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ABSTRACT

Background

The identification and characterization of tumor suppressor genes has enhanced our
understanding of the biology of cancer and enabled the development of new diagnostic and
therapeutic modalities. Whereas in past decades, a handful of tumor suppressors have been
slowly identified using techniques such as linkage analysis, large-scale sequencing of the cancer
genome has enabled the rapid identification of a large number of genes that are mutated in
cancer. However, determining which of these many genes play key roles in cancer
development has proven challenging. Specifically, recent sequencing of human breast and
colon cancers has revealed a large number of somatic gene mutations, but virtually all are
heterozygous, occur at low frequency, and are tumor-type specific. We hypothesize that key
tumor suppressor genes in cancer may be subject to mutation or hypermethylation.

Methods and Findings

Here, we show that combined genetic and epigenetic analysis of these genes reveals many
with a higher putative tumor suppressor status than would otherwise be appreciated. At least
36 of the 189 genes newly recognized to be mutated are targets of promoter CpG island
hypermethylation, often in both colon and breast cancer cell lines. Analyses of primary tumors
show that 18 of these genes are hypermethylated strictly in primary cancers and often with an
incidence that is much higher than for the mutations and which is not restricted to a single
tumor-type. In the identical breast cancer cell lines in which the mutations were identified,
hypermethylation is usually, but not always, mutually exclusive from genetic changes for a
given tumor, and there is a high incidence of concomitant loss of expression. Sixteen out of 18
(89%) of these genes map to loci deleted in human cancers. Lastly, and most importantly, the
reduced expression of a subset of these genes strongly correlates with poor clinical outcome.

Conclusions

Using an unbiased genome-wide approach, our analysis has enabled the discovery of a
number of clinically significant genes targeted by multiple modes of inactivation in breast and
colon cancer. Importantly, we demonstrate that a subset of these genes predict strongly for
poor clinical outcome. Our data define a set of genes that are targeted by both genetic and
epigenetic events, predict for clinical prognosis, and are likely fundamentally important for
cancer initiation or progression.

The Editors’ Summary of this article follows the references.
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Introduction

It is widely accepted that loss of tumor suppressor function
leads to the initiation and progression of human cancer [1,2].
Inactivation of tumor suppressor genes can result from both
genetic mechanisms such as mutation or epigenetic mecha-
nisms such as DNA hypermethylation [3-5]. Identification of
these genes provides insight into the biological processes
underlying oncogenesis and is useful for developing new
therapeutic and diagnostic modalities. Recently, several
efforts to examine the cancer genome utilizing large-scale
sequencing have revealed that a large number of genes
undergo somatic mutation in cancer [6,7]. Sjoblom et al.
sequenced 13,023 human genes in breast and colon cancer
and identified 1,149 that harbored somatic mutations.
Through statistical analysis, they showed that the majority
of these changes were passenger mutations and that 189 genes
were likely selected for during tumorigenesis (candidate
cancer genes [CAN]). Interestingly, for virtually all of the
newly discovered mutations, the frequencies in each tumor
type were low—in the range of 5% to 15%. Furthermore, the
vast majority of these mutations were heterozygous missense
mutations. Thus, it is difficult to know whether each mutation
conveys an oncogenic or tumor suppressor function. More-
over, if the genes are tumor suppressors, the heterozygous
nature of the mutations would provide loss of function effects
through a state of haploinsufficiency. This has been seen for a
number of cancer genes including APC and MSH2 [8,9]. It may
also be possible that many of the heterozygous mutations are
dominant and oncogenic. Similarly, Greenman et al. demon-
strated that the mutational spectrum of protein kinases in
tumors is highly variable and that mutations in a large
number of cancer genes are operative in human tumors [6].
Again, it is unknown whether most of the mutated genes are
oncogenes or tumor suppressors. Finally, most of the
mutations identified in breast cancers were not present in
colon tumors and vice versa [7], suggesting that the muta-
tional spectrum is highly tumor-type specific.

Epigenetic silencing is a prevalent mechanism by which
abnormal gene inactivation can occur in cancer. These
epigenetic abnormalities can cooperate with genetic alter-
ations to effect aberrant gene function that results in cancer
[6]. A predominant mode of epigenetic alteration in cancer is
gene silencing via CpG island promoter hypermethylation
(henceforth called hypermethylation). Hypermethylation has
now been observed to result in abnormal silencing of a
number of tumor suppressors in many human malignancies
such as cancers of the breast, prostate, colon, stomach,
esophagous, blood, central nervous system, and lung [10].
Hypermethylation acts by recruiting methyl-cytosine-binding
proteins and histone deacetylases, which in a coordinated
fashion modify nucleosomes to form transcriptionally re-
pressive chromatin [11,12]. Repressive histone marks such as
methylation of lysine-9 on histone 3 (H3K9) may initiate and
help maintain this state of repression [13,14]. Hypermethy-
lation is heritable and thus constitutes a form of cellular
memory. As such, abnormal silencing of tumor suppressor
genes can help drive clonal selection during tumorigenesis.

Given the above unanticipated characteristics of the newly
discovered mutations—especially their low frequency and
high rate of heterozygosity—we performed an initial survey
to characterize the epigenetic status of genes in colon cancer
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on a genome-wide level. To this end, we developed an
expression microarray technique to characterize the spec-
trum of hypermethylated genes in cancers [15]. In the present
paper, we have utilized our global approach to comprehen-
sively compare the epigenetic alteration of the CAN genes in
both breast and colon cancers, and included analyses in the
specific breast cancer lines where individual mutations were
identified by Sjoblom et al. [7].

Methods

Cell Culture

MCF7, MDA-MB-231, MDA-MB-468, T-47D, HT-29, Caco-2,
Colo320, SW480, RKO, and HCT116 cells and isogenic DNA
methyltransferase (DNMT)1/3b genetic knockout derivatives
were maintained in culture as recommended by American
Type Tissue Culture (ATCC). All HCC series lines used were
obtained from ATCC. For drug treatments, log phase cells
were cultured in the appropriate media (Invitrogen) con-
taining 10% FBS and 1X penicillin/streptomycin with 5 uM
baza-deoxycytidine (DAC) (Sigma; stock solution: 1 mM in
PBS) for 96 h, replacing media and DAC every 24 h. Cell
treatment with 300 nM Trichostatin A (Sigma; stock solution:
1.5 mM dissolved in ethanol) was performed for 18 h. Control
cells underwent mock treatment in parallel with addition of
equal volume of PBS or ethanol without drugs.

