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Research in Translation

During the past several decades, 
and with an accelerating pace 
in the past several years, a 

primary focus of cancer research and 
treatment has been the development 
and refinement of specific, biologically 
directed therapies [1,2]. A number of 
attractive targets have been identified, 
dissected, and validated molecularly 
and biochemically, including multiple 
members of the family of receptor 
tyrosine kinases [1,2]. These potent 
enzymes, frequently concentrated or 
overexpressed on the surface of cancer 
cells, phosphorylate target proteins, 
with varied and manifold effects on 
numerous downstream, intracellular 
signaling pathways, leading to 
profound alterations in transcription 
and translation, cell growth, 
differentiation, apoptosis, angiogenesis, 
and invasion and metastatic potential 
[1,2]. A number of small molecular 
inhibitors of these tyrosine kinases 
(TKs) have been developed in recent 
years. Imatinib, for example, has shown 
impressive activity in many patients with 
chronic myelogenous leukemia [3,4].

The success of imatinib in human 
trials, and subsequent work in the 
laboratory and the clinic in several 
other cancers in which TKs appear 
causative and where TK inhibitors 
(TKIs) appeared likely to be 
efficacious, spurred a great deal of 
interest and enthusiasm throughout 
the oncologic community [1,2]. This 
was equally true in neuro-oncology, 
where progress in treating patients 
with malignant gliomas, especially 
glioblastoma (GBM), has been slow and 
incremental [4–7].

Treating Glioblastomas

GBM is an aggressive, primary tumor 
of the central nervous system [8]. 
Because of their intrinsic, infiltrative 

nature, GBMs follow a malignant 
clinical course. Classified as World 
Health Organization grade IV 
astrocytic tumors, GBMs have a 
pronounced mitotic activity, substantial 
tendency toward neoangiogenesis 
(microvascular proliferation), necrosis, 
and proliferative rates three to five 
times higher than grade III tumors, the 
anaplastic astrocytomas. The clinical 
behavior of GBMs is often mimicked 
by unusual pathological presentations, 
which gave rise to the old moniker of 
“glioblastoma multiforme” (Figure 
1). Even with the survival advantage 
provided by the recently developed 
protocol of concurrent chemoradiation 
followed by adjuvant alkylating 
chemotherapy with temozolomide 
(the Stupp regimen), the prognosis of 
patients with GBM remains poor, with 
median overall survival in the range of 
9–15 months and two-year survival rates 
of 26% in the most favorable subgroup 
[9].

Several common genetic alterations, 
such as EGFR (epidermal growth 
factor receptor) amplifications on 
chromosome 7p, as well as losses on 
9p (p16), 10q (PTEN, or phosphatase 
and tensin homolog deleted on 
chromosome 10), and 17p (p53) 
have been identified in a significant 
proportion of patients with malignant 
gliomas (reviewed thoroughly in 
[8]). Two clinically recognized forms 

of GBM, de novo or primary and 
secondary or progression, have been 
identified clinically and recapitulated 
at the molecular genetic level [8]. In 
de novo or primary GBMs, EGFR gene 
amplifications, often combined with 
gene rearrangements that lead to a 
constitutively active, truncated receptor 
(the most common is EGFRvIII), occur 
in GBMs that generally express wild-
type p53 [8,10–16]. In secondary 
tumors, progression from a low-grade 
glioma to a GBM involves the serial 
accumulation of genetic alterations that 
inactivate tumor suppressor genes such 
as p53, p16, Rb, and PTEN, or activate 
oncogenes such as MDM2 and CDKs 
4 and 6; alterations in EGFR are less 
common or absent [8]. Frequently, loss 
of PTEN function is a common feature 
in both types of GBMs [8]. Response to 
chemotherapy may be modified by the 
level of expression of methyl guanine 
methyl transferase (MGMT) [9]. 
MGMT hypermethylation decreases 
production of MGMT, which leads 
to a diminished ability to repair DNA 
damage caused by an alkylating agent; 
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Linked Research Article
This Research in Translation discusses 

the following new study published in 
PLoS Medicine:

Cloughesy TF, Yoshimoto K, 
Nghiemphu P, Brown K, Dang J, et al. 
(2008) Antitumor activity of rapamycin 
in patients with recurrent PTEN-
deficient glioblastoma. PLoS Med 5: e8. 
doi:10.1371/journal.pmed.0050008

In a phase I trial Charles Sawyers 
and colleagues investigated the role 
of rapamycin in patients with PTEN-
deficient glioblastoma.
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presence of hypermethylated MGMT 
correlated with an approximately 
two-month improved median survival 
in patients treated with the Stupp 
regimen compared with those without 
hypermethylation [9]. However, 
promoter methylation analysis of 
MGMT is highly dependent on the 
tumor, collection method, specimen 
quality, and operator, and there is 
no standard alternative to the Stupp 
regimen in patients with intact MGMT 
[9].

