level. The relationship between
genotype and serum CRP was explored by linear modeling.
The researchers found that common genetic variants at the
CRP locus were associated with acute-phase serum CRP in both
patient sets translating into an approximate 3.5-fold change in
expected serum CRP between carriers of two common CRP
variants. For example, when ESR = 50 mm/h the expected CRP
serum level for one common CRP variant was 43.1 mg/l and for
another CRP variant was 14.2 mg/l.

What Do These Findings Mean? The findings of this study
raise questions about the interpretation of acute-phase serum
CRP, as they suggest that there is a significant associa-
tion between CRP variants and acute-phase serum CRP
concentrations in a group of patients with rheumatoid
arthritis, including those with chronic active inflammation.
The size of the genetic effect may be large enough to have a
clinically relevant impact on the assessment of inflammatory
disease activity, which in turn may influence therapeutic
decision making. Failure to take into account the potential for
genetic effects may result in the inappropriate reassurance or
undertreatment of patients simply because they carry low-
CRP–associated genetic variants. CRP is increasingly being
incorporated into clinical algorithms to compare disease
activity between patients and to predict future clinical events,
so these findings impact on the use of such algorithms. The
accuracy and utility of these algorithms might be improved by
using a genetically adjusted CRP measurement.

Additional Information. Please access these Web sites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1000341

N Lab Test Online provides information on CRP

N The Wellcome Trust provides a glossary of genetic terms

N Learn.Genetics provides access to the Genetic Science
Learning Center, which is part of the human genome
project

The Genetics of Acute-Phase CRP

PLoS Medicine | www.plosmedicine.org 9 September 2010 | Volume 7 | Issue 9 | e1000341


