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Abstract

Background: The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular
dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene
delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the
phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to
explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of
recombinant full-length utrophin (Utr) or DR4-21 ‘‘micro’’ utrophin (mUtr) protein modified with the cell-penetrating TAT
protein transduction domain could attenuate the phenotype of mdx mice.

Methods and Findings: Recombinant TAT-Utr and TAT-mUtr proteins were expressed using the baculovirus system and
purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of
either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic
parameters of dystrophin deficiency. Injected TAT-mUtr transduced all tissues examined, integrated with members of the
dystrophin complex, reduced serum levels of creatine kinase (11,2906920 U versus 5,95061,120 U; PBS versus TAT), the
prevalence of muscle degeneration/regeneration (54%65% versus 37%64% of centrally nucleated fibers; PBS versus TAT),
the susceptibility to eccentric contraction-induced force drop (72%65% versus 40%68% drop; PBS versus TAT), and
increased specific force production (9.761.1 N/cm2 versus 12.860.9 N/cm2; PBS versus TAT).

Conclusions: These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based
constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused
by loss of dystrophin.
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Introduction

Duchenne muscular dystrophy (DMD) is the most prevalent

form of human muscular dystrophy and is caused by mutations in

dystrophin, a 427 kDa cytoskeletal protein necessary for proper

membrane stability in muscle [1]. Although recent advances in

cell-, gene-, oligonucleotide-, and small molecule-based therapies

have identified several promising approaches to counteract the

effects of dystrophin deficiency in animal models [2–9], there are

currently no effective therapies for humans with DMD. We have

chosen to pursue the therapeutic potential of utrophin (Utr), an

autosomal homolog of dystrophin that corrects all known

phenotypes of the dystrophin-deficient mdx mouse when transge-

nically overexpressed to sufficient levels [10]. Our ability to

express and purify scalable quantities of recombinant full-length

and truncated utrophins [11], combined with the availability of

cell-penetrating peptides, provides an attractive potential method

for directly boosting utrophin levels in vivo.

The protein transduction domain (PTD) of the HIV-1 TAT

protein has been used to effect cellular entry of TAT-fusion

proteins and oligonucleotides into every tissue type examined,

including muscle cells [9,12,13]. However, the ‘‘carrying capacity’’

of the TAT PTD is unknown, and the molecular weight of full-

length utrophin is over three times larger than the largest TAT-

fusion protein described to date [12]. Therefore, we chose to

compare a smaller truncated utrophin construct with full-length

utrophin. Although protein truncation potentially compromises

utrophin function [14], Odom et al. recently demonstrated that a

virus-delivered truncated ‘‘micro’’ utrophin construct extended the

lifespan and significantly improved the phenotype of mdx/utrn2/2

mice [15]. Therefore, we sought to determine whether TAT-

mediated full-length or micro-utrophin delivery is a viable

therapeutic option for the treatment of dystrophinopathy. We

expressed chimeric proteins encoding the TAT PTD fused to both

full-length Utr (TAT-Utr) and DR4–21 ‘‘micro’’ Utr (TAT-mUtr)

and then assessed the ability of purified full-length TAT-Utr and

TAT-mUtr to prevent the dystrophic phenotype of the mdx mouse.

Methods

TAT-Utr and TAT-mUtr
The 59 coding sequence of a previously described 16 kb murine

utrophin baculoviral expression construct [11] was subcloned into

the plasmid pTAT (a gift from Steven Dowdy, UCSD). A Kozak

consensus sequence and FLAG-epitope were engineered in-frame

at the extreme 59 end of TAT-Utr before reinsertion of the

modified fragment into the baculovirus expression construct.

Protein expression and purification was carried out as described

[11]. The construction of TAT-mUtr is detailed in Text S1. The

purified proteins were sterilized for injection by passage through a

0.22 mm filter and injected into the intraperitoneal (IP) cavity of

mdx mice at a concentration of 1.0 to 3.0 mg/ml.

Protein Labeling
1 mg of purified full-length TAT-Utr or TAT-mUtr was diluted

to 1.0 mg/ml in PBS and labeled with IRDye 800CW - High MW

Protein Labeling Kit (Li-Cor Biosciences) according to the

manufacturer’s instructions. The dye is stably coupled to free

amines through an NHS ester reactive group. Unincorporated dye

was separated by passage through a desalting spin column and the

protein concentration of the labeled protein was determined. The

labeled proteins were filter-sterilized prior to injection as above.

Infrared Imaging
All tissue/organ and in vivo scanning was performed on freshly

killed or anesthetized mice using the Odyssey Infrared Imaging

System (Li-Cor Biosciences) using both the 700 and 800 nm

channels.

For tissue transduction studies, five mdx mice received two

injections each, 72 h apart, of either labeled full-length TAT-Utr

(20 mg/g body weight), TAT-mUtr (8.5 mg/g body weight), or

equal volume injections of sterile PBS. Mice were humanely killed

72 h after the second injection and their tissues/organs were

immediately dissected and scanned before freezing for subsequent

protein analysis. Fluorescence intensity data from the 800 nm

channel (labeled protein) was normalized first to the 700 nm

channel (background) of the same tissue/organ before normaliza-

tion to PBS tissue/organ.

For decay time course experiments, four mice were singly

injected with equimolar amounts of either full-length TAT-Utr

(two groups of four mice) or TAT-mUtr (two groups of four mice).

