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Abstract

Background: One of the fundamental building blocks for determining the burden of disease in populations is to reliably
measure the level and pattern of mortality by age and sex. Where well-functioning registration systems exist, this task is
relatively straightforward. Results from many civil registration systems, however, remain uncertain because of a lack of
confidence in the completeness of death registration. Incomplete registration systems mean not all deaths are counted, and
resulting estimates of death rates for the population are then underestimated. Death distribution methods (DDMs) are a
suite of demographic methods that attempt to estimate the fraction of deaths that are registered and counted by the civil
registration system. Although widely applied and used, the methods have at least three types of limitations. First, a wide
range of variants of these methods has been applied in practice with little scientific literature to guide their selection.
Second, the methods have not been extensively validated in real population conditions where violations of the assumptions
of the methods most certainly occur. Third, DDMs do not generate uncertainty intervals.

Methods and Findings: In this paper, we systematically evaluate the performance of 234 variants of DDM methods in three
different validation environments where we know or have strong beliefs about the true level of completeness of death
registration. Using these datasets, we identify three variants of the DDMs that generally perform the best. We also find that
even these improved methods yield uncertainty intervals of roughly 6 one-quarter of the estimate. Finally, we demonstrate
the application of the optimal variants in eight countries.

Conclusions: There continues to be a role for partial vital registration data in measuring adult mortality levels and trends,
but such results should only be interpreted alongside all other data sources on adult mortality and the uncertainty of the
resulting levels, trends, and age-patterns of adult death considered.
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Introduction

One of the fundamental building blocks for determining the

burden of disease in populations is to reliably measure the level

and pattern of mortality by age and sex. Simply knowing death

rates at specific ages is itself an important descriptor of the

epidemiological situation in a population, given the strong age

dependence of major diseases and injuries. After decades of effort

and emphasis on improving survival among children, uncertainty

about levels and trends in child mortality has been substantially

reduced (although further improvements in knowledge are possible

with better methods and wider access to survey and census data

[1]). This improvement is not the case with adult mortality, despite

the focus on adult health outcomes in Millennium Development

Goal (MDG) 5 (reducing maternal mortality) and MDG 6 (halting

and reversing the spread of HIV, tuberculosis, and malaria).

Given the importance of estimating underlying mortality rates

in order to more reliably describe the burden of disease in

populations, particularly for populations where the routine

registration of deaths functions poorly, methods have been

developed to more successfully exploit the substantial amount of

information on the survival of siblings that has been collected in

large-scale global survey programs [2]. For many developing

countries, however, the mainstay for adult mortality measurement

remains civil registration systems. Over 50 developing countries

annually report death statistics to the World Health Organization

(WHO) or the United Nations Statistics Division [3,4]. Results

from data collected using civil registration systems, however,

remain uncertain owing to a lack of confidence in the

completeness of death registration and the accuracy of reports

about age at death.

Beginning in the 1960s and 1970s, methods were developed by

demographers in an attempt to estimate the completeness of death

reporting, either in civil registration systems or in censuses and

surveys [5–11]. These methods, known in the literature as death

distribution methods (DDMs), are effectively based on a

comparison of the age distribution of recorded deaths with the

age distribution of the population in which the deaths occurred. In

order to satisfy the basic demographic balancing equation (namely,

that population growth is a function of births, deaths, and

migration), the methods are dependent on assumptions that birth

and death rates are constant, that there is no net migration in the

population, and that the extent of age misreporting and other

errors in data collection are minimal.

These methods have been widely applied to census and vital

registration data in the literature and are used for nearly 100

countries by WHO to monitor adult mortality [4,12–19].

Although widely applied and used, the methods have at least

three types of limitations. First, a wide range of variants of these

methods has been applied in practice with little scientific literature

to guide selection of these variants (we describe these possible

variants in greater detail in the Methods). Second, the methods

have not been extensively validated in real populations in the

presence of measurement error and other violations of the

assumptions. We know of only two studies evaluating the

performance of these methods to date. One study [20] found

large variation in results when applied to high-income countries

where registration is thought to be complete. Another study [21]

found the methods to be accurate when their assumptions were

not violated; however, the margins of error grew quite extensive in

the presence of violations. Both studies were conducted using a

limited set of the possible variants of these methods and were

examined in a limited range of population scenarios. Third, DDM

methods are grounded in mathematical, not statistical, relation-

ships and thus do not generate uncertainty intervals for the

estimated completeness of death registration.

Here, we aim to systematically evaluate the performance of 234

variants of DDMs on three different validation datasets and, on

the basis of this evaluation, to develop improvements to the

application of these methods in countries with incomplete vital

registration.

Methods

Three DDM Families
The three families of methods used for assessing the complete-

ness of death registration are generalized growth balance (GGB),

synthetic extinct generations (SEG), and a hybrid of the two

approaches (GGBSEG) (Figure 1). Text S1 provides a brief

summary of these methods and the mathematical relationships

that underlie them. All that these methods require as input are age

distributions of population from two censuses and the deaths

registered between the censuses by age. The methods are normally

applied separately to males and females. In some cases, instead of

death captured by vital registration systems, deaths reported in a

census in the last 12 mo have been used. All three families of

methods ultimately yield a correction factor that can be multiplied

by the observed adult death rates to get the corrected adult death

rates (see Text S1). SEG methods yield an estimate of the

completeness of death registration relative to the two censuses.

GGB methods and the related GGBSEG yield an estimation of the

completeness of census 2 relative to census 1 as well as the

completeness of death registration relative to the censuses. In

theory, GGB and GGBSEG should perform better in the presence

of differential completeness of the two censuses.

On the basis of practical experience, results of applying DDMs

to population and death data for all adult age groups can give

findings that lack face validity. Demographers often age-trim,

namely drop the older and/or younger age groups in the

estimation of the correction factor for observed death rates. This

practical approach has a sound theoretical basis: the effects of

random fluctuations in the number of deaths or the population in

some age groups, age misreporting, and migration may vary

substantially at older or younger age groups. While age trimming

is widely practiced, there are no published studies that systemat-

ically evaluate the performance of different age trims for the three

families of DDMs. We have computed 78 age trims for each of the

three families. These 78 age trims were chosen to cover all possible

age trims in which at least five contiguous age groups are used. We

picked five as the minimum number of age groups required to give

stable estimates for each of the methods. We identify each age trim

using the convention family a–k, where family is either GGB, SEG,

or GGBSEG, a is the start of the age interval, and k is the start of

the last 5-y age group included. In this article, we define ‘‘method’’

to mean the specific combination of family and age trim, so

effectively we are evaluating three families 678 age trims = 234

different DDM methods. Application of all methods has been in

Stata [22].