Microarray Analysis

Total RNA was harvested from log phase cells using the
Qiagen RNEasy kit according to the manufacturer’s instruc-
tions. Sample amplification and labeling procedures were
carried out using the Low RNA Input Fluorescent Linear
Amplification kit (Agilent Technologies) according to the
manufacturer’s instructions. Hybridization was carried out
according to the Agilent microarray protocol. Scanning was
performed with the Agilent G2565BA microarray scanner.

Data Analysis

All arrays were subject to quality checks recommended by
the manufacturer. All calculations were performed using the R
statistical computing platform [16] and packages from Bio-
conductor bioinformatics software project [17]. The log ratio
of red signal to green signal was calculated after background-
subtraction and LoEss normalization as implemented in the
limma package from Bioconductor [18]. Individual arrays were
scaled to have the same interquartile range (75th percentile to
25th percentile). Patient information, including clinical data
and gene expression data, was obtained from and analyzed
using Oncomine (http://[www.oncomine.org). Our analysis
included microarray databases such as the Netherlands Cancer
Institute breast cancer database [19]. The microarray meta-
analysis algorithms and statistical analysis used were as
previously described [20,21]. p-Values were calculated using
adjustment for multiple testing and false discovery as described
at http://www.oncomine.org [21].

Methylation and Gene Expression Analysis

RNA was isolated with TRIzol Reagent (Invitrogen)
according to the manufacturer’s instructions. For reverse
transcription-PCR (RT-PCR), 1 pg of total RNA was reverse
transcribed by using Ready-To-Go You-Prime First-Strand
Beads (Amersham Biosciences) with addition of random
hexamers (0.2 pg per reaction). Bisulfite modification of
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Figure 1. Strategy to Identify Common Gene Targets of Mutation and Promoter Hypermethylation in Cancer

(A) Large-scale sequencing of breast and colon cancers identified 189 CAN genes as reported by Sjoblom et al. [7]. Candidate hypermethylated genes
were identified via expression microarray analysis as described in the text. The cell lines used in the analyses were the breast cancer lines MCF7, MDA-
MB-231, MDA-MB-468, and T-47D; and the colon cancer lines SW480, RKO, HCT116, Caco-2, Colo320, and HT-29. Filters were used as discussed in the

text. Genes without promoter CpG islands were excluded.

(B) Frequency of promoter methylation in the 36 CAN genes that are subject to hypermethylation. x-Axis denotes percent methylation. Methylation
status was determined in the six colorectal cancer cell lines and in the 15 breast cancer lines described in the text (four lines used for microarray analysis

plus 11 “Discovery Phase” breast cancer lines).
doi:10.1371/journal.pmed.0050114.g001

genomic DNA was carried out using the EZ DNA methylation
kit (Zymo Research). Selection of primers used for methyl-
ation-specific PCR (MSP) and determinants for CpG island
localization and designation was accomplished using
MSPPrimer (http:/lwww.mspprimer.org) [22]. MSP was per-
formed as previously described [23]. Primer sequences are
listed in Table S3. Bisulfite sequencing and RT-PCR was
preformed as previously described [24]. Gene expression
quantitation was performed using RT-PCR and the 1D
software package (Kodak). For Table S1, decreased expression
was defined as expression that was not detectable with RT-
PCR or decreased by two-thirds compared to expression
levels in normal tissue measured using the 1D software to
quantitate bands. Quantitative PCR was performed using the
Invitrogen SYBR Green qPCR kit according the manufac-
turer’s instructions. Real-time PCR reactions were performed
using the Mastercycler Realplex machine (Eppendorf). Read-
ings were normalized using GAPDH.
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Human Tumor Analysis

Formalin-fixed, paraffin-embedded tissues from primary
breast (n = 30) and colorectal cancers (n = 20) were obtained
from the archive of the Department of Pathology of the Johns
Hopkins Hospital. Analysis of breast tumors was performed
on 12 early stage and 12 late stage primary cancers (Dataset
S1). Ten stage 2 and ten stage 3 colon cancers were analyzed.
Approval was obtained by the Medical Ethical Committee of
Johns Hopkins Hospital. DNA was isolated using the Pure-
gene DNA isolation kit (Gentra Systems). MSP analysis was
performed as described above.

Results

Discovery of Common Targets of Mutation and
Hypermethylation in Breast and Colon Cancer

We chose to examine breast and colon cancers because of
their substantial epidemiological prevalence and clinical
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Table 1. Genes Targeted by Mutation and Hypermethylation

