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uring the past several decades,

and with an accelerating pace

in the past several years, a
primary focus of cancer research and
treatment has been the development
and refinement of specific, biologically
directed therapies [1,2]. A number of
attractive targets have been identified,
dissected, and validated molecularly
and biochemically, including multiple
members of the family of receptor
tyrosine kinases [1,2]. These potent
enzymes, frequently concentrated or
overexpressed on the surface of cancer
cells, phosphorylate target proteins,
with varied and manifold effects on
numerous downstream, intracellular
signaling pathways, leading to
profound alterations in transcription
and translation, cell growth,
differentiation, apoptosis, angiogenesis,
and invasion and metastatic potential
[1,2]. A number of small molecular
inhibitors of these tyrosine kinases
(TKs) have been developed in recent
years. Imatinib, for example, has shown
impressive activity in many patients with
chronic myelogenous leukemia [3,4].

The success of imatinib in human

trials, and subsequent work in the
laboratory and the clinic in several
other cancers in which TKs appear
causative and where TK inhibitors
(TKIs) appeared likely to be
efficacious, spurred a great deal of
interest and enthusiasm throughout
the oncologic community [1,2]. This
was equally true in neuro-oncology,
where progress in treating patients
with malignant gliomas, especially
glioblastoma (GBM), has been slow and
incremental [4-7].

Treating Glioblastomas

GBM is an aggressive, primary tumor
of the central nervous system [8].
Because of their intrinsic, infiltrative
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Linked Research Article

This Research in Translation discusses
the following new study published in
PLoS Medicine:

Cloughesy TF, Yoshimoto K,
Nghiemphu P, Brown K, Dang J, et al.
(2008) Antitumor activity of rapamycin
in patients with recurrent PTEN-
deficient glioblastoma. PLoS Med 5: e8.
doi:10.1371/journal.pmed.0050008

In a phase | trial Charles Sawyers
and colleagues investigated the role
of rapamycin in patients with PTEN-
deficient glioblastoma.

nature, GBMs follow a malignant
clinical course. Classified as World
Health Organization grade IV
astrocytic tumors, GBMs have a
pronounced mitotic activity, substantial
tendency toward neoangiogenesis
(microvascular proliferation), necrosis,
and proliferative rates three to five
times higher than grade III tumors, the
anaplastic astrocytomas. The clinical
behavior of GBMs is often mimicked
by unusual pathological presentations,
which gave rise to the old moniker of
“glioblastoma multiforme” (Figure

1). Even with the survival advantage
provided by the recently developed
protocol of concurrent chemoradiation
followed by adjuvant alkylating
chemotherapy with temozolomide

(the Stupp regimen), the prognosis of
patients with GBM remains poor, with
median overall survival in the range of
9-15 months and two-year survival rates
of 26% in the most favorable subgroup
[9].

Several common genetic alterations,
such as EGFR (epidermal growth
factor receptor) amplifications on
chromosome 7p, as well as losses on
9p (p16), 10q (PTEN, or phosphatase
and tensin homolog deleted on
chromosome 10), and 17p (p53)
have been identified in a significant
proportion of patients with malignant
gliomas (reviewed thoroughly in
[8]). Two clinically recognized forms
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of GBM, de novo or primary and
secondary or progression, have been
identified clinically and recapitulated
at the molecular genetic level [8]. In
de novo or primary GBMs, EGIR gene
amplifications, often combined with
gene rearrangements that lead to a
constitutively active, truncated receptor
(the most common is EGFR ), occur
in GBMs that generally express wild-
type p53[8,10-16]. In secondary
tumors, progression from a low-grade
glioma to a GBM involves the serial
accumulation of genetic alterations that
inactivate tumor suppressor genes such
as p53, p16, Rb, and PTEN, or activate
oncogenes such as MDM2 and CDKs

4 and 6; alterations in EGFR are less
common or absent [8]. Frequently, loss
of PTEN function is a common feature
in both types of GBMs [8]. Response to
chemotherapy may be modified by the
level of expression of methyl guanine
methyl transferase (MGMT) [9].
MGMT hypermethylation decreases
production of MGMT, which leads

to a diminished ability to repair DNA
damage caused by an alkylating agent;
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Figure 1. Clinicopathological Features of Glioblastoma