Creating or Identifying Validation Environments
Choice of the optimal DDMs including age trimming can only

be undertaken in settings where the analyst has a reasonable

knowledge of the true correction factor that needs to be applied to

the observed death rate. The real challenge in this research area is

creating or identifying existing validation environments. We use

three different environments, each with their own advantages: (1)

microsimulation model of a population of 10 million followed for a

period of 150 y exposed to different levels of age-specific mortality,
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Figure 1. Three families of DDMs.
doi:10.1371/journal.pmed.1000262.g001
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fertility, and migration. The advantage of the microsimulation

environments is that the analyst controls all aspects of population

dynamics and measurement error; thus, truth is known with

certainty. (2) US counties, 1990–2000, provide a large set of

populations with a large range in size, immigration, and

emigration rates where it is reasonable to assume that the relative

completeness (RC) of vital registration relative to the 1990 and

2000 censuses is close to 100%. (3) High-income OECD

economies as designated by the World Bank (July 2009 revision)

[23] with populations greater than 5 million from 1950–2000,

excluding the Republic of Korea, because registration complete-

ness in past years was not likely complete, and Germany, because

no census has been conducted since reunification. This group

represents a much narrower range of migration rates and larger

population sizes in countries with mature death registration

systems.

Population and Measurement Microsimulation
Using microsimulation to study the performance of DDMs

requires two interconnected models: a population microsimulation

model and a measurement microsimulation model. Figure 2

provides a schematic of the population model where individuals

are exposed over time to age-specific risks of death, fertility, and

migration. Mortality and fertility rates were modeled on the basis

of trends in mortality and fertility in the US during the 20th

century. These rates were applied to an initial population age

distribution from the year 1751 in Sweden. The effect of fertility

and mortality evolution over time on the population age structure

is illustrated in Figure 3. After an initial period of approximately

75 y, the age distribution evens out and becomes smooth again.

Using this population model, we created 11 different population

scenarios on the basis of different levels of mortality and fertility.

For each mortality-fertility scenario, we added: three scenarios of

net immigration with rates of 5, 10, and 25 per thousand; three

scenarios of net emigration with rates of 5, 10, and 25 per

thousand; and one scenario with no migration. The age-pattern of

migration, however (illustrated in Figure 4), is constant in each

case of net migration and based on the average of a geographically

diverse selection of countries with complete migration data as

reported in the 1989 Demographic Yearbook [24]. In all, we

generated 77 mortality-fertility-migration population scenarios

with data on roughly 10–15 million individuals in each. Various

demographic characteristics of each population scenario are

shown in Table 1.

For each population scenario, we applied a measurement

microsimulation model where census 1 is taken at time t,

registration of deaths occurs from time t to t+10, and census 2 is

taken at time t+10. Individuals have probabilities of being

included in the two censuses of c1 and c2 and, if they die, of

being registered of v1. Further, each individual’s age in each

measurement is recorded subject to two types of age misreporting:

stochastic and systematic. Stochastic age misreporting is captured

as a random draw for each individual for each measurement from

a normal distribution with mean zero and variance s2
1. Values

selected for the stochastic age-misreporting parameter s2
1 were

established by empirical findings from a test-retest comparison of

age reporting in 70 World Health Surveys. Systematic age

misreporting is captured by the function: am~atzatb where am is

the misreported age, at is the true age, and b is drawn from a

normal distribution with a mean m and variance s2
2. We vary the

choice of c1, c2, v1, and the nine parameters defining the age-

misreporting distributions s2
1(c1), s2

1(c2), s2
1(vr), m(c1), m(c2), m(vr),

s2
2(c1), s2

2(c2), and s2
2(vr), randomly generating 2,000 different

measurement scenarios for each of the 77 population scenarios.

Table 2 summarizes the ranges for the nine parameters governing

the measurement process that we have used in the simulations.

Because we believe that age misreporting is likely to be culturally

determined, we have built strong correlations into the selection of

age-misreporting variables between any given measurement

microsimulations (i.e., age misreporting in one measurement

event such as census 1 is similar to age misreporting in another

measurement event in the same population). The choice of the

ranges sampled in Table 2 is based on our review of the literature

[25,26].

In addition to stochastic and systematic age misreporting, a

further aspect to age misreporting is the phenomenon known as

‘‘age heaping,’’ in which respondents tend to favor ages ending in 0

or 5. Because DDMs are applied to 5-y age groupings, we expected

the effect of age heaping would be minimal, but we conducted a

sensitivity analysis to test this hypothesis. We simulated various

degrees of age heaping, in which people rounded their age to the

nearest number ending in 5 or 0 with stochastic probabilities of 5%,

10%, or 20%. These values correspond to Whipple’s indices of

roughly 120, 140, and 180, respectively, and reflect degrees of data

quality ranging from ‘‘approximate’’ to ‘‘very rough,’’ according to

the United Nations [27].

In total, we have generated 154,000 sets of two censuses and

death registration data over 10 y where we know the true death

rate and the observed death rate and thus the correction factor

that DDMs should generate.

US Counties 1990–2000
Our second validation environment is US counties 1990 to

2000 where census age counts and death registration are

available. We use the 2,072 counties or merged county units

developed to assure a minimum population size in each aggregate

[28–30]. Table 3 summarizes the range of population sizes,

Figure 2. Simulated population model. This schematic describes
the evolution of the simulated population, where P0 is the probability of
remaining in the sample, Pm is the probability of dying in the year given
an age-specific probability y of dying in a single day (f is the fraction of
time spent in the year in age group x1), Pe(a,t) is the probability of
migrating at age a and time t, and Pb(a,t) is the probability of giving
birth at age a and time t and only applies to the reproductive age
groups.
doi:10.1371/journal.pmed.1000262.g002
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mortality, fertility, and migration observed across US counties.

We assume that, due to rigorous enforcement of census and

registration laws, relative completeness of death registration is

effectively 100% in all counties. It is true that census coverage at

the county level can vary, but it is estimated to be greater than

98% for close to 90% of all counties [31]. To remove the effect of

small numbers on these methods, we present results for the 534

counties with a population greater than 100,000. Internal

immigration and emigration data are based on data from the

US Internal Revenue Service (IRS) 2007 [32], which tabulates

the number of exemptions (an estimate of the number of

individuals) that move from each county to every other county by

matching the Taxpayer Identification Number and comparing

zip codes of filing addresses from one year to the next. The IRS

dataset does not include international migrants. The number of

international migrants is less than one-quarter of total internal

migrants in the United States [32–34].