The high incidence of EGFR 
overexpression, amplification, or 
coexpression of the truncated, 
constitutively active EGFRVIII in GBMs 
raised expectations that TKIs of the 
EGFR, such as gefitinib or erlotinib, 
would have significant positive 
treatment effects, while minimizing 
toxicity compared to other therapies 
[1,2,8]. EGFR activates an intracellular 
TK that leads to a signal transduction 
cascade that enhances survival and 

infiltration of GBM cells in vitro [10–
14]. Overexpression of EGFR correlates 
with increased cellular proliferation, 
tumorigenesis, decreased apoptosis, 
and a poorer prognosis and may be 
associated, as well, with radioresistance 
[12,14–16]. In GBM cell lines, TKIs 
suppress anchorage-independent 
growth, prevent proliferation, and 
enhance apoptosis [5,7,8]. 

While the inhibition of EGFR with 
TKIs showed promise preclinically, 
these inhibitors have subsequently 
shown only moderate activity as single 
agents in patients with GBM and other 
cancers. In one trial, 10 of 24 (42%) 
patients with recurrent or progressive 
GBM receiving erlotinib had a partial 
response or stable disease with a 
median time to progression of about 
4.5 months—but the results of others 
have not been as favorable [5,6]. 
Analogous results were observed with 
EGFR antagonists in patients with non-
small cell lung and pancreatic cancers 

[17,18]. Furthermore, Vogelbaum et 
al., for example, have observed that 
response to erlotinib is not determined 
by EGFR amplification status or EGFR 
overexpression [5]; patients with 
normal and elevated levels of EGFR 
were equally likely to have a clinical 
response. 

Meanwhile, Haas-Kogan et al. and 
Mellinghoff et al. suggested that 
EGFR status and the activation status 
of some direct and indirect EGFR 
pathway components together play 
a role in the response to therapy in 
that fraction of patients (9%–18%) 
who respond favorably to erlotinib 
[19,20]. For example, coexpression 
of EGFRVIII and PTEN was the most 
favorable molecular marker of 
response (six of seven patients who 
responded and were tested, from 
the nine patients out of 49 who had 
an objective treatment response) in 
the study by Mellinghoff et al. at the 
University of California, Los Angeles 

doi:10.1371/journal.pmed.0050021.g001

Figure 1. Clinicopathological Features of Glioblastoma
Left, a sagittal (top), contrast-enhanced, T-1 weighted magnetic resonance (MR) image from a patient shows a left posterior parietal GBM, centered 
within the red cross during intra-operative navigation. The tumor is overlaid in purple on the skull (left, bottom); the several small discs seen on the 
surface of the scalp are used for intra-operative localization. Middle, a sagittal (top), contrast-enhanced, T-1 weighted MR image from a different patient 
shows a GBM within the right anterior parietal and posterior temporal lobes, represented in green on the bottom image. Right, histological variability 
of GBMs. A, normal paucicellular temporal lobe. B, typical, hypercellular GBM from one patient 50 years of age. C, excessive stromal proliferation within 
a separate portion of the same patient seen in B. D and E, areas of pronounced vascular proliferation (arrows) found throughout the specimen from 
a second patient, also 50 years of age, whose clinical presentation (headache and seizure) and tumor on MR imaging was nearly identical to that of 
the patient in B. The patient in B had little vascular proliferation compared to the patient depicted in D; conversely, patient D had no areas of stromal 
proliferation. Magnification in A–D, 200×; 400× in E. Hematoxylin and eosin staining.
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(UCLA) [19]. By contrast, none of the 
responders expressed EGFRVIII in the 
study by Haas-Kogan et al., although 
overall elevated levels of EGFR and low 
or absent phosphorylated Akt levels 
were favorable predictors of response 
[20]. This has been confirmed by 
several groups who have returned 
to the laboratory to dissect the 
molecular mechanisms in vitro and 
animal preclinical models: in GBM 
cells with low PTEN expression levels, 
inhibition of the mammalian target of 
rapamycin, a downstream target of the 
phosphatidylinositol 3-kinase (PI3K) 
pathway through Akt (Figure 2), 
showed substantial efficacy [21–31].