At 3, 24, 48, and 72 h postinjection, all living mice were scanned

and one mouse from each group was killed for tissue protein

analyses.

Treatment
C57Bl/10ScSn-Dmdmdx/J (The Jackson Laboratory, Bar Har-

bor, ME) littermates were treated in parallel (unbiased by gender),

and received a dose of either 5 (0.256; n = 2), 10 (0.56; n = 3), 20

(16; n = 5), 40 (26; n = 3), or 100 mg (56; n = 3) of full-length

TAT-Utr/g body weight or 8.5 mg TAT-mUtr/g body weight

(n = 8), while mdx littermate mice received equal volume injections

of sterile PBS (n = 13). A total of six twice-weekly injections were

administered over 3 wk, beginning at 18 d and culminating at

35 d of age. At 38 d of age, serum and tissue were collected for

creatine kinase, Western blot, immunofluorescence, histological,

and contractile analyses. For data analyses, PBS-injected animals

were randomly assigned to two groups; one group (n = 7) was used

for comparison to full-length TAT-Utr-treated animals while the

other group (n = 6) was used for comparison to TAT-mUtr-treated

animals. Animals were housed and treated in accordance with the

standards set by the University of Minnesota Institutional Animal

Care and Use Committee.

Protein Extracts
Tissues were dissected from freshly killed mice and snap-frozen

in liquid nitrogen before subsequent analyses. For SDS-extracts,

frozen tissue was pulverized and the protein extracted as

previously described [11]. For samples enriched in membrane

glycoproteins using wheat germ agglutinin (WGA) affinity

chromatography, pulverized muscle was instead solubilized 1:10

(w:v) in 5% digitonin solubilization buffer for 1 h at 4uC. The

solubilate was centrifuged at 1,000 rpm for 10 min and the

supernatant then loaded onto equilibrated WGA beads (50 ml of

beads per 1 ml of supernatant) and mixed end-over-end overnight

at 4uC. Beads were then pelleted and washed three times in 10%

digitonin wash buffer before protein was eluted in 0.3 M NAG

elution buffer.

Electrophoresis/Western Blotting
For size separation, 4%–16% BN gels were loaded with 100 mg

of WGA-eluted protein from TAT-mUtr-treated mdx, PBS-injected

mdx, and PBS-injected mdx spiked with 0.1 mg of fluorescently

labeled TAT-mUtr. The gels were run for approximately 2 h at

70 V, and then increased to 150 V for 1 h. Once the dye front
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had migrated halfway through the gel the cathode buffer was

changed from a Coomassie G250-containing cathode buffer to a

dyeless cathode buffer. After the dye front had sufficiently

migrated through the native gel, the appropriate lanes were

excised and loaded on top of a conventional 3%–12% gradient

SDS-PAGE gel.

All Western blotting was performed as described [11] using the

following primary antibodies: utrophin mAb 8A4 (1:50; Santa

Cruz), anti-b-dystroglycan mAb NCL-b-DG (1:50; Novocastra),

anti-a-sarcoglycan mAb NCL-a-Sarc (1:50; Novocastra), anti-c-

sarcoglycan mAb NCL-g-Sarc (1:50; Novocastra), anti-dystrobre-

vin (1:50; Novocastra), anti-nNOS pAb Z-RNN3 (1:1000;

Invitrogen), anti-actin mAbs C4 and AC-15 (1:1000; Sigma),

and anti-FLAG mAb M2 (1:1000; Sigma) and pAb ANTI-FLAG

(1:1000; Sigma). Secondary antibodies were diluted (1:5000) and

detected with the Odyssey Infrared Imaging System (Li-Cor

Biosciences) using the 700 and 800 nm channels.

Histological and Morphometric Analysis
Individual muscles were dissected, coated with OCT (Tissue-

Tek), and rapidly frozen in liquid nitrogen-cooled isopentane.

Cryosections of 10 mm thickness were cut on a Leica CM3050

cryostat and stained with hematoxylin and eosin–phloxine. Images

were collected on a Zeiss Axiovert 25 microscope and compiled

into montages of entire sections in ImagePro Plus and exported to

Scion Image for morphometric analyses. The percentage of

centrally nucleated fibers (CNFs) and fiber diameters were

determined from one muscle of each mouse, with every fiber

scored for CNF analysis and ,700 fiber diameters measured per

muscle section. A Student’s t test was used to compare both

average CNF values and average fiber diameter.

Immunofluorescence
Cryosections of 10 mm thickness were stained with primary

antibodies as previously described [16]. Confocal images were

obtained using an inverted Olympus Fluoview 1000 confocal

microscope at the Biomedical Image Processing Lab and imported

into CorelDraw 10 for figure preparation. Primary monoclonal

antibodies used were identical to those described for Western

blotting above.

Contractile Properties
All contractile assays are detailed in Text S1.

Serum CK Analysis
Retro-orbital bleeds were performed on anesthetized mice as

previously described [16]. Data were collected in U/ml and

compared by Student’s t test.

Results

Expression and Characterization of Recombinant TAT-
Fusion Proteins

Full-length TAT-Utr and TAT-mUtr were expressed in

baculovirus-infected Sf9 cells and purified using anti-FLAG affinity

chromatography (Figures 1A and S1A). As expected from

biochemical studies that have mapped the actin-binding interface

of utrophin [14], deletion of spectrin-like repeats 4–21 of the

middle rod domain resulted in a 5- to 10-fold reduction in actin

binding affinity for TAT-mUtr (Figure S1B). However, the

measured affinity of TAT-mUtr for actin was within the range of

affinities reported for truncated dystrophin constructs that

ameliorated the dystrophic phenotype in vivo [17,18].