High-Income, Large Countries 1950–2000
Our third validation environment, following the work of

Thomas and Hill [20], is high-income countries with populations

greater than 5 million from 1950–2000. We have identified 149

periods across 20 countries where census data are available at the

beginning and end of the period and death registration data are

available for part or all of the intermediate years. Periods were

defined by pairing a census with each of the two subsequent

censuses in time; this yielded two intercensal periods (for example,

a census in 1970 would be paired with the 1980 census to create

one period and the 1990 census to create a second period; the

same would be done with 1980–1990 and 1980–2000 and so on).

As required to apply the methods, deaths during the intercensal

period were averaged to create average annual deaths within each

period. The set of 20 high-income countries consists of: Australia,

Austria, Belgium, Canada, Czech Republic, Denmark, Finland,

France, Greece, Hungary, Italy, Japan, Netherlands, Portugal,

Slovak Republic, Spain, Sweden, Switzerland, the United

Kingdom, and the United States. The data sources include the

United Nations Demographic Yearbook [35] and the WHO

mortality database [36]. We have applied the best performing

method for all variants of each family of DDMs to all 149

combinations of censuses and death registration within the

matching intercensal period, yielding 149 estimates of relative

completeness for each DDM method for these countries. For each

of them, we assume, as in the US counties, that relative

completeness of death registration is very close to 100%, because

social and legal structures in place for several decades mean that it

is extremely difficult to dispose of a corpse without legal

registration of death.

Figure 3. An example of the effect of fertility and mortality evolution over time on the simulated population age-structure with no
migration. The initial age structure of Sweden’s 1751 population is shown, as are 10-y incremental changes after applying the mortality and fertility
rates of the simulated population.
doi:10.1371/journal.pmed.1000262.g003
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Figure 4. The age pattern of in- and out-migration used to model migration in the simulated populations. This age pattern is based on
the average of a geographically diverse selection of countries with complete migration data as reported in the 1989 Demographic Yearbook.
doi:10.1371/journal.pmed.1000262.g004

Table 1. Mortality and fertility levels and trends in the simulations.

Scenario
Crude Birth
Rate per 1,000

Life Expectancy
at Birth 45q15

Population
at Census 1

Population
at Census 2

Intercensal
Deaths

1 15.49 74.82 0.104 81,860 87,052 8,146

2 17.53 72.73 0.135 66,723 72,783 6,257

3 15.92 75.30 0.096 82,789 88,014 8,157

4 16.16 74.89 0.101 80,849 86,251 7,917

5 18.19 72.94 0.128 67,433 73,442 6,366

6 15.50 74.41 0.107 78,116 83,398 7,695

7 18.44 72.26 0.142 63,299 69,228 6,029

8 17.76 72.71 0.133 66,473 72,376 6,305

9 18.74 71.54 0.154 59,805 65,817 5,668

10 17.94 72.42 0.141 65,730 71,903 6,144

11 17.87 71.81 0.150 63,059 69,183 5,958

doi:10.1371/journal.pmed.1000262.t001
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Evaluating the Performance of Different DDMs
Each method yields a correction factor that can be multiplied by

the observed death rate to get a corrected death rate. Text S1

provides a formula for each of these correction factors by DDM

family. For convenience and interpretation, we define ‘‘relative

completeness of death registration’’ to be the inverse of the

correction factor from each family. It is important to note that the

assumptions in each family that are incorporated into the

correction factor are different. Nevertheless, we ultimately want

DDMs that yield the correction factor closest to the true value

needed to correct the observed death rate for a population to equal

the true death rate. For ease of communication, we prefer to

evaluate DDMs using the inverse of the correction factor, or

relative completeness of death registration (RC). For each

validation environment, we compare estimated RC to the true

or assumed RC. The difference between RC(estimated) and

RC(true) is the error in the estimated relative completeness. We

use median relative error as a metric of performance of a given

method applied in a given validation environment (we use median

relative error instead of average relative error because the median

is less sensitive to outliers). More formally, we take the median

value of:

relative erroritme~
D(RC(estimated)itme{RC(true)ieD

RC(true)ie

ð1Þ

across all i for each combination of tme. Where tm represents the

age trim t used from family m (GGB, SEG, or GGBSEG), i indexes

each simulated population, county, or country from validation

environment e. We choose optimal DDMs for each family of

methods by minimizing the median relative error in the three

validation datasets.

Diagnostics for DDMs
In practice, demographers often use qualitative insights from the

application of DDMs to judge how well they are performing. For

example, for GGB, when observed death rates from death

registration are plotted against implied death rates from the

comparison of censuses, the closer they fall to a straight line, the

better the results are considered. For SEG, the relative

completeness across age groups should be close to a flat line since

the method assumes constant completeness by age. We capture

these important insights by formalizing these diagnostics. For

GGB, we compute the R2 of the regression of implied death rates

on observed death rates. If the assumptions of the method hold,

then mathematically, these two quantities should fall on a line and

R2 equal to 1.0. The R2 value can be interpreted as a measure of

the degree to which the assumptions of the method are upheld or

fail. For SEG and GGBSEG, we compute the slope of a regression

line of the age-specific relative completeness estimates on age. The

closer this slope is to zero the better. For optimal trims of each

family of methods, we have explored the relationship between the

diagnostics and performance.

Uncertainty Intervals
We approximated uncertainty intervals by determining, sepa-

rately in the three environments, the standard error that produced

an uncertainty interval that captured the truth 95% of the time.

We assumed normality in order to construct the uncertainty

intervals.

Application to Selected Developing Countries
As with the high-income countries, in applying the methods to

developing countries, we created periods by pairing each census

with the two subsequent censuses. We then applied the optimal

age trims for each of the three families of methods to the resulting

census pairs and the intercensal average annual deaths from death

registration or census/survey data on household deaths found in

the UN Demographic Yearbooks [35], IPUMS [37], and WHO

[36] mortality databases for 1950–2000. In some cases, the age

groups available in the data did not allow for the use of the optimal

age trim. For example, if the open interval for deaths was 70+y, we

could not apply any age trims above the 65–69-y age group. In

these cases, we applied the best performing age trims possible

given the age groups present in the dataset. Further, when the

death data available were from censuses or surveys that asked

about household deaths in the last 12 mo, we computed average

annual deaths by calculating the death rates at the time of the

second census (or survey), and applying them to the average

person-years lived assuming geometric population growth in the

Table 2. Simulation measurement model parameter
distributions.