Gene Gene Name Accession Mutated In  Methylated Comment

Number in Cell Lines
ABCA1 ATP-binding cassette, sub-family A, member 1 NM_005502.2 CR CR Not methylated in primary CR
ALS2CL ALS2 C-terminal-like NM_147129.2 BR CR Not methylated in primary BR, CR
APC2 Adenomatosis polyposis coli 2 NM_005883.2 BR BR, CR Cancer-specific methylation
ARHGEF4 Rho guanine nucleotide exchange factor 4 NM_015320.2 BR BR, CR Methylated in normal BR, CR
BGN Biglycan NM_001711.3 BR BR, CR Methylated in normal BR, CR
Cl4orf21 Chromosome 14 open reading frame 21 NM_174913.1 BR BR Cancer-specific methylation
CD109 CD109 molecule NM_133493.2 CR BR, CR Cancer-specific methylation
CD248 CD248 molecule, endosialin NM_020404.2 CR BR, CR Methylated in normal BR, CR
COL7A1 Collagen, type VII, alpha 1 NM_000094.2 BR BR, CR Cancer-specific methylation
EPHB6 Ephrin receptor B6 NM_004445.2 CR CR Not methylated in primary BR, CR
EVL Enah/Vasp-like NM_016337.2 CR CR Cancer-specific methylation
GPNMB Glycoprotein (transmembrane) nmb NM_001005340.1 BR BR, CR Cancer-specific methylation
GUCY1A2  Guanylate cyclase 1, soluble, alpha 2 NM_000855.1 CR BR, CR Cancer-specific methylation
HDAC4 Histone deacetylase 4 NM_006037.2 BR CR Not methylated in primary BR, CR
ICAMS Intercellular adhesion molecule 5, telencephalin NM_003259.2 BR BR, CR Cancer-specific methylation
LGR6 Leucine-rich repeat-containing G protein-coupled Receptor 6 ~ NM_021636.2 CR BR, CR Cancer-specific methylation
MAP2 Microtubule-associated protein 2 NM_002374.3 CR CR Not methylated in primary CR
MKRN3 Makorin, ring finger protein 3 NM_005664.2 CR BR, CR Methylated in normal BR, CR
MMP2 Matrix metallopeptidase 2 NM_004530.2 CR BR, CR Cancer-specific methylation
NRCAM Neuronal cell adhesion molecule NM_005010.3 BR BR, CR Cancer-specific methylation
OBSCN Obscurin NM_052843.2 BR, CR BR, CR Methylated in normal BR, CR
PCDHB15 Protocadherin beta 15 NM_018935.2 BR BR, CR Methylated in normal BR, CR
PTPRD Protein tyrosine phosphatase, receptor-type, D NM_130391.2 CR BR, CR Cancer-specific methylation
RET Ret proto-oncogene NM_020975.4 CR CR Cancer-specific methylation
RNF182 Ring finger protein 182 NM_152737.2 CR BR, CR Cancer-specific methylation
SEMA5B Semaphorin 5B NM_001031702.2  BR CR Not methylated in primary BR, CR
SERPINB1 Serpin peptidase inhibitor, clade B, member 1 NM_030666.2 BR BR, CR Not methylated in primary BR, CR
SORL1 Sortilin-related receptor, L(DLR) class A-repeats-containing NM_003105.3 BR, CR CR Not methylated in primary BR, CR
STARD8 START domain contain 8 NM_014725.2 BR BR, CR Cancer-specific methylation
SULF2 Sulfatase 2 NM_018837.2 BR CR Not methylated in primary CR
SYNE1 Spectrin repeat containing, nuclear envelope 1 NM_182961.1 CR BR, CR Cancer-specific methylation
TTLL3 Tubulin tyrosine ligase-like family member 3 NM_015644.3 CR CR Not methylated in primary CR
ZNF432 Zinc finger protein 432 NM_014650.2 BR BR, CR Cancer-specific methylation
ZNF442 Zinc finger protein 442 NM_030824.2 CR BR, CR Methylated in normal BR not

methylated in primary CR

ZNF569 Zinc finger protein 569 NM_152484.2 BR BR, CR Methylated in normal BR

BR, breast; CR, colorectal.
doi:10.1371/journal.pmed.0050114.t001

significance, and because extensive genome-wide mutational
analysis has been conducted in these tumor types [7]. The
strategy we utilized to identify the common gene targets of
mutation and hypermethylation is depicted in Figure 1A. The
utility of our microarray screen was previously validated and
enables the identification of hypermethylated genes that are
re-expressed following treatment with the DNMT inhibitor
DAC, but not following treatment with the HDAC I/II
inhibitor trichostatin A (TSA) alone [15,24]. Following drug
treatments, the cells were subjected to microarray analysis,
and we then searched for CAN genes that fell either in the top
(expression change >2-fold after DAC treatment and <1.4-
fold for TSA) or next tier (expression change >1.4-fold after
DAC treatment and <1.4-fold following TSA). We assigned
them status as candidate DNA hypermethylated genes to be
analyzed further. Genes without promoter CpG islands were
excluded from further analysis. This approach allows the
identification of greater than 70% of the hypermethylated
genes in cell lines with a false negative rate of 9% [15]. In
total, we identified 56 (out of 189 CAN genes) that met our
microarray criteria for candidate DNA hypermethylated
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genes, with an approximately equal fraction originating from
breast and colon lines.

We next analyzed in the laboratory, using MSP [23] and RT-
PCR, the DNA methylation and expression status of the above
56 genes, including the response of the latter to treatment of
cells with DAC, in four breast cancer cell lines (MCF7, MDA-
MB-231, MDA-MB-468, and T-47D) and six colorectal cancer
(CRC) cell lines (SW480, RKO, HCT116, Caco-2, Colo320, and
HT-29). Importantly, we also focused, additionally, on the
exact 11 breast cancer lines used in the large-scale sequence
analysis reported by Sjoblom et al. to identify the CAN genes
(HCC38, HCC1954, HCC1008, HCC1143, HCC1187,
HCC1395, HCC1937, HCC2218, HCC2157, Hs578T, and
HCC1599). Thirty-six of the genes were found to be hyper-
methylated in the original breast and colon cancer cell lines in
which they were identified as candidates and in the 11 breast
cancer lines in which the original CAN gene mutations were
found (Figure 1B, Table 1). RT-PCR analysis demonstrated
markedly reduced or no expression accompanying this
hypermethylated state and re-expression after DAC treatment
(examples in Figures 2 and 3 and summarized in Table S1I).

From the analysis of methylation and expression status of
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Figure 2. Common Gene Targets of Mutation and Hypermethylation in Breast Cancer

MSP and RT-PCR expression analysis of selected genes. Each set of MSP and expression analyses are labeled with the corresponding gene name. U
denotes the unmethylated band, and M denotes the methylated band. In vitro methylated DNA (IVD) was used as a positive control for methylation.
cDNA from normal breast (NB) and normal colon (NC) (Figure 3) was used to determine the expression of the genes in normal tissue. DKO corresponds
to DNMT 1/3b double knockout HCT116 cells. All RT-PCR experiments were performed in parallel without reverse transcriptase as a control, and in all
cases, no PCR product was generated (unpublished data). The control experiment performed without RT for normal breast is shown (NB no RT) for each
gene. RT-PCR was performed for all cancer lines with beta-actin primers to control for the amount of cDNA (Figure 3, bottom).

doi:10.1371/journal.pmed.0050114.9002

the 36 common target genes, it is clear that, although
hypermethylation was accompanied by loss of gene expression
in nearly all cases, loss of gene expression in the overlap genes
can occur by mechanisms other than methylation (Table S1).
Potential mechanisms include repressive chromatin modifi-
cations, mutational changes outside the coding regions that
destabilize the mRNA, or coordinate downregulation of
relevant pathways. For example, p21 expression is frequently
decreased in tumors with inactivating p53 mutations [25].