TAT Protein Transduction and Stability
In order to assess the cellular transduction of TAT-mUtr and

full-length TAT-Utr in vivo, we labeled each protein with an

infrared-excitable fluorescent dye and administered two injections

of labeled protein at equimolar concentrations (TAT-mUtr,

8.5 mg/g body weight; full-length TAT-Utr, 20 mg/g body weight)

72 h apart to mdx littermate mice. Mice were killed 72 h after the

second injection and their tissues/organs prepared for fluorescence

and protein analyses. Both infrared scanning and Western blot

analysis using a FLAG epitope-specific antibody identified TAT-

mUtr in every tissue/organ examined from treated mice (Figure

S2A) while no TAT-mUtr was observed in sham PBS-injected mdx

littermates. Infrared fluorescence scanning of tissues from mice

injected with labeled protein revealed widespread uptake of both

TAT-mUtr and full-length TAT-Utr when examined in cross-

section (Figure S2B) and at the macroscopic level in all tissues

analyzed (Figure S2C and S2D). However, the extent of

transduction by TAT-mUtr and full-length TAT-Utr was tissue-

dependent as the fluorescence intensity of different tissues and

organs varied dramatically (Figure S2E). While some differences

may be explained by the proximity of the tissue/organ to the

injection site (diaphragm and several peritoneal organs showed

high levels of fluorescence), it is unclear why other tissues/organs

were preferentially transduced while neighboring tissues/organs

were not (e.g., quadriceps versus gastrocnemius, lungs versus

heart). More importantly, full-length TAT-Utr levels appeared

lower than TAT-mUTR as determined by both tissue fluorescence

intensity (Figure S2E) and Western blot analysis (Figure S2F),

suggesting that TAT-mUTR either transduced tissues more

effectively or was more stable in vivo.

To assess the stability of injected TAT-utrophin proteins in vivo,

we administered a single injection of fluorescently tagged TAT-

mUtr or full-length TAT-Utr (TAT-mUtr, 8.5 mg/g body weight;

full-length TAT-Utr, 20 mg/g body weight) to mdx littermate mice

and measured whole-body fluorescence intensity at 3, 24, 48, and

72 h postinjection (Figures 1C and S3A). At each time point one

animal was killed and its tissues analyzed by SDS-PAGE/Western

blot to determine whether fluorescence in tissue extracts was

consistent with whole-body fluorescence (Figure 1D). Although

TAT-mUtr levels decayed most rapidly in liver (Figure 1C and

1D), the fluorescence decay in both liver and quadriceps extracts

closely paralleled the whole-body fluorescence decay and ap-

proached baseline levels 72 h postinjection (Figure 1E). Therefore,

whole-body fluorescence served as a reliable readout for TAT-

mUtr protein levels in vivo in subsequent stability assays. Because

similar whole-body fluorescence decay profiles were observed for

TAT-mUtr and full-length TAT-Utr (Figures 1E and S3B), we

concluded that the higher levels of labeled protein detected in mice

injected with TAT-mUtr were due to the greater transduction

efficiency of the truncated protein.

The 5-fold higher molar yield of TAT-mUtr after expression and

purification (unpublished data) combined with its enhanced

transduction efficiency (Figures 1 and 2) led us to focus on the

therapeutic potential of TAT-mUtr. We administered twice-weekly

injections based on the discovery that a fraction of injected protein

remained stable for at least three days postinjection (Figure 1D).

The time frame of our injection protocol was influenced by (1) the

amount of transgenic utrophin expression required to improve the

mdx phenotype [10,11] and (2) evidence suggesting that utrophin

up-regulation prior to the onset of muscle degeneration/

regeneration in the mdx mouse (,21 d of age) was most effective

in alleviating the dystrophic phenotype [19]. Thus, mdx mice

received six twice-weekly IP injections of TAT-mUtr (8.5 mg/g

body weight) into mdx mice beginning at day 18 postpartum
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(Figure 1F). Treated mice were killed 3 d after the sixth injection,

transcardially perfused with excess PBS to clear residual injected

protein from the vasculature, and assessed for several parameters

of the dystrophic phenotype.

TAT-mUtr Forms a mUGC
A total of eight mdx mice (each randomly selected without bias