Parameter Mean Minimum Maximum

Completeness of Census 1 0.95 0.90 1.00

Completeness of Census 2 0.95 0.90 1.00

Completeness of VR 0.65 0.30 1.00

b in Census 1 0.00 20.07 0.07

s2
1 in Census 1 1.99 0.00 2.89

b in Census 2 0.00 20.07 0.08

s1
2 in Census 2 1.99 0.00 2.86

b in VR 0.00 20.06 0.07

s2
1 in VR 1.99 0.00 2.76

Stochastic age misreporting is captured as a random draw for each individual
for each measurement from a normal distribution with mean zero and variance
s2

1 . Systematic age misreporting is captured by the function am~atzat|b
where am is the misreported age, at is the true age, and b is drawn from a
normal distribution.
VR, vital registration.
doi:10.1371/journal.pmed.1000262.t002

Table 3. Summary of demographic characteristics of US
counties with population greater than 100,000 in 2000.

Demographic
Characteristic Years Mean Minimum Maximum

Population size 2000 401,245 100,224 9,519,338

Average annual
growth rate

1990–2000 0.015 20.013 0.103

Emigration
(total outmigrants)

1995–2000 22,711 547 1,190,823

Immigration (total
inmigrants)

1995–2000 22,711 226 770,306

Net migration
(net migrants)

1995–2000 0 2420,571 193,489

Life expectancy
at birth

1990–2000 78 70 82

45q15 1990–2000 0.11 0.06 0.25

Total fertility rate 2000 2.01 0 3.62

doi:10.1371/journal.pmed.1000262.t003
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intercensal period. In total, this process yielded roughly 1,000

estimates from each optimal DDM. For illustrative purposes, we

present our results in detail for six developing countries and

contrast them with results from two high-income countries.

Results

The performance of all possible age trims for the three families

of DDMs in the three validation datasets is summarized in Table 4

(which lists the top five and worst five age trims for each method).

The full results for every age trim can be found in Table S1. The

results in all validation datasets demonstrate high variation in

performance across different age trims. This variation ranges from

2.0% to 46% in terms of median relative error. Clearly, the key

determinants of the performance of each family of DDMs vary

profoundly according to which age groups are included in the

estimation process. There is much greater variation across age

trims than there is across families of DDMs. As Table 4 shows, we

have computed the median relative error for each age trim in each

validation environment and ranked the trims within each

environment. The minimum average rank across the three

environments yields the best performing method. For SEG, the

optimal age trim is SEG 55–80; this was the second best in the

simulated populations and US counties and best in high-income

countries. For GGB, the results across validation datasets appear

to be more mixed, but GGB 40–70 performed best on average.

Finally, GGBSEG 50–70 performed best on average across the

three validation environments.

Because the simulated populations were generated using

historical mortality rates from the US, they have slightly older

Table 4. Median relative error and rank for the top five and worst five of 78 possible age trims of GGB, SEG, and GGBSEG in the
simulations, US counties, and high-income countries sorted by average rank.

Age Trim Simulations US Counties High-Income Countries Average

MRE Rank MRE Rank MRE Rank MRE Rank

GGB

40–70 0.0644 4 0.1086 24 0.02155 7 0.065 11.7

35–70 0.0662 5 0.1068 18 0.02255 13 0.065 12.0

25–75 0.0696 13 0.1006 13 0.02245 12 0.064 12.7

30–75 0.0678 10 0.1007 14 0.02318 14 0.064 12.7

35–75 0.0666 7 0.0989 11 0.02467 21 0.063 13.0

15–35 0.1274 66 0.4167 74 0.16579 78 0.237 72.7

20–40 0.1533 76 0.3773 72 0.13529 73 0.222 73.7

5–35 0.144 73 0.41 73 0.14786 77 0.234 74.3

5–25 0.2567 78 0.4365 76 0.11805 69 0.270 74.3

5–30 0.1875 77 0.4615 77 0.12809 72 0.259 75.3

SEG

55–80 0.0869 2 0.1057 2 0.01985 1 0.071 1.7

60–80 0.0809 1 0.0984 1 0.02128 4 0.067 2.0

55–75 0.0917 3 0.1105 3 0.02035 2 0.074 2.7

50–80 0.0938 4 0.1132 4 0.02131 5 0.076 4.3

45–80 0.1018 6 0.1224 6 0.02117 3 0.082 5.0

5–40 0.2993 74 0.2863 74 0.06559 74 0.217 74.0

5–35 0.3141 75 0.2926 75 0.0694 75 0.225 75.0

10–30 0.3147 76 0.2975 76 0.07101 76 0.228 76.0

5–30 0.329 77 0.3077 77 0.07851 77 0.238 77.0

5–25 0.3438 78 0.3263 78 0.0828 78 0.251 78.0

GGBSEG

50–70 0.0911 6 0.0917 5 0.03645 8 0.073 6.3

45–80 0.0926 7 0.0933 8 0.03588 5 0.074 6.7

45–70 0.0967 9 0.0911 4 0.03754 9 0.075 7.3

50–75 0.0888 5 0.0947 13 0.03562 4 0.073 7.3

45–75 0.0938 8 0.0934 9 0.03645 7 0.075 8.0

5–40 0.249 74 0.1866 74 0.09904 74 0.178 74.0

5–35 0.2647 76 0.2034 75 0.10833 75 0.192 75.3

10–30 0.2619 75 0.2101 76 0.11028 76 0.194 75.7

5–30 0.2806 77 0.2154 77 0.11491 77 0.204 77.0

5–25 0.296 78 0.2279 78 0.12469 78 0.216 78.0

doi:10.1371/journal.pmed.1000262.t004
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populations on average than low-middle-income countries with

vital registration where the DDM methods would be useful. This

discrepancy raises the issue as to whether or not the selection of

older age trims as the best performing methods might be an

artifact of the age structure of the populations. To test this, we

used the US county validation environment to examine the

optimal age trim across various levels (,10%, 10%–12%, 12%–

18%, 18%–20%, and .20%) of the proportion of population

above age 60 y (we performed the analysis using the US counties

because there was more variation in proportion over age 60 across

county populations than in the simulations). The optimal age trims

were generally consistent across five categories of proportion over

age 60 for the SEG method, and varied more for the GGB and

GGBSEG methods. Despite the different optimal age trims across

the different categories of population structure for GGB and

GGBSEG, there is no consistent evidence to suggest that in more

elderly populations, the older age trims are favored.