To confirm our MSP results, we analyzed the methylation
status of selected genes using sequencing of bisulfite-treated
genomic DNA from samples that were used in the MSP studies.
In all cases, bisulfite sequencing confirmed the results
obtained with MSP (Figure 4). For another control, we also
studied the methylation and expression status of the genes in a
derivative of HCT116 human colon cancer cells in which the
DNMT1 and DNMT3b DNA methyltransferases were homo-
zygously deleted (DKO cells). These simultaneous deletions
result in nearly complete lack of DNA methylation and the
promoter DNA demethylation and re-expression of all known
DNA hypermethylated genes examined in these cells [26]. In
all cases, the loss or absence of methylation at the promoter
regions of the 36 DNA hypermethylated loci in DKO cells was
associated with expression of these genes (Figures 2 and 3 and
unpublished data). Importantly, in all cases, these 36 overlap
genes were also found to be expressed in normal colon and
breast tissue (Figures 2 and 3 and Table S1).

Hypermethylation of Common Target Genes is More
Frequent Than Mutation and is Not Restricted to a Single
Tumor Type

We determined whether the 36 common target genes were
hypermethylated in primary colon and breast tumors. Eight-
een of these genes were methylated in cell lines only, but not
in primary breast or colorectal tumors, or were methylated in
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normal breast or colon tissue. Importantly, the other 18 genes
showed cancer-specific methylation—being hypermethylated
in primary tumors but not in normal colon or breast tissue
(Figure 5, Table 2). Among these 18 genes, the frequency of
methylation (defined as the percentage of tumor samples that
demonstrate promoter CpG island methylation) varied
between breast and colon cancers. Some genes were
methylated in breast but not colon cancers, while others
were methylated in tumors from colon but not breast. Most
importantly, however, while only 6% of all CAN genes (12/
189) are mutated in both colon and breast cancers [7], of the
18 CAN genes with cancer-specific methylation, 44% were
hypermethylated in both colon and breast tumors (8/18)
(Table 2). This is a highly significant difference as determined
by the chi-square test (p = 0.004).

The above results suggest that when epigenetic silencing is
taken into consideration, the biological alterations of a
significant number of genes in breast and colon cancers
may share more similarities than is apparent from mutational
analysis alone. Figure 6 shows the number of genes (from
among the 18 genes showing cancer-specific methylation) that
are hypermethylated per tumor for both breast and colon
cancers. A greater proportion of the genes are hypermethy-
lated in colon cancer compared to breast cancer. It is highly
likely that this represents an intrinsic difference between
breast and colon tumors and not a statistical bias because
approximately equal numbers of the genes found to be
methylated were methylated in each tumor type.

Concomitant Analysis of Genetic and Methylation Events

We next compared the genetic and epigenetic status of the
18 genes directly in the 11 “Discovery Phase” breast cancer
lines in which the mutations for CAN genes were documented
by Sjoblom et al. (Figure 7) [7]. Several observations are
apparent. First, genes that are mutated in colon cancer but
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doi:10.1371/journal.pmed.0050114.9003

not in breast may instead be hypermethylated in breast
cancer and vice versa. Furthermore, while the breast cancer
mutations for a given gene are usually found in only one line,
hypermethylation of most of the genes occurs in multiple
lines for both breast and colon cancers (Figure 7A and 7B).

Second, within a single cancer, mutation and methylation
of a specific gene are not always mutually exclusive events.
For example, in HCC2157, the APC2 gene undergoes both
mutation (in one allele) and hypermethylation (of both
alleles). In some cancers, partial methylation of genes such
as GPNMB and COL7A1 occur in the same cells harboring
heterozygous mutations. Sequencing of cDNA from these
cancers revealed they possess partial methylation on both
mutant and wild-type alleles and not selective hypermethy-
lation of the wild-type allele (unpublished data). We measured
expression levels of APC2, GPNMB, and COL7AI using real-
time PCR in these cell lines with partial methylation (as well
as lines with unmethylated and fully methylated alleles of
these genes) (Figure S1). In each case, higher levels of
methylation were associated with decreasing levels of
expression. It is possible that multiple events contribute to
the incremental inactivation of the genes in these cancers.
Alternatively, it is also possible that these genes have a limited
role in cancer and are not under the same selective
constraints as bona fide tumor suppressors.

In previous studies, methylation has been observed to
result in a functional loss of heterozygosity (LOH) for
heterozygously mutated genes such as p16 where the mutated
allele is expressed [27]. These results are consistent with the
finding that, rarely, genetic alterations and methylation can
converge on the same allele [27,28]. However, we did not
observe this to be the case with the majority of the CAN genes
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currently under study. We actually observed that for five out
of 11 breast CAN genes, mutation and methylation converged
in the same tumor (Figure 7A). Such convergence strongly
suggests that these common target genes play an important
role in tumor suppression, but that the methylation may
complement the loss of function of these genes in a way
different than with other mutations previously examined.

The above data may be particularly significant because the
vast majority of CAN gene mutations identified are hetero-
zygous missense mutations. It is possible that many of these
mutations result in haploinsufficiency or cause small
decreases in protein or transcript abundance that may be
functionally meaningful for driving tumorigenesis. Small
changes in expression of a number of tumor suppressor
genes (such as APC, SMAD4, MSH?2, etc.) have now been well
described to have tumorigenic effects [8,29,30]. Consistent
with the hemizygous nature of the mutations, it seems likely
that DNA methylation deepens the haploinsufficiency status
of the genes when both changes are found in the same tumor
or, more often just with the epigenetic changes alone. The
accompanying loss of function can compound, and thus
progressively contribute to, tumorigenesis.