for gender at the time of the first injection) received the six-

injection protocol while mdx littermates were injected with equal

volumes of sterile PBS. To assess whether the injected TAT-mUtr

achieved systemic transduction, we first analyzed several tissue

extracts by Western blot and observed strong FLAG immunore-

activity corresponding to TAT-mUtr only in treated samples

(Figure 2A). The relative levels of TAT-mUtr between tissues in

mice receiving six injections was greater than in mice receiving two

injections, and striated muscle extracts exhibited stronger TAT-

mUtr immunoreactivity after six injections compared to nonmuscle

tissues (compare Figures 2A and S2A). Although the mechanism

leading to this finding is unknown, it is perhaps due to differences

in the inherent stability of TAT-mUtr in muscle versus nonmuscle

tissues (Figure 1D and 1E). Importantly, Western blotting with a

utrophin-specific antibody showed that the amount of endogenous

Figure 1. TAT-mUtr stability in vivo. (A) Schematic of TAT-Utr and TAT-mUtr with the orientation of the N-terminal FLAG and TAT epitopes noted.
TAT-mUtr is deleted for spectrin-like repeats 4–21 (dashed line) of the utrophin middle rod domain but retains all N- and C-terminal domains. (B)
Coomassie blue-stained gel of a typical TAT-mUtr purification from Sf9 insect cell lysate using anti-FLAG M2 affinity chromatography. Typical protein
yield was ,1.5 mg of purified protein per gram of Sf9 cell paste. (C) Infrared in vivo scanning of mdx littermate mice after a single IP injection of
fluorescently labeled TAT-mUtr. Mice were scanned 3, 24, 48, and 72 h postinjection with one mouse killed at each time point for tissue analysis.
Green fluorescence corresponds to TAT-mUtr while red signal is tissue autofluorescence. (D) Infrared scan of a nitrocellulose membrane after SDS-
PAGE transfer of quadriceps and liver SDS protein extracts from mice described in (C). The same membrane was Western blotted for actin as a loading
control. (E) Quantification of the TAT-mUtr fluorescence decay in whole-body (C) and tissue extracts (D) over time. Whole body fluorescence was
normalized to body autofluorescence (red signal), while Western blot/tissue extract fluorescence was normalized to protein load on SDS-PAGE gels
stained with Coomassie blue after transfer. (F) Treatment protocol schematic for administering TAT-mUtr to mdx mice. Each treated mouse received
six twice-weekly IP injections between 18 and 35 d of age and was then humanely killed at 38 d of age.
doi:10.1371/journal.pmed.1000083.g001
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full-length utrophin was unchanged in tissues from mice injected

with TAT-mUtr (Figure 2B), indicating that any effect of TAT-

mUtr on the dystrophic phenotype was not due to alterations in

endogenous utrophin expression. To assess the intracellular

localization of TAT-mUtr, we stained quadriceps muscle cryosec-

tions with primary antibodies to either utrophin or the FLAG

epitope and observed intense staining along the periphery of

muscle cells in treated mice, but only limited staining with a

utrophin-specific antibody in PBS-injected mice (Figure 2C). The

staining pattern for TAT-mUtr was consistent with the location of

dystrophin in wild-type muscle cells [1] and transgenically

overexpressed utrophin in mdx tissue [10], indicating that most

internalized TAT-mUtr was appropriately targeted to the subsar-

colemmal space. Taken together, the Western blot and immuno-

fluorescence data in Figure 2 demonstrate both stable systemic

transduction and subcellular localization of TAT-mUtr.