Given the closest test to national application is the high-income

countries, all three optimal versions of the three DDM families

perform relatively well with similar median relative error in this

setting. SEG 55–80 does slightly better than the optimal age trims

in the other families. Of note, the previously reported sensitivity of

SEG to migration in high-income countries [20] appears to be

largely attenuated in SEG 55–80. We focus on the three optimal

methods, SEG 55–80, GGB 40–70, and GGBSEG 50–70, for the

rest of the analysis.

The simulation dataset provides an opportunity to investigate

how error and estimated relative completeness are associated with

factors such as the levels and trends in mortality, fertility,

migration, and age misreporting.

We first present the results of the sensitivity analysis to

determine if the phenomenon of age heaping affects performance

above and beyond the effects of stochastic and systematic age

misreporting that we modeled. Table 5 suggests that consistent

with our hypothesis, there is no appreciable effect. The optimal

age trims remain so for each family, and the median relative error

remains essentially the same, regardless of the degree of age

heaping. For further analysis of the effects of age misreporting, we

focus solely on the effects of stochastic and systematic age-

misreporting patterns.

Table 6 shows regression results of error in relative complete-

ness for each of the three optimal methods regressed on the six

age-misreporting variables (stochastic and systematic age-misre-

porting variables for each of the two censuses and the vital

registration system) and migration rate with and without fixed

effects for the 77 population scenarios. Overall, the regression

results show large effects in all three optimal trims for age

misreporting. Stochastic age misreporting has an important effect,

but the effect of systematic age misreporting is much larger,

judging by the t-statistics. Of particular importance are differences

in the systematic age-misreporting variables across the two

censuses and vital registration (separate regressions not shown).

When patterns of age misreporting differ more across the censuses

and vital registration (VR), the error increases. Adding population

fixed effects increases the R2 of the regression, indicating that the

parameters defining the population (mortality, fertility, and

migration) along with age misreporting together explain a total

of 78%, 94%, and 90% of the variation in the error of the SEG

55–80, GGB 40–70, and GGBSEG 50–70 methods, respectively.

Notably, the coefficients do not change appreciably when fixed

effects are added, indicating that the relationships of age

misreporting to relative error can be generalized across different

population settings. With fixed effects, migration is not significant

as expected because the 77 fixed effects capture the unique effects

of the combination of mortality, fertility, and migration. The t-

statistic on migration in the model without fixed effects is relatively

small in comparison to those driven by the error generated by the

age-misreporting parameters. In part, this result may be due to the

Table 5. Age trims with the lowest median relative error in the simulations with and without age heaping.

Order Without Age Heaping Age Heaping, 5% Age Heaping, 10% Age Heaping, 20%

Age Trim MRE Age Trim MRE Age Trim MRE Age Trim MRE

GGB

1 45–70 0.0636 45–70 0.063669 45–70 0.063545 45–70 0.063616

2 50–70 0.0639 50–70 0.063898 50–70 0.063869 50–70 0.063791

3 45–65 0.0643 40–70 0.064349 40–70 0.06443 40–70 0.064564

4 40–70 0.0644 45–65 0.064403 45–65 0.064606 45–65 0.064766

5 35–70 0.0662 40–75 0.066096 40–75 0.065963 40–75 0.065847

SEG

1 60–80 0.0809 60–80 0.080823 60–80 0.080716 60–80 0.080609

2 55–80 0.0869 55–80 0.086894 55–80 0.086842 55–80 0.08681

3 55–75 0.0917 55–75 0.09171 55–75 0.091671 55–75 0.09179

4 50–80 0.0938 50–80 0.093813 50–80 0.093839 50–80 0.093951

5 50–75 0.0991 50–75 0.09913 50–75 0.099233 50–75 0.099424

GGBSEG

1 60–80 0.0820 60–80 0.081414 60–80 0.080588 60–80 0.07941

2 55–80 0.0846 55–80 0.083923 55–80 0.083185 55–80 0.081934

3 55–75 0.0847 55–75 0.083988 55–75 0.083194 55–75 0.082023

4 50–80 0.0881 50–80 0.087424 50–80 0.086628 50–80 0.085277

5 50–75 0.0888 50–75 0.088041 50–75 0.087206 50–75 0.085958

doi:10.1371/journal.pmed.1000262.t005
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selection of the optimal age trims, which tend to minimize the

impact of migration already.

We also analyzed the performance of the age trims in the

simulations and US counties according to level of migration.

Table 7 shows the optimal age trim at each level of migration for

the simulation, and Table 8 at each quintile of migration for the

counties. The best performing age trims, as measured by median

relative error, are the same across varying levels of migration for

SEG and GGBSEG, and they are only slightly different for GGB.

For SEG and GGBSEG, the age trim 60–80 has the smallest

median relative error in all migration scenarios in the simulations.

For GGB, in the absence of net migration, the age trim 40–60 has

the smallest median relative error, whereas the age trims 45–65

and 45–70 are the better performers under positive or negative net

migration scenarios. In the US county environment, the best age

trims for each method are fairly consistent across migration levels.

The same age trim (60–80) is best for all quintiles of migration for

SEG. The optimal age trim varies a bit more for the first quintile

of GGB (25–80 versus 55–80 and 60–80 for the other categories)

and across each of the categories for GGBSEG (generally, younger

age groups are included in the age trim with less migration

present; however, the change in age groups is not dramatic). These

results suggest that the performance of the optimal methods is

relatively immune to different levels of migration.

Uncertainty in the estimated relative completeness is large.

Figure 5 shows in the three validation datasets the relationship

between the estimated relative completeness and the true relative

completeness for the optimal method in each of the three families.

The variation in estimated relative completeness increases as true

coverage approaches 100%. When the error in relative complete-

ness is expressed in relative terms by dividing by the true level of

relative completeness, error remains constant as a function of true

completeness (unpublished data). Because Figure 5 shows that

uncertainty is a function of the level of completeness, the

appropriate way to express uncertainty for these methods is in

terms of variation relative to the estimated completeness. In other

words, we compare the standard deviations of the distributions of

relative error that generate confidence intervals capturing 95% of

the true values. The uncertainty interval for the high-income

countries is smallest; we found standard errors of 0.05, 0.037, and

Table 6. Coefficients from regression of error on age misreporting and migration in the simulations.