Functional Associations of Common Target Genes

Next, we analyzed the functional associations of the 18
common target genes that demonstrate cancer-specific
hypermethylation. We utilized Gene Ontology (GO) classi-
fication and available data in the literature to describe the
functional associations of the genes (Figure 8). A number of
genes are involved in cell adhesion and motility and/or signal
transduction. Examination of the literature revealed that at
least six of these genes possess known tumor suppressive
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Figure 4. Bisulfite-Sequencing Results

Location relative to the transcriptional start site is shown on the x-axis of each plot. Empty circles represent unmethylated CpGs, and black circles
represent methylated CpGs. The corresponding results obtained with MSP are noted above each plot.
doi:10.1371/journal.pmed.0050114.9g004

properties, defined as the ability to modulate known tumor standard genetic mapping or comparative genomic hybrid-
suppressor (i.e., p53, wnt, etc.) function or inhibit cancer cell ization (CGH). Sixteen out of 18 (89%, next to last panel) of
growth in vitro and/or in vivo (Figure 8). We then determined these genes map to loci that have been found to be deleted in
the chromosomal location of these 18 genes. We compared cancers (including colon, breast, prostate, Wilm’s tumor,
these chromosomal locations to those that have been shown hematopoietic tumors, and medulloblastoma). For example,

to be deleted in primary human tumors in the literature using Yang et al. demonstrated that 19p13.3, the location of APC2,
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Figure 5. Frequency of Cancer-Specific Methylation of CAN Genes in Primary Breast and Colon Tumors

For each gene, results are shown in the following order: normal breast, normal colon, breast cancer, colon cancer.
doi:10.1371/journal.pmed.0050114.g005
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Table 2. Genetic Versus Epigenetic Events in Breast and Colon
Cancer

Mutated
in Colon
Cancer

Mutated
in Breast
Cancer

Gene Cancer-Specific®
Methylation in

Breast Cancer

Cancer-Specific®
Methylation in
Colon Cancer

APC2
GPNMB
ICAM5
EVL
SYNE1
LGR6
MMP2
PTPRD
COL7A1
ZNF432
cl4orf21
CcD109
GUCY1A2
RET
RNF182 —
CHD5 —
NCAM —
STARD8 —

| | X X x
|

X X X X X X X X

|
X X X X X |

| X X X X X X X X X X X
|

| X X X |
|

X X X X X X X |
|
| X X X X |

X X X |
|

“Cancer-specific hypermethylation in primary tumors but not in normal tissue counter-
parts. X, positive detection of the type of event indicated.
doi:10.1371/journal.pmed.0050114.t002

is a common site of LOH or deletion in breast carcinoma [31].
Similarly, SYNEI localizes to 6p25, a location that is subject to
frequent deletion in a number of tumors [32,33]. CHD5 is a
well-documented tumor suppressor gene located on 1p36, a
region that is commonly lost in malignancies of epithelial,
neural, and hematopoietic origin [34]. Referenced data are
summarized in Table S4. Thus, the 18 genes we have
identified are genes that are found to be mutated in breast
and colon cancer, silenced by hypermethylation in these
tumors, and reside at locations subject to LOH or deletion in
a number of human neoplasms.

Decreased Expression of Common Target Genes Predict
for Poor Clinical Prognosis

One of the main hopes of comprehensively cataloging
cancer mutations is that doing so may provide novel
biomarkers and knowledge of genes involved in key pathways
in oncogenesis. To this end, we first determined whether
cancer-specific methylation of the common target genes
would correlate in any way with tumor stage or grade. We
determined this, first, by directly analyzing the methylation
state of breast cancers of varying stages (1-4) and grades (1-
3). We found that SYNEI and COL7AI are preferentially
methylated in advanced tumors and PTPRD, SYNEI, and EVL
are preferentially hypermethylated in high-grade tumors
(Figure 9). For example, in stage 1 and 2 tumors, SYNEI is
silenced 8% (1/12) of the time whereas in stage 3 and 4
tumors, the frequency of silencing is 50% (6/12). This is
consistent with a role during tumor progression or during
initiation of tumors predestined to evolve aggressive clinical
behavior.

Given our results above, and considering that tumor stage
and grade are strong prognostic determinants of disease-free
survival and propensity for metastases in breast and colon
cancer, we next sought to validate whether expression of the
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Figure 6. Patterns of Mutation and Hypermethylation in Breast and
Colon Cancer

(A) Frequency of cancer-specific hypermethylation of CAN genes. Data
were generated from analysis of only the 18 genes demonstrating
cancer-specific hypermethylation. Results for breast cancer. p-Value was
calculated using Student’s t-test.

(B) Results for colon cancer.

doi:10.1371/journal.pmed.0050114.g006

Mean:

genes we identified to be targets of hypermethylation and
mutation affected clinical endpoints using data from external
cohorts. Gene expression signatures from tumors have
proven very useful for predicting clinical outcome [35,36].
To begin to address this question, we analyzed an extensive
microarray database, utilizing large numbers of expression
profiles on very well documented clinical samples from
published expression microarray studies (Table S2). The
microarray meta-analysis algorithms and statistical analysis
used were as previously described [20]. These databases have
been instrumental in a number of cancer gene discovery
efforts [37-39].

We first verified whether we could see in the databases the
key predicted relationship between DNA methylation and
repressed gene expression. Unlike for gene mutations, which
alone could indicate either oncogenic or tumor suppressor
changes, the occurrence of hypermethylation suggests the
latter in genes targeted by both mechanisms. We, thus, asked
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Figure 7. Concomitant Mapping of Mutation and Methylation of CAN Genes in Human Breast and Colon Cancers

(A) Results for breast CAN genes. Gene names are listed at the right of the map. For each gene, the methylation and mutational status is shown for the
11 breast cell lines that were subject to large-scale sequencing described by Sjoblom et al. [7] and normal breast tissue. Green indicates no methylation
or mutation detected. Red indicates complete methylation or homozygous mutation. Orange denotes heterozygous mutation or partial methylation.
(B) Results for colon CAN genes. Data are presented in the same format as in (A).

doi:10.1371/journal.pmed.0050114.9g007

whether genes undergoing a significant incidence of cancer-
specific methylation correlated with decreased expression in
tumor versus normal tissue. Genes undergoing cancer-
specific methylation with low frequencies of methylation
would not be predicted to have obvious gene expression
correlations in the large database sets. We analyzed the
following genes: COL7A1, PTPRD, GPNMB, APC2, ICAMS,
EVL, SYNEI, and MMP2. All of these genes were predicted by
our analysis of microarray data to have decreased overall
expression in breast and/or colon cancer compared to normal
tissue (p-values 0.047-2.9e—7) in the studies listed in Table S2.
These in silico results are consistent with the observations we
made with direct laboratory analyses.