Because the loss of dystrophin expression leads to a destabili-

zation and concomitant loss of other dystrophin–glycoprotein

complex (DGC) members from the muscle cell membrane [1], we

examined whether TAT-mUtr restored the DGC to the sarcolem-

ma and improved membrane stability. Immunofluorescence

analyses using antibodies raised to DGC glycoproteins a-

dystroglycan, b-dystroglycan, a-sarcoglycan, and c-sarcoglycan

revealed only faint or no signal on cryosections from PBS-injected

mice while each antibody probe exhibited intense staining along

the periphery of muscle cells from TAT-mUtr treated mice

(Figure 3A). In addition, the intracellular constituents dystrobrevin

and neuronal nitric oxide synthase (nNOS) were also localized to

the cell periphery of treated muscle, suggesting that administered

TAT-mUtr properly interacted with endogenous dystrophin/

utrophin binding partners (Figure 3A). Consistent with the

immunofluorescence data in Figure 3A, TAT-mUtr and all DGC

components were enriched from detergent-solubilized muscle

extracts by WGA-affinity chromatography while endogenous

utrophin levels remained constant (Figure 3B). These data suggest

that a biochemically stable ‘‘micro’’ utrophin–glycoprotein

complex (mUGC) formed complementary to the endogenous

UGC in dystrophin-deficient muscle. To further test the stability of

association between TAT-mUtr and the glycoprotein complex, we

performed two-dimensional blue native polyacrylamide gel

electrophoresis (2D BN-PAGE) on WGA-enriched muscle extracts

from PBS- and TAT-mUtr-injected mice [20]. Western blots of

samples from PBS-injected mice probed with antibodies to both

utrophin and the FLAG epitope demonstrated that endogenous

(FLAG-less) ,400 kDa utrophin comigrated with b-dystroglycan

in a protein complex of ,16106 kDa (Figures 3C, S4A, and S4B),

evidence that 2D BN-PAGE of WGA muscle extracts can properly

resolve the endogenous UGC. Importantly, Western blots of

samples from TAT-mUtr-injected mice probed for Utr and the

FLAG epitope showed that both endogenous (FLAG-less) Utr and

FLAG-reactive TAT-mUtr comigrated with b-DG (Figure 3C and

Figure S4C). To definitively test whether the Utr/FLAG-reactive

band in treated muscle extracts was aggregated TAT-mUtr that

had migrated coincident with the endogenous UGC, treated

muscle extracts were spiked with purified TAT-mUtr immediately

prior to 2D BN-PAGE analysis. Subsequent Western blotting

clearly distinguished ‘‘free’’ TAT-mUtr from TAT-mUtr com-

plexed with b-DG (Figure 3D). The mUGC also mitigated the

membrane stability defect of mdx mice, as demonstrated by a

significant reduction in serum levels of the muscle enzyme creatine

Figure 2. TAT-mUtr transduces mdx tissue. (A) Western blot analysis of liver (Li), brain (Br), kidney (Kid), heart (H), triceps (Tri), and quadriceps (Q)
SDS protein extracts from 38-d-old mice after six injections of PBS (2) or TAT-mUtr (+). FLAG immunoreactivity corresponding to TAT-mUtr was
observed in all treated tissues. The same blot was probed for actin as a loading control. (B) Western blots of quadriceps and liver SDS extracts probed
with an anti-utrophin antibody demonstrated TAT-mUtr (open arrows) had no effect on endogenous utrophin levels (solid arrows). The same blots
were also probed for FLAG and actin as a loading control. (C) Immunofluorescence analysis of 10 mm thick muscle cryosections from PBS- or TAT-
mUtr-treated mice using anti-utrophin and anti-FLAG antibodies. Scale bar = 100 mm.
doi:10.1371/journal.pmed.1000083.g002
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kinase (Figure 3E). In total, the data in Figure 3 demonstrate that

TAT-mUtr successfully transduced skeletal muscle cells and

formed a functional DGC-like mUGC that significantly improved

membrane integrity in dystrophin-deficient muscle.

TAT-mUtr Improves mdx Muscle Function
Consistent with the restoration of a functional mUGC in mdx

mice, gross histological examination of TAT-mUtr-treated muscles

showed a marked improvement in the overall health of treated

muscle. Hematoxylin-eosin-stained cryosections from TAT-mUtr-

treated mouse muscle exhibited a general uniformity in cell size

and appearance across several individual muscles, whereas

sections from PBS-injected mice displayed extensive mononuclear

cell infiltration and small regenerating fibers (Figure 4A and 4B).

We quantified the incidence of CNFs, an index of skeletal muscle

cell degeneration/regeneration, and observed significantly fewer

CNFs in TAT-mUtr muscles than in PBS-injected and uninjected

mdx controls (Figure 4C). The observed increase in fiber diameter

Figure 3. Formation of the mUGC. (A) Quadriceps muscle cryosections from mice injected with PBS and TAT-mUtr stained with antibodies to
several members of the DGC (a/b-DG, a/b-dystroglycan; a/c-SG, a/c-sarcoglycan; DB, dystrobrevin; Lam, laminin). (B) SDS-PAGE/Western blots of WGA
skeletal muscle extracts of mUGC members (DHPR, dihydropyridine receptor; Syn, syntrophin). DHPR was used as a loading control. (C) Infrared scan
of Western blots after 2D BN-PAGE of skeletal muscle extracts from PBS and TAT-mUtr-injected mice after WGA affinity chromatography enrichment.
100 mg of protein was loaded per gel. Native complexes were separated by size in the first (native) dimension before complex members were
resolved in the second (SDS-PAGE) dimension. Blots were cut into pieces (dotted line) to allow for b-DG and utrophin analysis of each sample and
then realigned before scanning. The top half of each blot could be probed with antibodies to both utrophin (mouse mAb 8A4) and FLAG (pAb ANTI-
FLAG) because secondary antibodies of different species were conjugated with distinct infrared-excitable fluores. Symbols: m (filled white
arrowheads), endogenous utrophin; ,, complexed TAT-mUtr. (D) TAT-mUtr muscle sample analyzed as in (C) except that 0.1 mg of purified,
fluorescently labeled TAT-mUtr was added to the sample prior to BN-PAGE. Symbols: ,, complexed TAT-mUtr; n (open white arrowheads),
uncomplexed TAT-mUtr. (E) Serum levels of the muscle enzyme creatine kinase were significantly elevated in PBS (black; 11,2906920 U)- compared to
TAT-mUtr (red; 5,95061,120 U)-injected mdx mice. * p = 0.03 (Student’s t test).
doi:10.1371/journal.pmed.1000083.g003
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in the TAT-mUtr-treated samples (Figure 4D) was likely due to

reduced numbers of the small regenerating fibers typically found in

mdx muscle. All three parameters indicate that TAT-mUtr

administration significantly reduced muscle cell death in the

absence of dystrophin.

Dystrophin deficiency is also characterized by deficits in

contractile force and a marked sensitivity to contraction-induced

injury [21,22]. Extensor digitorum longus (EDL) muscles from

TAT-mUtr-treated mice showed significantly improved ex vivo

functional performance (Figure 5). While mdx muscles typically

exhibit a 25% reduction in specific force production compared to

wild-type muscles [23], TAT-mUtr-treated mdx muscles generated

comparable maximal tetanic force (Figure 5A) but ,25% more

normalized specific tetanic force (Figure 5B) than PBS-injected mdx

control muscles. In addition, mdx muscle typically loses ,75% of

its force generating capacity after five lengthening (eccentric)

contractions compared to ,20% for wild-type muscle [1]. TAT-

mUtr treatment significantly reduced the measured force drop by

nearly half, allowing treated EDLs to maintain higher force-

generating capability after each of five eccentric contractions

compared to PBS-injected controls (Figure 5C). These results

indicate that IP administration of TAT-mUtr significantly

improved the contractile performance of dystrophin-deficient

mdx muscle.