A New Study of Rapamycin for 
Recurrent GBM

These findings spurred the UCLA 
group to design an important, 
molecularly focused clinical study, 
published in this issue of PLoS Medicine 
[32], to analyze the effect of rapamycin 
in a subset of patients with recurrent 
GBM in whom activity of the tumor 
suppressor PTEN was absent. The 
study design, which is outlined in their 
Figure 1 [32], is a “treat-biopsy-treat” 
paradigm, in which only patients with 
the appropriate molecular features 
are selected to receive a targeted 
biological agent. In this case, patients 
who were known to have PTEN loss 
at the time of initial resection were 
chosen, after recurrence of tumor 
following standard treatment (surgery, 
radiation, and temozolomide), for 
inclusion in the study. Patients (n = 
15) were treated for approximately 
one week with single-agent rapamycin, 
underwent resection, then resumed 
therapy and continued it until it was 
determined that tumor had recurred 
(time-to-progression). 

A variety of well-designed 
molecular studies were conducted, 
including determination of serum 
and intratumoral concentration of 
rapamycin; markers of proliferation 
(Ki-67 labeling); assessment of 
the impact of mammalian target 
of rapamycin (mTOR) inhibition 
as measured by activation status 
of downstream targets of mTOR, 
including phospho-S6; and feedback 
loop inhibition of AKT (see Figure 
4A in [32]). In seven of 14 patients 
(50%), suppression of mTOR 
correlated directly with inhibition of 
tumor cell proliferation, although in 

several other cases (non-responders), 
adequate intratumoral concentrations 
of rapamycin did not translate 
unequivocally into mTOR inhibition. 
In other words, the probability of 
response was greatest in patients 
with the greatest degree of mTOR 
inhibition ([32], Figure 3). 

This illustrates the importance 
of performing these studies directly 
in humans, since preclinical data 
had failed to suggest that the levels 
of rapamycin used would be a 
problem. This failure is likely due 
to several features such as (1) the 
use in preclinical settings of higher 
doses (for greater saturation) than 

may be tolerable in humans; (2) 
factors such as the blood–brain and 
blood–tumor barriers, which influence 
pharmacodynamic bioavailability; 
(3) variability in vascularization and 
necrosis within the tumor; and (4) 
other host factors (see Figure 1). Thus, 
even in a carefully chosen cohort of 
patients with the molecular features 
that predict response, only 50% 
responded. Why?

An interesting and unexpected 
molecular feature appears to be 
responsible, at least in part: inhibition 
of mTOR led to feedback loop 
activation of Akt (depicted in Figure 2). 
This disinhibition appears to explain 

doi:10.1371/journal.pmed.0050021.g002

Figure 2. Cartoon Representation of Receptor Tyrosine Kinase and Phosphatidylinositol 3-
Kinase (PI3K)/Akt/ mTOR Pathways

The cell surface is represented as a light blue rectangle and contains a variety of receptor 
tyrosine kinases, such as EGFR, insulin-like growth factor 1 (IGF-1R), and a variety or other receptors 
such as integrins, G-protein-coupled receptors (GPCRs), and the receptor for vascular endothelial 
growth factor (VEGF). Activation of the RTK by ligand (dark blue triangle) on the cell surface leads 
to dimerization of two receptors and phosphorylation at the tyrosine kinases, with intracellular 
activation of Grb2 and then Sos. Canonical activation of Ras leads to downstream activation of Rad, 
Raf, and MKK (mitogen-activated protein kinase kinase). It also leads, directly and indirectly through 
Ras, to generation of 3’-phosphoinositides, with activation of Akt; PTEN opposes the function of 
PI3K by removing its 3’-phosphate groups. Akt acts on a number of molecules and processes, both 
by activation (arrowheads) and by inhibition (lines with cross hatches), as indicated to the right of 
the figure. 

For our purposes, Akt directly activates mTOR, which is present in two complexes, not depicted 
here: TORC1 (mTOR bound to Raptor, whose substrates include S6K1 and PRAS40 and which is 
inhibited by rapamycin and its analogues) and TORC2 (mTOR bound to Rictor). mTOR activates 
S6K1, as shown, an effect inhibited by rapamycin (in red). As Cloughesy et al. demonstrate, 
however, this effect may be more complex than previously appreciated, since loss of mTOR activity 
by rapamycin blockade initiates a loss of negative feedback control on Akt, which may enhance its 
other growth-promoting effects. 