We next examined whether decreased expression of the
genes undergoing cancer-specific silencing correlated with
the key clinical characteristics noted in Figure 10. The finding
of decreased expression levels of seven genes is associated
with unfavorable clinical characteristics in either breast,
colon cancer, or both. Importantly, these genes included the
four genes, SYNE 1, COL7A1, PTPRD, and EVL, for which, in
the studies described in Figure 9, we found relationships
between stage and grade in the studies from our own tumor

@ PLoS Medicine | www.plosmedicine.org

samples at Johns Hopkins Hospital. Figures 11-13 show plots
of normalized expression values for selected genes across
multiple tumors with the indicated characteristics. Impor-
tantly, decreased expression of five of the six genes predicted
for decreased disease-free or overall survival in these cancers
as well as other poor prognosis features such as high grade
(Figure 10). These relationships are highlighted by the fact
that, when we also analyzed a number of CAN genes that we
directly determined to not have altered methylation expres-
sion levels in breast or colon cancers (including GGAI,
PTPN14, ABCBS, OTOF, SIX4, SLCOI1B3, and HISTIHIB), the
clinical endpoints we mentioned above were not associated
with decreased expression of any of these genes.

Related to the above correlation with survival, decreased
expression of five of the genes was seen in metastases when
compared to primary tumors, such as GPNMB, LGR6, EVL,
and, especially, PTPRD. Intriguingly, GPNMB encodes the
glycoprotein nonmetastatic melanoma protein B, which has
been shown to be differentially expressed between highly and
lowly metastatic melanoma cell lines and xenografts. In these
contexts, markedly lower expression levels characterize
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Functional associations of common target genes

Common Targets of Mutation and Hypermethylation

Gene Functional associations Location Known cancer Evidence of tumor suppressor
susceptibility loc. function in literature

APC2 signal transduction, beta-catenin binding, regulator of wnt signaling 19p13.3

GPNMB signal transduction, negative regulator of cell proliferation, suppressor of metastasis 7p15

CcD109 signal transduction, decreased expression in breast and prostate vs. normal 6g13

RET signal transduction, receptor tyrosine kinase, oncogene 10g11.2

STARDS signal transduction, inhibits tumor growth, decreased expression in cancer vs. normal Xq13.1

GUCY1A2 signal transduction, guanylyl cyclase signaling 11g21-22

PTPRD signal transduction, phosphatase 9p23-24

RNF182 signal transduction, transmembrane protein 6p23

ICAMS cell adhesion and motility, integral to plasma membrane 19p13.2

COL7A1 cell adhesion and motility, basement membrane 3p21.1

EVL cell adhesion and motility, cell polarity 14q32.2

LGR6 receptor, integral membrane protein, G-protein coupled signaling 1932.1

NRCAM cell adhesion and motility 7931.1

MMP2 cell adhesion and motility, matrix metalloproteinase-2 1613

CHD5 regulation of transcription, chromodomain helicase 1p36

ZNF432 regulation of transcription, zinc-finger protein 19g13.3

SYNE1 nuclear membrane, intracellular trafficking 6qg25

Cidorf21 RNA binding, unknown function 14q12

All studies and data are referenced in Table S4

Figure 8. Functional Associations of Common Target Genes

Functional associations of genes were determined using Gene Ontology (GO) groups and available literature. Evidence for tumor suppressor function
was scored positive if reports in the literature show that the gene of interest can suppress growth of cancer cells in vitro, in vivo, or in murine genetic
models, or modulate known tumor suppressor function. loc., location. Known cancer susceptibility location was scored positive if evidence exists in the
literature for LOH or homozygous deletion in primary human tumors at the region shown using either standard genetic mapping or comparative

genomic hybridization (CGH) analysis (shaded).
doi:10.1371/journal.pmed.0050114.g008

metastatic cells and overexpression of the GPNMB protein
lowers metastatic potential [40].

Finally, four genes are underexpressed with increasing
tumor grade (COL7A1, SYNE1, PTRD, and EVL). Since grade is
a strong predictor of local recurrence and metastasis,
silencing of these genes may be clinically relevant determi-
nants of prognosis (reviewed in [41]). It is important to note
that our direct analysis of tumor samples (Figure 9) is
consistent with our analysis of microarray gene expression
data (Figures 10-13) from these other cohorts. Figures 12 and
13 show the normalized expression levels of two of these
genes, SYNEI and EVL. For each gene, expression is decreased
with increasing grade in nearly all available datasets in the
literature. This decreased expression parallels the greater
frequency of methylation of these genes in tumors with
increasing grade. EVL is intriguing as it is hypermethylated
and silenced with increasing tumor grade and aggressiveness
in primary breast tumors. However, we only observed it to be
silenced in colon cell lines but not in the breast cell lines that
we examined. It is possible that EVL methylation occurs in
other breast lines we have not examined here and marks a
small subset of aggressive tumors. All datasets used in the
above microarray meta-analyses as well as details on the

@ PLoS Medicine | www.plosmedicine.org

previously published samples used are publicly available at
www.oncomine.org.

Discussion

Overall our study presents an extensive search for the
presence of and interactions between both genetic and
epigenetic alterations in cancer. As it currently stands, these
studies do have several limitations. First, our data do not
address the biological effects of the individual mutations
observed in the CAN genes. Second, the data draw on only the
13,023 subset of CCDS genes that were previously sequenced,
and additional genes have now been sequenced and more
mutations have been discovered [42].

Despite these limitations, our study describes a valuable
approach to begin to understand the biological significance
of the vast amount of mutational data generated by cancer
resequencing efforts. In these regards, our findings allow
several important conclusions to be drawn. First, our study
shows that large-scale, combined genetic and epigenetic
analysis is feasible and useful for cancer gene discovery. Such
combined analyses can markedly enhance links made between
gene alterations and key clinical parameters for cancer. It is
becoming increasingly clear that examination and interpre-
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Figure 9. Hypermethylation of Selected “Common Target” Genes Predict for Poor Clinical Prognosis

Hypermethylation of selected common target genes by grade and stage in primary breast tumors. The first graph shows the frequency of methylation
of at least one of the three genes listed in low- versus high-grade breast tumors. The second (SYNE1) and third (COL7A1) graphs show the frequency of
methylation of the indicated genes in different stages of breast cancer. p-Values are adjusted using the Holm method.

doi:10.1371/journal.pmed.0050114.9g009

tation of mutations to identify cancer genes on a genome-
wide scale can be significantly complicated by passenger
mutations [43,44]. Furthermore, as we mentioned above in
the Results, it is very unlikely that a given gene that in breast
and/or colon cancer has evidence for mutations, promoter
hypermethylation, reduced expression, and is localized to
chromosome regions harboring frequent deletions in tumors
is not important for tumor development. Consistent with this
hypothesis, by beginning with a large pool of genes harboring
mostly low incidence heterozygous missense mutations and
then characterizing the methylation and expression status of
these genes, our approach allowed us to identify genes that
possess potentially prognostic value.