To test the efficacy of full-length TAT-Utr, we treated six mdx

littermate mice as above, injecting full-length TAT-Utr at both the

equivalent (16) and varied molar ratios (0.256, 0.56, 26, and 56)

to the dosage described for TAT-mUtr. Like TAT-mUtr, full-length

TAT-Utr transduced all tissues examined at the 16dosage (Figure

S4B and S5A) and was properly localized to the periphery of

muscle cells (Figure S5C). Similar to TAT-mUtr, full-length TAT-

Utr significantly reduced muscle degeneration/regeneration

(Figure S6A–S6D) and improved membrane stability (Figure

S6E). However, muscle contractile performance was not signifi-

cantly improved by full-length TAT-Utr even when tested at 5-

fold higher dosages (Figure S6F). We conclude that the enhanced

protein transduction gained by reducing the molecular weight of

utrophin overcomes any loss of TAT-mUtr’s biological function

and propose TAT-mUtr as a potential direct protein replacement

therapy for dystrophinopathies.

Discussion

Our experiments are, to our knowledge, the first to demonstrate

the feasibility and efficacy of direct protein replacement to combat

the effects of dystrophin deficiency in mdx mice, an established

model of Duchenne muscular dystrophy in humans. IP injections

of the cell-penetrating TAT-mUtr restored proper membrane

Figure 4. Morphology of TAT-mUtr-injected muscle. (A, B)
Hematoxylin-eosin-stained whole (A) or magnified (B) diaphragm
(Dia), quadriceps (Quad), and tibialis anterior (TA) muscle cryosections.
Muscle from PBS-injected mice exhibited large regions of active
necrosis accompanied by inflammation and small, regenerating fibers
(blue-staining areas) while similar regions were dramatically reduced in
TAT-mUtr treated muscle. Scale bar = 100 mm. (C) Quantification of CNFs
(an index of muscle degeneration/regeneration) in quadriceps from 38-
d-old PBS- (black) and TAT-mUtr (red) treated mice. Dashed line
represents uninjected 38-d-old mdx mice. TAT-utrophin treatment led
to a significant decrease in CNFs (54%65% versus 37%64%; PBS versus
TAT; n = 3 PBS muscles; n = 4 TAT-mUtr muscles). * p = 0.04 (Student’s t
test). (D) Histogram: Distribution of muscle fiber diameters. Box plot:
The average diameter in TAT-mUtr-treated muscles was significantly
larger than PBS-injected controls (39.6460.95 mm TAT-mUtr versus
33.9461.15 mm PBS). # p = 0.02 (Student’s t test).
doi:10.1371/journal.pmed.1000083.g004
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targeting of dystrophin protein complex members, stabilized

muscle membrane integrity, attenuated histological hallmarks of

dystrophy, and conferred functional benefits to treated muscle.

The initial studies in which dystrophin deficiency was corrected

by a reintroduction of either dystrophin [24] or utrophin

expression [10] caused widespread excitement that an effective

treatment would soon be realized. Despite consistent progress over

the intervening years, obstacles to gene-, oligonucleotide-, or small

molecule-based approaches to up-regulate the relevant proteins

still exist and have thus far prevented effective therapeutic

intervention in human patients. Our development of TAT-mUtr

and demonstration of its beneficial effects on dystrophic muscle—

all without affecting endogenous utrophin levels or function—

introduces a novel therapeutic approach that we predict would

work complementarily and synergistically with other strategies, in

particular those aimed at up-regulating endogenous utrophin

expression [25,26]. The beneficial effects of combining such

therapies should theoretically be additive with the prediction that

the cumulative increase in utrophin levels would be sufficient to

substantially prevent or delay the phenotypes associated with

dystrophin deficiency.

Our proof-of-concept results offer the first evidence, as far as we

know, that an exogenous protein replacement-based therapy holds

promise for the treatment of dystrophinopathies. Besides the

obvious example of Duchenne muscular dystrophy, we are

intrigued by the possibility that TAT-mUtr may also be able to

compensate for the loss of dystrophin in genetic or acute forms of

cardiomyopathy [27,28].

Supporting Information

Figure S1 TAT-Utr expression and actin binding. (A)

Protein schematic and Coomassie brilliant blue gel of purified

protein. (B) Actin binding properties of TAT-Utr and TAT-mUtr.

Actin cosedimentation assays were performed as previously

described [1], except the concentration of utrophin was held

constant while the concentration of actin was varied. The TAT

domain did not interfere with actin binding in the full-length TAT-

Utr construct (0.22 versus 0.11 mM), while deletion of spectrin-like

repeats 4–21 caused a 5- to 10-fold reduction in actin binding

affinity for TAT-mUtr (0.22 versus 1.14 mM). n$3 for each protein.

Found at: doi:10.1371/journal.pmed.1000083.s001 (0.68 MB

TIF)

Figure S2 Tissue transduction of TAT-mUtr. (A) Li-Cor

Odyssey-scanned SDS-PAGE gel (left) and subsequent Western

blot (right) of lung, brain, liver, kidney, spleen, heart, triceps,

quadriceps, and tibialis anterior SDS protein extracts from mice

that were injected with fluorescently labeled TAT-mUtr. The gel

was not probed with antibody; signal only corresponds to the

labeled protein. The Western blot membrane was cut into two

pieces and probed with FLAG antibody (top) and actin antibody

(bottom). (B) Li-Cor Odyssey-scanned tissue cryosections from

mice in (A). Green signal indicates fluorescently labeled, TAT-

mUtr-transduced entire muscle tissues, although the periphery of

the quadriceps was more strongly transduced. (C, D) Li-Cor

Odyssey-scanned whole organs and tissues from mice injected with

labeled TAT-mUtr (two mice), PBS, and labeled full-length TAT-

Utr as in (A) show systemic uptake of the labeled TAT-mUtr. Red

channel indicates autofluorescence in the 700 nm channel.