Left, a sagittal (top), contrast-enhanced, T-1 weighted magnetic resonance (MR) image from a patient shows a left posterior parietal GBM, centered
within the red cross during intra-operative navigation. The tumor is overlaid in purple on the skull (left, bottom); the several small discs seen on the
surface of the scalp are used for intra-operative localization. Middle, a sagittal (top), contrast-enhanced, T-1 weighted MR image from a different patient
shows a GBM within the right anterior parietal and posterior temporal lobes, represented in green on the bottom image. Right, histological variability
of GBMs. A, normal paucicellular temporal lobe. B, typical, hypercellular GBM from one patient 50 years of age. C, excessive stromal proliferation within
a separate portion of the same patient seen in B. D and E, areas of pronounced vascular proliferation (arrows) found throughout the specimen from

a second patient, also 50 years of age, whose clinical presentation (headache and seizure) and tumor on MR imaging was nearly identical to that of

the patient in B. The patient in B had little vascular proliferation compared to the patient depicted in D; conversely, patient D had no areas of stromal
proliferation. Magnification in A-D, 200x; 400x in E. Hematoxylin and eosin staining.

presence of hypermethylated MGMT
correlated with an approximately
two-month improved median survival
in patients treated with the Stupp
regimen compared with those without
hypermethylation [9]. However,
promoter methylation analysis of
MGMT is highly dependent on the
tumor, collection method, specimen
quality, and operator, and there is

no standard alternative to the Stupp
regimen in patients with intact MGMT
[9].

The high incidence of EGFR
overexpression, amplification, or
coexpression of the truncated,
constitutively active EGFR, in GBMs
raised expectations that TKIs of the
EGFR, such as gefitinib or erlotinib,
would have significant positive
treatment effects, while minimizing
toxicity compared to other therapies
[1,2,8]. EGFR activates an intracellular
TK that leads to a signal transduction
cascade that enhances survival and
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infiltration of GBM cells in vitro [10-
14]. Overexpression of EGFR correlates
with increased cellular proliferation,
tumorigenesis, decreased apoptosis,
and a poorer prognosis and may be
associated, as well, with radioresistance
[12,14-16]. In GBM cell lines, TKIs
suppress anchorage-independent
growth, prevent proliferation, and
enhance apoptosis [5,7,8].

While the inhibition of EGFR with
TKIs showed promise preclinically,
these inhibitors have subsequently
shown only moderate activity as single
agents in patients with GBM and other
cancers. In one trial, 10 of 24 (42%)
patients with recurrent or progressive
GBM receiving erlotinib had a partial
response or stable disease with a
median time to progression of about
4.5 months—but the results of others
have not been as favorable [5,6].
Analogous results were observed with
EGFR antagonists in patients with non-
small cell lung and pancreatic cancers
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[17,18]. Furthermore, Vogelbaum et
al., for example, have observed that
response to erlotinib is not determined
by EGFR amplification status or EGFR
overexpression [5]; patients with
normal and elevated levels of EGFR
were equally likely to have a clinical
response.

Meanwhile, Haas-Kogan et al. and
Mellinghoff et al. suggested that
EGFR status and the activation status
of some direct and indirect EGFR
pathway components together play
arole in the response to therapy in
that fraction of patients (9%-18%)
who respond favorably to erlotinib
[19,20]. For example, coexpression
of EGFR  and PTEN was the most
favorable molecular marker of
response (six of seven patients who
responded and were tested, from
the nine patients out of 49 who had
an objective treatment response) in
the study by Mellinghoff et al. at the
University of California, Los Angeles
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(UCLA) [19]. By contrast, none of the
responders expressed EGFR in the
study by Haas-Kogan et al., although
overall elevated levels of EGFR and low
or absent phosphorylated Akt levels
were favorable predictors of response
[20]. This has been confirmed by
several groups who have returned

to the laboratory to dissect the
molecular mechanisms in vitro and
animal preclinical models: in GBM
cells with low PTEN expression levels,
inhibition of the mammalian target of
rapamycin, a downstream target of the
phosphatidylinositol 3-kinase (PI3K)
pathway through Akt (Figure 2),
showed substantial efficacy [21-31].