Our results also confirm that our microarray strategy is an
effective approach to identify genes that are silenced by
hypermethylation in colon and breast cancer. Other methods
have been developed to identify hypermethylated genes in
cancer, including restriction landmark genomic scanning,
promoter CpG island microarrays, and methylation-specific

GPNMB COL7A1 PTPRD SYNE1

5yr OS/DFS

Primary v. met

Grade/
invasiveness

5yr OS/DFS

Breast

LGR6

digital karyotyping [28,45]. However, the sensitivity of these
techniques is restricted by the locations of methylation-
sensitive restriction sites in the genome.

Several of the common target genes have been noted to
undergo methylation-associated silencing in cancers by other
investigators. Lund et al. noted that oncogenic RAS can lead
to the hypermethylation of the MMP2 gene [46]. EVL has been
found to be hypermethylated in colon carcinoma [47]. N-CAM
has been found to be hypermethylated in lung cancer in a
survey of methylated genes described by Shames et al. [48].
The presence of methylation of the common target genes in
other tumor types suggests that these genes may be targets of
inactivation in a broader range of cancers, a hypothesis that
warrants future investigation. In particular, it would be of
value to directly compare our results with those derived by
other strategies for analyzing the hypermethylome from the
same as well as from other types of malignancies [48-51].
Together with these studies, our data strongly suggest that a

EVL RET

Primary v. met

Grade/
invasiveness

Colon

Figure 10. Decreased Expression of Hypermethylated “Common Target” Genes Predict for Poor Clinical Prognosis

Summary of results from analysis of expression microarray data. p-Values from representative analyses for specific genes are shown. Blue indicates that
a decrease in expression of the indicated gene is significantly associated with the following: overall survival or disease-specific survival less than 5y,
metastasis versus primary tumor, and/or increased grade or invasiveness. The p-value was calculated using the Student’s t-test with adjustment for

multiple testing as described previously [21].
doi:10.1371/journal.pmed.0050114.9g010
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Figure 11. Decreased Expression of Selected “Common Target” Genes Predict for Poor Clinical Prognosis

Box-plots showing decreased expression of candidate genes correlate with unfavorable clinical features. The y-axis represents normalized expression.
Shaded boxes represent the interquartile range (25th-75th percentile). Whiskers represent the 10th-90th percentile. The bars denote the median.

doi:10.1371/journal.pmed.0050114.g011

compendium of epigenetic changes underlie the progression
of human cancers.

Second, our results suggest that tumors may be less
biologically heterogeneous with respect to denoting key
tumor suppressor pathway disruptions when consideration
is given to both genetic and epigenetic changes. To our
knowledge, this study represents the most comprehensive
analysis of genes targeted by both mutation and hyper-
methylation. Prior to the present study, only a small number
of genes had been found to be frequently affected by both
mutations and promoter hypermethylation. Most of these
genes were the initial classic tumor suppressor genes where
the epigenetic event was first defined as meaningfully
functional. These genes are closely linked to cancer initiation
and include those for which germ-line mutations occur, such
as VHL, BRCAI, and STK11 in familial forms of renal, breast,
and colon cancer, respectively [10,52,53]. These tumor
suppressors are frequently hypermethylated in sporadic
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forms of the corresponding tumor types [54-56]. Further-
more, methylation-associated silencing can act as a “second
genetic hit” in these genes in tumors from individuals
harboring germline mutations, resulting in functional LOH
[57]. Our current findings now indicate that, particularly for
tumor suppressor genes with a low incidence of mutations, it
may be the rule rather than the exception that epigenetic
inactivation is a more frequent event than genetic disruption.
Tumor suppressors that are important for tumorigenesis
may, then, often be targeted by multiple methods of
functional inactivation.

A third important conclusion is that there may be more
similarity among individual breast and colon tumors than is
apparent from analysis of the mutational spectrum only, and,
therefore, any comparison of biological changes between
tumors may need to account for epigenetic effects in addition
to genetic ones. Clearly, the same tumor suppressor genes in
different cancers may undergo different modes of inactiva-
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Figure 12. SYNE1 Expression Is Decreased with Increasing Tumor Grade in Breast Carcinoma
Representative data are shown across multiple independently published microarray studies as indicated. p-Values for correlation are shown below.

References refer to those listed in Table S2.
doi:10.1371/journal.pmed.0050114.9012

tion. This scenario is analogous to the situation that is
observed for oncogenes such as MYC. In hematopoietic
malignancies, aberrant activation of MYC results frequently
from translocations whereas the gene is more often subject to
amplifications and mutations in solid tumors [58,59]. The
processes underlying these differences are fundamentally
important for understanding cancer and are worthy of future
study.

Finally, it is important to reiterate that our findings have
allowed us to begin querying the clinical significance of genes
targeted by mutation and hypermethylation. By correlating
our data to expression changes in cancer microarray data-
bases and relating these to important clinical parameters, we
have identified genes that may track with disease prognosis.
Indeed, previously, the discovery of hypermethylated genes
such as MGMT have proven very useful for predicting clinical
prognosis and response to therapy in diseases such as
malignant glioma [60], gastric cancer [61], and lung cancer
[62,63]. A recent study showed that a polycomb repression
signature in metastatic prostate cancer predicts for cancer
outcome [64]. Our study suggests that matching large-scale
mutational and epigenetic analysis will be useful for advanc-
ing our knowledge of the biology of human cancers. These
results may be useful for the development of new, more
effective biomarkers and therapeutics.
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Supporting Information

Dataset S1. Clinical Summary of Tumor Samples Used in
Methylation Analysis

All samples were processed from paraffin-embedded tissue and
procured in accordance with IRB approval at Johns Hopkins
Hospital. For each gene, red indicates the methylated state and
green indicates the unmethylated state.