Muscles magnified in (D) are the same samples depicted in (C).

(E) Quantification of fluorescence intensity of organs and tissues in

(C). Note that organs and tissues lining or in the peritoneal space

exhibited the strongest signal, although all organs from TAT-

mUtr-injected mice emitted fluorescence compared to PBS-

injected mice. All sample intensities were normalized to PBS

samples to obtain relative values. (F) Western blot analysis of

quadriceps and liver SDS extracts from TAT-mUtr (m), TAT-Utr

(FL), and PBS- (2) treated mice demonstrated higher levels of

TAT-mUtr than TAT-Utr in the respective tissues.

Found at: doi:10.1371/journal.pmed.1000083.s002 (0.77 MB

TIF)

Figure S3 Full-length TAT-Utr stability. (A) Infrared in vivo

scanning of mdx littermate mice after a single IP injection of

fluorescently labeled full-length TAT-Utr. Mice were scanned 3, 24,

48, and 72 h postinjection, with one mouse killed at each time point

for tissue analysis. Green fluorescence corresponds to full-length

TAT-Utr while red signal is tissue autofluorescence. (B) Quantifi-

cation of the whole-body fluorescence decay over time in (A).

Found at: doi:10.1371/journal.pmed.1000083.s003 (0.35 MB

TIF)

Figure S4 2D BN-PAGE. (A) Li-Cor Odyssey-scanned blue

native gel loaded with 100 mg of WGA muscle extract from a

mouse injected with fluorescently labeled TAT-mUtr showed that

the 167 kDa TAT-mUtr migrated with a complex of

,16106 kDa. The gel was not probed with antibody; green

signal only corresponds to the labeled protein. (B, C) Western blot

analysis of blue native gels as in (A) resolved by SDS-PAGE to

allow for the identification of complex members. Blots were cut

into two separate pieces to allow individual samples to be probed

Figure 5. Contractile properties of TAT-mUtr treated muscle.
EDL muscles dissected from mice treated with TAT-mUtr (red) exhibited
mdx-levels of maximal tetanic force (A) but elevated levels of
normalized (specific) tetanic force (B) compared to PBS-injected muscles
(black). Specific force values were 9.761.1 N/cm2 (PBS) and 12.860.9 N/
cm2 (TAT). * p = 0.03 (Student’s t test). (C) In addition, TAT-mUtr-injected
muscle was more resistant to force loss (right graph; 7265% versus
4068% drop; PBS versus TAT) after each of five repeated eccentric
(lengthening) contractions (left graph). # p = 0.03 (Student’s t test).
doi:10.1371/journal.pmed.1000083.g005
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with antibodies to utrophin (mAb 8A4), FLAG (pAb ANTI-

FLAG), and dystroglycan (mAb b-DG) simultaneously. Only

endogenous full-length utrophin comigrated with dystroglycan in

PBS-injected mice (B) while both endogenous full-length and

TAT-mUtr comigrated with dystroglycan in TAT-mUtr-treated

mice (C).

Found at: doi:10.1371/journal.pmed.1000083.s004 (1.04 MB

TIF)

Figure S5 Full-length TAT-Utr transduction. (A) Western

blot analysis of SDS-extracts from 38-d-old mdx mice after sham

PBS-treatment (2) or 16 TAT-Utr treatment (+) probed with a

utrophin-specific polyclonal antibody [29]. A similar increase in

utrophin levels was observed in all tissues examined. (B) Western

blot analysis of gastrocnemius, quadriceps, or whole skeletal

muscle SDS-extracts probed with an antibody specific to the

FLAG epitope of TAT-Utr demonstrated the presence of TAT-

Utr in each muscle tissue. (C) Immunofluorescence analysis on

10 mm thick cryosections from PBS- and TAT-Utr-treated mdx

mice using antibodies specific to utrophin (NCL-DRP2) or the

HA-epitope (HA.11) on TAT-Utr. Scale bar = 100 mm.

Found at: doi:10.1371/journal.pmed.1000083.s005 (0.47 MB

TIF)

Figure S6 Full-length TAT-Utr improves several dystro-
phic parameters in mdx mice. Hematoxylin-eosin-stained

whole (A) or magnified (B) quadriceps or tibialis anterior muscle

cryosections. Muscle from PBS-injected mice exhibited large

regions of active necrosis accompanied by inflammation and small,

regenerating fibers (blue-staining areas), while similar regions were

dramatically reduced in 16 TAT-Utr treated muscle. Scale

bar = 100 mm. (C) Quantification of CNFs (an index of muscle

degeneration/regeneration) in tibialis anterior and quadriceps

from 38-d-old PBS- (black bars) and 0.256 (gray), 0.56 (yellow),

16 (blue), 26 (orange), and 56 (white) TAT-Utr treated mice.

Dashed line represents un-injected 38-d-old mdx mice. TAT-Utr

treatment led to a 40% decrease in CNFs (n = 5 muscles/group).