A New Study of Rapamycin for
Recurrent GBM

These findings spurred the UCLA
group to design an important,
molecularly focused clinical study,
published in this issue of PLoS Medicine
[32], to analyze the effect of rapamycin
in a subset of patients with recurrent
GBM in whom activity of the tumor
suppressor PTEN was absent. The
study design, which is outlined in their
Figure 1 [32], is a “treat-biopsy-treat”
paradigm, in which only patients with
the appropriate molecular features
are selected to receive a targeted
biological agent. In this case, patients
who were known to have PTEN loss
at the time of initial resection were
chosen, after recurrence of tumor
following standard treatment (surgery,
radiation, and temozolomide), for
inclusion in the study. Patients (n =
15) were treated for approximately
one week with single-agent rapamycin,
underwent resection, then resumed
therapy and continued it until it was
determined that tumor had recurred
(time-to-progression).

A variety of well-designed
molecular studies were conducted,
including determination of serum
and intratumoral concentration of
rapamycin; markers of proliferation
(Ki-67 labeling); assessment of
the impact of mammalian target
of rapamycin (mTOR) inhibition
as measured by activation status
of downstream targets of mTOR,
including phospho-S6; and feedback
loop inhibition of AKT (see Figure
4A in [32]). In seven of 14 patients
(50%), suppression of mTOR
correlated directly with inhibition of
tumor cell proliferation, although in
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Figure 2. Cartoon Representation of Receptor Tyrosine Kinase and Phosphatidylinositol 3-
Kinase (PI3K)/Akt/ mTOR Pathways

The cell surface is represented as a light blue rectangle and contains a variety of receptor
tyrosine kinases, such as EGFR, insulin-like growth factor 1 (IGF-1R), and a variety or other receptors
such as integrins, G-protein-coupled receptors (GPCRs), and the receptor for vascular endothelial
growth factor (VEGF). Activation of the RTK by ligand (dark blue triangle) on the cell surface leads
to dimerization of two receptors and phosphorylation at the tyrosine kinases, with intracellular
activation of Grb2 and then Sos. Canonical activation of Ras leads to downstream activation of Rad,
Raf, and MKK (mitogen-activated protein kinase kinase). It also leads, directly and indirectly through
Ras, to generation of 3'-phosphoinositides, with activation of Akt; PTEN opposes the function of
PI3K by removing its 3-phosphate groups. Akt acts on a number of molecules and processes, both
by activation (arrowheads) and by inhibition (lines with cross hatches), as indicated to the right of
the figure.

For our purposes, Akt directly activates mTOR, which is present in two complexes, not depicted
here: TORC1 (mTOR bound to Raptor, whose substrates include S6K1 and PRAS40 and which is
inhibited by rapamycin and its analogues) and TORC2 (mTOR bound to Rictor). mTOR activates
S6K1, as shown, an effect inhibited by rapamycin (in red). As Cloughesy et al. demonstrate,
however, this effect may be more complex than previously appreciated, since loss of mTOR activity
by rapamycin blockade initiates a loss of negative feedback control on Akt, which may enhance its
other growth-promoting effects.

Definitions: ASK-1, apoptosis signal-regulating kinase, involved in regulating progression to
apoptosis; BAD, the Bcl2 antagonist of cell death, involved in regulating progression to apoptosis;
FoxO, forkhead box, involved in transcription and proliferation; GSK3, glycogen synthase kinase
3-beta, involved in cell metabolism and growth; IKK, IxB kinase; NFxB, nuclear factor kB; PIP2,
phosphatidylinositol-3,4-biphosphate; PIP3, phosphatidylinositol-3,4,5-triphosphate; TSC2,
tuberous sclerosis complex 2.

several other cases (non-responders),
adequate intratumoral concentrations
of rapamycin did not translate
unequivocally into mTOR inhibition.
In other words, the probability of
response was greatest in patients
with the greatest degree of mTOR
inhibition ([32], Figure 3).