Variables

GGB
Estim-
ated

Lower
95% CI

Upper
95% CI t

SEG
Estim-
ated

Lower
95% CI

Upper
95% CI t

GGBSEG
Estimated

Lower
95% CI

Upper
95% CI t

(a) Without Fixed
Effects

b in Census 1 213.00 213.03 212.98 21185.6 29.81 29.86 29.76 2399.9 215.22 215.25 215.19 2986.3

s2
1 in Census 1 20.02 20.03 20.02 227.4 0.00 0.00 0.01 1.3 20.04 20.04 20.04 231.8

b in Census 2 5.21 5.19 5.23 464.0 5.78 5.74 5.83 230.3 1.52 1.49 1.55 96.3

s2
1 in Census 2 0.02 0.02 0.02 24.6 0.02 0.02 0.02 10.0 0.02 0.02 0.03 19.3

b in VR 8.68 8.65 8.70 769.6 4.84 4.79 4.89 191.8 14.10 14.07 14.13 889.0

s2
1 in VR 0.00 0.00 0.01 4.7 20.02 20.03 20.02 212.4 0.02 0.01 0.02 12.2

Migrants per 100,000 20.14 20.14 20.14 2237.8 0.37 0.37 0.37 284.1 20.03 20.04 20.03 240.9

Constant 0.03 0.03 0.03 50.2 0.02 0.02 0.02 14.8 0.05 0.04 0.05 58.0

R2 0.91 — — — 0.63 — — — 0.89 — — —

RMSE 0.03 — — — 0.07 — — — 0.05 — — —

(b) Including Fixed
Effects for Population
Scenario

b in Census 1 213.00 213.02 212.99 21484.0 29.81 29.85 29.78 2521.4 215.22 215.25 215.19 21069.5

s2
1 in Census 1 20.02 20.03 20.02 234.3 0.00 0.00 0.01 1.7 20.04 20.04 20.04 234.4

b in Census 2 5.21 5.19 5.23 580.8 5.78 5.75 5.82 300.3 1.52 1.49 1.55 104.4

s2
1 in Census 2 0.02 0.02 0.02 30.7 0.02 0.02 0.02 13.1 0.02 0.02 0.03 20.9

b in VR 8.68 8.66 8.69 963.3 4.84 4.80 4.87 250.1 14.10 14.07 14.13 964.0

s2
1 in VR 0.00 0.00 0.01 5.8 20.02 20.03 20.02 216.1 0.02 0.01 0.02 13.2

Migrants per 100,000 20.22 20.23 20.22 265.7 0.57 0.56 0.59 79.1 20.07 20.08 20.06 212.8

Constant 0.03 0.03 0.03 36.4 0.02 0.02 0.02 12.3 0.03 0.03 0.04 28.6

R2 0.94 — — — 0.78 — — — 0.90 — — —

RMSE 0.03 — — — 0.06 — — — 0.04 — — —

This table shows the relationship between levels of age-misreporting and migration and error in relative completeness (RC) in the simulation environment, both in the
absence (a) and presence (b) of fixed effects, indicating the combination of mortality, fertility, and migration rates that define a population scenario. Error is calculated
by dividing the difference between true RC and estimated RC by true RC using the optimal variant in the simulated environment for each of the three families.
Stochastic age-misreporting is captured as a random draw for each individual from a normal distribution with mean zero and variance s2

1 . Systematic age-misreporting
is captured by the function am~atzat|b where am is the misreported age, at is the true age, and b is drawn from a normal distribution.
CI, confidence interval; RMSE, root mean squared error; VR, vital registration.
doi:10.1371/journal.pmed.1000262.t006
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0.07 for GGB, SEG, and GGBSEG, respectively. In US counties

with a population over 100,000, the standard errors were 0.24,

0.16, and 0.15 for the three methods. The standard errors in the

simulations were more similar to those in the US counties: 0.10 for

GGB, 0.13 for SEG, and 0.13 for GGBSEG. The range of

population dynamics and data generation errors is quite varied

across each of these environments. We suggest taking the

conservative estimate of 620%–26% from the simulation results

because this range falls between the uncertainties estimated from

the counties, which may be overestimating uncertainty because of

smaller numbers and higher levels of migration, and the high-

income countries, which are likely underestimating the uncertainty

we would expect in an application to data from low- or middle-

income countries.

We explored the relationship between the variation or

inconsistency across the optimal age trims from each family and

the resultant error. More specifically, we examined the error in

each of the three methods by quartiles of the variance. While there

was an overall relationship (Figure 6), there was much variability

indicating that greater consistency was not always indicative of less

error.

Diagnostics for GGB 40–70, SEG 55–80, and GGBSEG 50–70

may provide an indication of when methods are performing better

or worse. In the three validation datasets, we examined the

relationship between performance and low to high values of the

diagnostics (Figure 7). Performance is somewhat related to the

diagnostics, more so in the US counties than in the simulations or

high-income countries for GGB and the reverse for GGBSEG. For

SEG, only extreme values of the diagnostics are related to error for

the US counties, and there appears to be a slight relationship with

error in the simulations. No clear relationship is evident in the

high-income countries. Given the different relationships across

each of the methods, the fact that the relationship between

diagnostic decile and error is not always linear, and that the error

tends to be responsive only to extreme values of the diagnostics,

use of these indicators to assess performance does not appear to be

very informative.

Figures 8 and 9 show eight examples of the application of the

three optimal methods to select countries over time. In each, for

each pair of censuses and vital registration data, we show the

results of the three methods in terms of relative completeness. For

comparison, we have also compared registered deaths 0–4 to

estimates of 0–4 deaths on the basis of systematic review of all data

sources [1]. We include graphs from two high-income countries,

Canada and Switzerland, to show that these methods can be

consistent and accurate, as we assume death registration is

complete in these countries. The graph for Mexico suggests that

vital registration, at least for adults, has been relatively complete

since 1970, but there is clearly more noise in these estimates than

for the high-income countries shown. The Philippines shows

similarly noisy estimates, with both decline and improvement

suggested. Knowing the uncertainty inherent in these methods,

however, it is unclear that these are true trends. In Thailand,

registration for adults is estimated to be between 72% and 98%

complete during the 1980s and 1990s. Paraguay is another

example where registration completeness has been relatively

constant over time and where the methods seem to be fairly

consistent with one another. Tunisia illustrates an example where

death registration has clearly improved over time, from nearly

50% in 1965 to complete by 1980. Finally, the graph for Korea

shows complete registration over time for adults, though child

Table 7. Age trims with the lowest median relative error for
different levels of migration in the simulations.

Migrants per 1,000 Best Age Trim (y)

GGB

225 45–70

210 45–70

25 45–65

0 40–60

5 45–65

10 45–65

225 45–70

SEG

225 60–80

210 60–80

25 60–80

0 60–80

5 60–80

10 60–80

225 60–80

GGBSEG

225 60–80

210 60–80

25 60–80

0 60–80

5 60–80

10 60–80

225 60–80

doi:10.1371/journal.pmed.1000262.t007

Table 8. Age trims with the lowest median relative error for
different quintiles of migration in US counties.