Definitions: ASK-1, apoptosis signal-regulating kinase, involved in regulating progression to 
apoptosis; BAD, the Bcl2 antagonist of cell death, involved in regulating progression to apoptosis; 
FoxO, forkhead box, involved in transcription and proliferation; GSK3β, glycogen synthase kinase 
3-beta, involved in cell metabolism and growth; IKK, IκB kinase; NFκB, nuclear factor κB; PIP2, 
phosphatidylinositol-3,4-biphosphate; PIP3, phosphatidylinositol-3,4,5-triphosphate; TSC2, 
tuberous sclerosis complex 2.
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the diminished response rate, especially 
through activation of the downstream 
Akt target PRAS40. Genetic 
investigation of the factors associated 
with PRAS40 induction during mTOR 
inhibition identified amplification 
of EGFR, MDM2, and PDGFRA as 
more common in the non-responder 
subgroup, a finding not predicted from 
preclinical work. 

Unpredictable results such as this 
have recently been echoed in three 
important studies, in which it has been 
shown in advanced solid epithelial 
malignancies, such as lung cancer and 
gliomas, that activation of multiple 
signaling pathways, as well as alteration 

of their feedback mechanisms, are 
common features and that successful 
treatment strategies must account 
for these novel characteristics of the 
neoplastic state [2,33–35]. Thus, use 
of combination therapy (for example, 
rapamycin plus a TKI or a TKI plus 
an inhibitor of Akt), as Cloughesy et 
al. suggest, or more permissive and 
less specific TKIs that work on several 
activation pathways (see Figure 2), as 
Arbiser advocates, is more likely to be 
successful when applied to specific 
subgroups of patients identified 
carefully along the lines described in 
the study published here [32]; see also 
the review of Arbiser [2].

Towards Individualized Therapy

The ultimate goal of most oncologists 
is to tailor therapy that takes into 
account—and exploits—the individual 
tumor’s unique biological features. 
While individualized therapy may be 
some years in the future, the work 
of Cloughesy et al. [32], and that 
of many others, is pointing a way 
toward rational design of therapy for 
stratified groups of patients who share 
common molecular features [2,35–37]. 
Therefore, one strategy in designing 
the next generation of clinical trials 
in oncology must be to address 
both the known interactions, and, 
as Cloughesy et al. have done here, 
interrogate clinical studies and tissues 
at an early stage to identify genetic and 
biochemical features that distinguish 
responders and non-responders so that 
both types of patients receive optimal 
therapy (Figure 3). 

This is likely to be an iterative 
process, which, as technology advances 
and neural network/machine-learning 
processes become integrated into 
clinical care, is likely to allow cancer 
researchers and clinicians to reach 
toward the holy grail of individualized 
therapy in the not-so-distant future 
[36]. It is also a method that has 
recently gained attention from both 

doi:10.1371/journal.pmed.0050021.g003

Figure 3. A Schematic Representation of the Potential for Novel Molecular Modeling of 
Human Cancer Therapy
One potential paradigm is illustrated. Other methods and paradigms are possible.

Five Key Papers in the Field
Engelman et al., 2007 [33] This paper 
shows how amplification of the MET 
oncogenes leads to enhancement 
of signaling through a receptor not 
generally activated in lung cancer. 

Furnari et al., 2007 [8] A comprehensive 
review of the molecular biology of the 
malignant gliomas.

Kummar et al., 2007 [37] A cogent 
review of the issues surrounding careful 
interrogation of novel therapeutics. 
Essential reading. 

Stommel et al., 2007 [34] This paper, 
along with [33], illustrates the synergy 
between multiple receptor kinases and 
the potential need for more promiscuous 
TKIs, perhaps in combination with other 
signaling inhibitors such as rapamycin. 

Mellinghoff et al., 2005 [19] An elegant 
study that illustrates the dilemma 
of PTEN and Akt activation with the 
successes and failures associated with 
EGFR blockade in patients with GBM.



PLoS Medicine  |  www.plosmedicine.org 0038 January 2008  |  Volume 5  |  Issue 1  |  e21

the United States Food and Drug 
Administration and the National 
Cancer Institute, with respect to 
rapid drug development timelines in 
cancer therapeutics and for tissue bio-
repositories, with emphasis on what are 
being called “Phase 0 trials” [37]. The 
work of Cloughesy and his colleagues 
helps point the way. ◼
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