(*) denotes p = 0.03. (D) Histogram: Distribution of muscle fiber

diameters demonstrated a larger proportion of small fibers in PBS-

injected control mice. Box plot: The average diameter in 16TAT-

Utr treated muscle was significantly larger (37.9461.14 mm for 16
TAT-Utr versus 34.9461.30 mm for PBS, * p = 0.03). (E) Serum

activity levels of the muscle enzyme creatine kinase were reduced

50% in 38-d-old TAT-Utr treated mice compared to PBS-injected

controls. * p = 0.01. (F) Maximal tetanic force generation, (G)

specific force generation, or (H) susceptibility to contraction-

induced injury was not improved by any dosage of full-length

TAT-Utr.

Found at: doi:10.1371/journal.pmed.1000083.s006 (2.51 MB

TIF)

Text S1 Supplementary methods.

Found at: doi:10.1371/journal.pmed.1000083.s007 (0.03 MB

DOC)
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Editors’ Summary

Background. Muscular dystrophies are genetic (inherited)
diseases in which the body’s muscles gradually weaken and
degenerate. The commonest and most severe muscular
dystrophy—Duchenne muscular dystrophy—affects 1 in
3,500 boys (girls can be carriers of the disease but rarely
have any symptoms). At birth, these boys seem normal but
the symptoms of their disease begin to appear in early
childhood. Affected children may initially have difficulty
walking or find it to hard to sit or stand independently. As
they age, their muscle strength progressively declines and
most affected boys are confined to a wheelchair by the time
they are 12 years old. The muscles involved in breathing also
weaken and the heart muscle becomes enlarged. Few boys
with Duchenne muscular dystrophy live beyond their early
20 s, usually dying from breathing or heart problems. At
present there is no cure for Duchenne muscular dystrophy.
However, physical therapy and treatment with steroids can
prolong the ability of patients to walk, and assisted
ventilation can help with their breathing.

Why Was This Study Done? In all muscular dystrophies,
one of the proteins needed to build and maintain healthy
muscles is missing or nonfunctional because of a genetic
change (mutation). In Duchenne muscular dystrophy the
mutation is in dystrophin, a protein that is involved in the
formation of the dystrophin–glycoprotein complex. This
complex normally sits in the membranes that surround
muscle fibers and protects these membranes from damage
during muscle contraction. Consequently, in Duchenne
muscular dystrophy, the muscle fiber membranes become
damaged and eventually the muscle fibers die. Thus, if
functional dystrophin could be introduced into the muscles
of patients with Duchenne muscular dystrophy, it might be
possible to reduce their symptoms and prolong their lives.
Indeed, the effects of dystrophin deficiency in the
dystrophin-deficient mdx mouse can be reduced by the
introduction of an artificial gene that expresses dystrophin or
the closely related protein utrophin. Unfortunately, this gene
therapy approach has not yet been effectively demonstrated
in humans. In this study, therefore, the researchers
investigate whether utrophin protein can be introduced
directly into dystrophin-deficient mouse muscles by
exposing the muscle cells to utrophin fused to the protein
transduction domain of the HIV-1 TAT protein. Most proteins
will not cross cell membranes, but proteins fused to this cell-
penetrating domain readily enter many cell types, including
muscle cells.

What Did the Researchers Do and Find? The researchers
injected full-length utrophin fused to the TAT protein
transduction domain (TAT-Utr) and a short, ‘‘micro’’ version

of utrophin fused to the same domain (TAT-mUtr) into the
abdomens of mdx mice and looked to see where the
proteins ended up. After two injections, both proteins were
present in a wide range of tissues and organs, including
several types of muscle. However, the levels of TAT-Utr were
much lower than those of TAT-mUtr. Next, the researchers
injected another group of mdx mice with TAT-mUtr six times
over three weeks. Again, TAT-mUtr was present in all the
tissues that the researchers examined. Furthermore, mUtr–
glycoprotein complexes formed in the TAT-mUtr injected
mdx mice and the membrane integrity and overall health of
the dystrophin-deficient muscles of the mdx mice improved
compared to mdx mice treated with saline. Finally, the
researchers report, TAT-mUtr injections greatly improved the
contractile performance of the muscles of the mdx mice.

What Do These Findings Mean? These findings provide
the first demonstration that injection of TAT-utrophin
protein fusions may provide a way to treat muscular
dystrophies caused by the loss of dystrophin. However,
although this direct protein-replacement therapy looks
hopeful, approaches that work in animals do not
necessarily work in people. In particular, for this approach
to work in patients with muscular dystrophy, it would be
necessary to give frequent, high-dose injections of the TAT-
mUtr fusion protein, a process that could eventually trigger a
deleterious immune response. Nevertheless, the researchers
suggest that by combining this novel approach with other
approaches that also increase utrophin expression, it might
be possible to prevent or delay the development of the
symptoms of Duchenne muscular dystrophy.

Additional Information. Please access these Web sites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1000085.

N The US National Institute of Neurological Disorders and
Stroke provides information on muscular dystrophy and
ongoing research into possible treatments (in English and
Spanish)

N The US National Human Genome Research Institute also
provides basic information on Duchenne muscular dystro-
phy and links to additional resources

N The UK National Health Service Choices Web site has pages
for patients and caregivers on muscular dystrophy

N The Nemours Foundation provides information about
muscular dystrophy for parents, children, and teenagers

N For links to further resources on muscular dystrophy, see
also MedlinePlus
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