Quintile Migrants per 1,000 Best Age Trim (y)

GGB

1st [295.7, 223.0) 25–80

2nd [223.0, 27.35) 55–80

3rd [27.35, 10.6) 60–80

4th [10.6, 39.0) 60–80

5th [39, 276] 60–80

SEG

1st [295.7, 223.0) 60–80

2nd [223.0, 27.35) 60–80

3rd [27.35, 10.6) 60–80

4th [10.6, 39.0) 60–80

5th [39, 276] 60–80

GGBSEG

1st [295.7, 223.0) 50–70

2nd [223.0, 27.35) 40–75

3rd [27.35, 10.6) 30–55

4th [10.6, 39.0) 40–70

5th [39, 276] 45–65

doi:10.1371/journal.pmed.1000262.t008
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completeness is notably less. The variation in the estimates across

methods decreases over time. Across all the countries, it is not clear

that any one family of DDMs is best or most consistent, although

SEG appears to be slightly more stable.

Discussion

On the basis of a systematic evaluation of the performance of

234 variants of DDM methods on three different validation

datasets where we know or have strong beliefs about the true level

of completeness of death registration, we have identified improved

DDM methods, characterized their uncertainty in different

settings, and illustrated their applicability in developing countries.

This thorough analysis of the three families of DDMs whose

purpose is to estimate the completeness of death registration

demonstrates that the choice of age trims has a profound effect on

the performance of these methods. On the basis of the three

different validation datasets, we believe SEG 55–80, GGB 40–70,

and GGBSEG 50–70 are the best methods that can be currently

used to estimate relative completeness of death registration. The

combination of the three optimal DDMs will yield much better

results than the current practice of application of DDMs without

optimal age trimming. Selection of optimal age trims has also

substantially reduced the bias associated with migration reported

in previous work.

Though there is an overall relationship between greater

variation across the estimates from GGB, SEG, and GGBSEG

and greater relative error, much variation exists in this

relationship. We feel it is best to interpret the results from the

three best methods in the context of other information, such as

independent estimates of under-5 completeness and DDM results

Figure 5. Estimated relative completeness versus true relative
completeness in the simulations, US counties with a popula-
tion greater than 100,000, and large high-income countries for
the three methods. The distribution of true completeness for the US
counties is artificially offset from 1 in order to better distinguish it
graphically from high-income countries.
doi:10.1371/journal.pmed.1000262.g005

Figure 6. Relationship between median relative error and
quartile of variance across (inconsistency between) the three
families of DDM methods.
doi:10.1371/journal.pmed.1000262.g006

Evaluating Death Registration

PLoS Medicine | www.plosmedicine.org 12 April 2010 | Volume 7 | Issue 4 | e1000262



over time, and there is an avenue of future research to determine a

systematic way of doing so. However, if an estimate of

completeness must be obtained solely from the optimal DDMs

at time period, then the median result across these three best age

trims can be used. Using the median yields the second lowest

median relative error in all three validation environments, whereas

the best age trims from the other families alone do not perform as

consistently well across validation environments (unpublished

data). It also performs well and most consistently in terms of

minimizing the standard error required to construct an uncer-

tainty interval that captures the truth 95% of the time.

Published studies and national statistical reports apply these

methods and provide results without uncertainty bounds. In the

three different validation environments, our results indicate that

estimated relative completeness using the optimal age trims has a

minimum median relative error of 2.0%, and this can be as high as

10.9%. Further, one cannot depend on diagnostics to tell the

analyst when the uncertainty may be smaller. It appears that the

underlying stochastic processes in censuses and death registration,

including age misreporting, have led to a component of

uncertainty that cannot be eliminated. While usage of partial

death registration is useful for estimating mortality levels among

adults, the application of DDMs, even from the optimal age trims

we have suggested here, should be interpreted with considerable

caution; the uncertainty around relative completeness of registra-

tion is likely to be at least +/220% of the estimated level, and

perhaps considerably more. This level of uncertainty is likely to

mean that while DDM correction methods could be useful in

estimating levels, they are unlikely to be as useful for estimating

mortality change. As an example, Lopez and colleagues [38]

estimate that 45q15 (the probability that a 15-y-old would die by

age 60 if mortality rates remained constant—a commonly used

summary measure of adult mortality) for females in Paraguay

declined by 8 per 1,000 over the period of 1990–2001. According

to our analysis, a margin of error of 0.21 for the SEG 55–80

estimated relative completeness of 80% for Paraguay in the late

1990s (0.133 standard error for SEG 50–8061.9660.8 estimated

relative completeness = 0.21) would yield an uncertainty interval

around predicted 45q15 between 84 and 143 per 1,000, a spread

of 59 points. Detecting the decline in adult female mortality that is

estimated to have happened in Paraguay during the period 1990–

2001 would not be possible given the uncertainty inherent in the

DDMs.

Our working hypotheses in applied work have been that (1) the

completeness of adult death registration is usually greater than or

equal to the completeness of child death registration, given the

greater ease of disposing of infant or child remains without notice

of legal authorities compared to those of adults. In addition, we

have operated under the assumption that (2) the evolution of social

and public institutions leads to stronger civil registration that will

improve both adult and child death registration and thus generate

a high correlation between adult and child completeness.

Application of our optimal DDMs, however, provides indications

that assumption (2) may not be entirely accurate. There are a

number of developing countries in Latin America and Southeast

Asia where adult registration appears to be complete, but child

registration varies from complete to less than 50%. There may well

be considerable variation across countries in the time lag between

achieving complete or near complete adult death registration and

the same for children.

Given the residual uncertainty in optimal DDMs, there may be

a bigger role for direct measurement of relative completeness

through surveys or censuses. Two methods deserve broader

consideration. First, some surveys, such as Thailand’s 1995–1996

Survey of Population Change [39], have asked households about

deaths in the last 12 mo and whether the death was registered, a

direct assessment of completeness of death registration. Of course,

Figure 7. Relationship between median relative error and
decile of diagnostics for GGB, SEG, and GGBSEG. For GGB, the
diagnostic is the R2 of the regression of observed death rates on implied
death rates. For SEG and GGBSEG, the diagnostic is the slope of the
regression of age-specific completeness estimates on age.
doi:10.1371/journal.pmed.1000262.g007
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it is possible that in countries where death registration is legally

required, the reported levels of death registration from such a

survey may be inflated. Nevertheless, this avenue of measurement

could be further refined to include a validation component.