This illustrates the importance
of performing these studies directly
in humans, since preclinical data
had failed to suggest that the levels
of rapamycin used would be a
problem. This failure is likely due
to several features such as (1) the
use in preclinical settings of higher
doses (for greater saturation) than

may be tolerable in humans; (2)
factors such as the blood—brain and
blood—tumor barriers, which influence
pharmacodynamic bioavailability;

(3) variability in vascularization and
necrosis within the tumor; and (4)
other host factors (see Figure 1). Thus,
even in a carefully chosen cohort of
patients with the molecular features
that predict response, only 50%
responded. Why?

An interesting and unexpected
molecular feature appears to be
responsible, at least in part: inhibition
of mTOR led to feedback loop
activation of Akt (depicted in Figure 2).
This disinhibition appears to explain
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Molecular Modeling of Human Cancers
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Figure 3. A Schematic Representation of the Potential for Novel Molecular Modeling of

Human Cancer Therapy

One potential paradigm is illustrated. Other methods and paradigms are possible.

the diminished response rate, especially
through activation of the downstream
Akt target PRAS40. Genetic
investigation of the factors associated
with PRAS40 induction during mTOR
inhibition identified amplification

of EGFR, MDM2, and PDGFRA as

more common in the non-responder
subgroup, a finding not predicted from
preclinical work.

Unpredictable results such as this
have recently been echoed in three
important studies, in which it has been
shown in advanced solid epithelial
malignancies, such as lung cancer and
gliomas, that activation of multiple
signaling pathways, as well as alteration

@ PLoS Medicine | www.plosmedicine.org

of their feedback mechanisms, are
common features and that successful
treatment strategies must account

for these novel characteristics of the
neoplastic state [2,33-35]. Thus, use
of combination therapy (for example,
rapamycin plus a TKI or a TKI plus
an inhibitor of Akt), as Cloughesy et
al. suggest, or more permissive and
less specific TKIs that work on several
activation pathways (see Figure 2), as
Arbiser advocates, is more likely to be
successful when applied to specific
subgroups of patients identified
carefully along the lines described in
the study published here [32]; see also
the review of Arbiser [2].

0037

Towards Individualized Therapy

The ultimate goal of most oncologists
is to tailor therapy that takes into
account—and exploits—the individual
tumor’s unique biological features.
While individualized therapy may be
some years in the future, the work

of Cloughesy et al. [32], and that

of many others, is pointing a way
toward rational design of therapy for
stratified groups of patients who share
common molecular features [2,35-37].
Therefore, one strategy in designing
the next generation of clinical trials

in oncology must be to address

both the known interactions, and,

as Cloughesy et al. have done here,
interrogate clinical studies and tissues
at an early stage to identify genetic and
biochemical features that distinguish
responders and non-responders so that
both types of patients receive optimal
therapy (Figure 3).

This is likely to be an iterative
process, which, as technology advances
and neural network/machine-learning
processes become integrated into
clinical care, is likely to allow cancer
researchers and clinicians to reach
toward the holy grail of individualized
therapy in the not-so-distant future
[36]. It is also a method that has
recently gained attention from both

Five Key Papers in the Field

Engelman et al., 2007 [33] This paper
shows how amplification of the MET
oncogenes leads to enhancement

of signaling through a receptor not
generally activated in lung cancer.

Furnari et al., 2007 [8] A comprehensive
review of the molecular biology of the
malignant gliomas.

Kummar et al., 2007 [37] A cogent
review of the issues surrounding careful
interrogation of novel therapeutics.
Essential reading.

Stommel et al., 2007 [34] This paper,
along with [33], illustrates the synergy
between multiple receptor kinases and
the potential need for more promiscuous
TKls, perhaps in combination with other
signaling inhibitors such as rapamycin.
Mellinghoff et al., 2005 [19] An elegant
study that illustrates the dilemma

of PTEN and Akt activation with the
successes and failures associated with
EGFR blockade in patients with GBM.
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the United States Food and Drug
Administration and the National
Cancer Institute, with respect to

rapid drug development timelines in
cancer therapeutics and for tissue bio-
repositories, with emphasis on what are
being called “Phase 0 trials” [37]. The
work of Cloughesy and his colleagues
helps point the way. m
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