Found at doi:10.1371/journal.pmed.0050114.sd001 (27 KB XLS).
Figure S1. Increasing Levels of Hypermethylation Results in
Decreased Gene Expression

The methylation state of APC2, GPNMB, and COL7A1 was determined
in the cell lines noted using MSP as described in the text. Real-time
PCR was used to measure the expression levels of these genes in the
same cell lines. Higher levels of methylation are associated with
reduced gene expression.

Found at doi:10.1371/journal.pmed.0050114.sg001 (239 KB PPT).

Table S1. Frequency of Decreased Expression and Methylation of
Genes Undergoing Cancer-Specific Hypermethylation in Breast and
Colon Cell Lines

Found at doi:10.1371/journal.pmed.0050114.st001 (56 KB DOC).

Table S2. Microarray Reference Databases
Found at doi:10.1371/journal.pmed.0050114.st002 (57 KB DOC).

Table S3. Primers Used for MSP
Found at doi:10.1371/journal.pmed.0050114.st003 (94 KB DOC).

Table S4. Studies Referenced for Analysis in Figure 8
Found at doi:10.1371/journal.pmed.0050114.5st004 (42 KB DOC).
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Figure 13. EVL Expression Is Decreased with Increasing Tumor Grade in Breast Carcinoma
Representative data are shown across multiple independently published microarray studies as indicated. p-Values for correlation are shown below.

References refer to those listed in Table S2.
doi:10.1371/journal.pmed.0050114.9013

Accession Numbers

Primary array data are deposited in the GEO database at the NCBI
(http://www.ncbi.nlm.nih.gov/geo/). The accession numbers are as
follows: GSM107602, GSM107603, GSM107604, GSM107605,
GSM107606, GSM107607, GSM107660, GSM107662, GSM107663,
GSM107664, GSM267289, GSM267290, GSM267459, GSM267460,
GSM267461, GSM267462, GSM267463, GSM267464, GSM267830,
GSM267831, GSM267832, GSM267833, GSM267834, GSM267835,
GSM267836, GSM267837, GSM268000, GSM268001, GSM269500,
GSM 269501.

The above files are linked under the composite series GSE4763 and
GSE10613.
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Editors’ Summary

Background. Cancer is one of the developed world’s biggest killers—
over half a million Americans die of cancer each year, for instance. As a
result, there is great interest in understanding the genetic and
environmental causes of cancer in order to improve cancer prevention,
diagnosis, and treatment.

Cancer begins when cells begin to multiply out of control. DNA is the
sequence of coded instructions—genes—for how to build and maintain
the body. Certain “tumor suppressor” genes, for instance, help to
prevent cancer by preventing tumors from developing, but changes that
alter the DNA code sequence—mutations—can profoundly affect how a
gene works. Modern techniques of genetic analysis have identified genes
such as tumor suppressors that, when mutated, are linked to the
development of certain cancers.

Why Was This Study Done? However, in recent years, it has become
increasingly apparent that mutations are neither necessary nor sufficient
to explain every case of cancer. This has led researchers to look at so-
called epigenetic factors, which also alter how a gene works without
altering its DNA sequence. An example of this is “methylation,” which
prevents a gene from being expressed—deactivates it—by a chemical
tag. Methylation of genes is part of the normal functioning of DNA, but
abnormal methylation has been linked with cancer, aging, and some rare
birth abnormalities.

Previous analysis of DNA from breast and colon cancer cells had revealed
189 “candidate cancer genes”—mutated genes that were linked to the
development of breast and colon cancer. However, it was not clear how
those mutations gave rise to cancer, and individual mutations were
present in only 5% to 15% of specific tumors. The authors of this study
wanted to know whether epigenetic factors such as methylation
contributed to causing the cancers.

What Did the Researchers Do and Find? The researchers first identified
56 of the 189 candidate cancer genes as likely tumor suppressors and
then determined that 36 of these genes were methylated and
deactivated, often in both breast and colon (laboratory-grown) cancer
cells. In nearly all cases, the methylated genes were not active but could
be reactivated by being demethylated. They further showed that, in
normal colon and breast tissue samples, 18 of the 36 genes were
unmethylated and functioned normally, but in cells taken from breast
and colon cancer tumors they were methylated.

In contrast to the genetic mutations, the 18 genes were frequently
methylated across a range of tumor types, and eight genes were
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methylated in both the breast and colon cancers. The authors found by
reviewing the genetics and epigenetics of those 18 genes in breast and
colon cancer that they were either mutated, methylated, or both. A
literature review showed that at least six of the 18 genes were known to
have tumor suppressor properties, and the authors determined that 16
were located in parts of DNA known to be missing from cells taken from
a range of cancer tumors.

Finally, the researchers analyzed data on cancer cases to show that
methylation of these 18 genes was correlated with reduced function of
these genes in tumors and with a greater likelihood that a cancer will be
terminal or spread to other parts of the body.

What Do These Findings Mean? The researchers considered only the
189 candidate cancer genes found in one previous study and not other
genes identified elsewhere. They also did not consider the biological
effects of the individual mutations found in those genes. Despite this,
they have demonstrated that methylation of specific genes is likely to
play a role in the development of breast and/or colon cancer cells either
together with mutations or independently, most likely by turning off
their tumor suppression function.

More broadly, however, the study adds to the evidence that future
analysis of the role of genes in cancer should include epigenetic as well
as genetic factors. In addition, the authors have also shown that a
number of these genes may be useful for predicting clinical outcomes for
a range of tumor types.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0050114.

e A December 2006 PLoS Medicine Perspective article reviews the value
of examining methylation as a factor in common cancers and its use
for early detection

The Web site of the American Cancer Society has a wealth of
information and resources on a variety of cancers, including breast and
colon cancer

Breastcancer.org is a nonprofit organization providing information
about breast cancer on the Web, including research news

Cancer Research UK provides information on cancer research

The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
publishes background information on the authors’ research on
methylation, setting out its potential for earlier diagnosis and better
treatment of cancer
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