Household respondents could be asked if deaths also occurred in

hospital, for example. The number of hospital deaths recorded by

the health information system could be examined to cross-validate

household responses. A second strategy would be to apply capture-

recapture or dual-record methods [40,41] to civil registration

deaths and deaths reported by households in a time period prior to

a survey or census. Capture-recapture methods require matching

of individual deaths, so this effort can be time consuming. Direct

measurements of completeness using this approach have been used

in the Chinese Disease Surveillance Point System [42] and at

Demographic Surveillance Sites in Kenya [43], as well as with

recent work in Thailand with the most recent 2006 Survey of

Population Change (P. Prasartkul, P. Vapattanawong, personal

communication). More experience with both types of approaches

may strengthen our capacity to track the completeness of death

registration.

The analysis in simulated populations of the profound impact of

stochastic and systematic age misreporting has a more general

implication. Preston and others [44] have pointed out that even in

complete death registration systems, age misreporting can bias the

measurement of death rates by age. In a typical developing

country with a young age structure, even stochastic age

misreporting will lead to overestimation of death rates at younger

ages and underestimation of death rates at older ages. The

sensitivity of completeness estimates from DDMs to age misre-

porting compounds this problem. Renewed efforts will be needed

to measure the extent of stochastic and systematic age misreport-

ing and provide tools for correcting the bias in observed death

rates. This bias is likely present in all available national life tables

at present.

Given the increasing availability of other measurements of adult

mortality such as corrected sibling survival, corrected death

registration data should be interpreted in the context of all other

data sources. In the arena of child mortality, it is now standard

practice [1] to examine all data sources for a country over time

and generate a composite estimate of levels and trends in child

mortality. We believe with improved DDMs, there continues to be

a role for partial vital registration data in measuring adult

mortality levels and trends. But such results should only be

interpreted alongside all other data sources on adult mortality and

the face validity of the resulting levels, trends, and age-patterns of

adult death considered.

Supporting Information

Table S1 Median relative error and rank for all possible age

trims and each DDM family of methods in the simulations, US

counties, and high-income countries, sorted by average rank.

Figure 8. Application of optimal DDMs to Canada, Switzerland, Korea, and Mexico.
doi:10.1371/journal.pmed.1000262.g008
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Found at: doi:10.1371/journal.pmed.1000262.s001 (0.25 MB

PDF)

Text S1 Summary of DDMs.

Found at: doi:10.1371/journal.pmed.1000262.s002 (0.07 MB

PDF)
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Editors’ Summary

Background. Accurate worldwide information on the levels
and patterns of mortality (deaths) is essential for planning
and monitoring global public-health initiatives. The gold
standard method for collecting such information is death
registration. In high-income countries, death registration is
effectively 100% complete, but the situation in many
developing countries is very different. In most African
countries, for example, less than one-quarter of deaths are
officially recorded. Although other data sources such as
household surveys can be used to estimate mortality levels
in such countries, partial registration data could provide
useful information about mortality levels in developing
countries if its completeness could be evaluated. One way to
do this is to use demographic methods called ‘‘death
distribution methods’’ (DDMs). Demography is the study of
the size, growth, and other characteristics of human
populations; DDMs compare the age distribution of
recorded deaths (the relative proportion of deaths in each
age group) with the age distribution of the population in
which they occurred to provide a correction factor that can
be used to calculate corrected mortality levels from
registered deaths. DDMs are used by the World Health
Organization to monitor adult mortality in nearly 100
countries.

Why Was This Study Done? Although widely used, few
studies have compared the performance of the many
available DDM variants, and DDMs have not been
extensively validated by testing them in populations for
which the completeness of death registration is known. In
addition, because DDMs are mathematical in nature, they do
not provide any indication of the uncertainty associated with
the correction factors they yield. This means that public-
health officials using estimates of mortality levels generated
from partial registration data using DDMs have no idea of
the limits between which the true mortality levels of their
populations lie. In this study, the researchers systematically
evaluate the performance of 234 DDM variants and use the
optimal variants that they identify to analyze registration
completeness over time in six developing countries.

What Did the Researchers Do and Find? The researchers
constructed 234 DDM variants by combining each of three
general types of DDMs with 78 different ‘‘age trims’’;
demographers often age-trim—drop older and/or younger
age groups—when using DDMs to estimate correction
factors for observed death rates. The researchers then
evaluated the performance of the variants in three
‘‘validation’’ datasets for which the completeness of death
registration is known—a microsimulation of a population of
10 million people followed for 150 years, population data
from US counties between 1990 and 2000, and population
data from high-income OECD (Organisation for Economic
Co-operation and Development) countries with populations

of more than 5 million between 1950 and 2000. Detailed
analyses of the performance of the DDM variants with all
three datasets identified three optimal DDMs, one of each
type. However, even with these optimal DDMs, the
uncertainty intervals associated with estimates of relative
completeness of registration were roughly +/2 one-quarter
of the estimate. Finally, the researchers applied their optimal
DDMs to six developing countries over time. This analysis
showed that death registration for adults has been relatively
complete since 1970 in Mexico, for example, whereas in
Tunisia, death registration has improved from nearly 50% in
1965 to complete by 1980. It also indicated that the three
DDMs can give consistent results in some contexts.

What Do These Findings Mean? By using multiple
validation databases, these findings identify three optimal
DDMs for the estimation of completeness of death
registration. The researchers recommend that analysts
apply all three methods when estimating the completeness
of death registration data and look at the consistency of the
results produced. They warn that the level of uncertainty
associated with the estimation of completeness of
registration means that results yielded by DDMs should be
interpreted with considerable caution. In particular, they
note that although correction factors provided by DDMs may
be a good way of estimating mortality levels, the uncertainty
in these factors may make them unsuitable for analyzing
trends over time in mortality levels. Overall, the researchers
conclude that partial death registration data have a role to
play in measuring adult mortality levels, provided that they
are analyzed alongside other data sources.

Additional Information. Please access these Web sites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1000262.

N This study and two related PLoS Medicine Research
Articles—by Obermeyer et al. and by Rajaratnam et al. —
are further discussed in a PLoS Medicine Perspective by
Mathers and Boerma

N The Institute for Health Metrics and Evaluation makes
available high-quality information on population health, its
determinants, and the performance of health systems

N Grand Challenges in Global Health provides information on
research into better ways for developing countries to
measure their health status

N The World Health Organization Statistical Information
System (WHOSIS) is an interactive database that brings
together core health statistics for WHO member states,
including information on vital registration of deaths; the
WHO Health Metrics Network is a global collaboration
focused on improving sources of vital statistics
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