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A B S T R A C T

Background

Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that
predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring
of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by
increased foetal insulin secretion. We assessed the in utero and neonatal role of two key
regulators of pancreatic insulin secretion by studying birthweight and the incidence of
neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset
diabetes of the young (MODY) genes HNF4A (encoding HNF-4a) and HNF1A/TCF1 (encoding
HNF-1a), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion
in mice.

Methods and Findings

We examined birthweight and hypoglycaemia in 108 patients from families with diabetes
due to HNF4A mutations, and 134 patients from families with HNF1A mutations. Birthweight
was increased by a median of 790 g in HNF4A-mutation carriers compared to non-mutation
family members (p , 0.001); 56% (30/54) of HNF4A-mutation carriers were macrosomic
compared with 13% (7/54) of non-mutation family members (p , 0.001). Transient
hypoglycaemia was reported in 8/54 infants with heterozygous HNF4A mutations, but was
reported in none of 54 non-mutation carriers (p ¼ 0.003). There was documented
hyperinsulinaemia in three cases. Birthweight and prevalence of neonatal hypoglycaemia
were not increased in HNF1A-mutation carriers. Mice with pancreatic b-cell deletion of Hnf4a
had hyperinsulinaemia in utero and hyperinsulinaemic hypoglycaemia at birth.

Conclusions

HNF4A mutations are associated with a considerable increase in birthweight and
macrosomia, and are a novel cause of neonatal hypoglycaemia. This study establishes a key
role for HNF4A in determining foetal birthweight, and uncovers an unanticipated feature of the
natural history of HNF4A-deficient diabetes, with hyperinsulinaemia at birth evolving to
decreased insulin secretion and diabetes later in life.

The Editors’ Summary of this article follows the references.

PLoS Medicine | www.plosmedicine.org April 2007 | Volume 4 | Issue 4 | e1180760

PLoSMEDICINE



Introduction

Macrosomia is associated with considerable foetal and
maternal morbidity [1]. Factors that predict macrosomia are
still poorly understood [2]. In humans, foetal insulin secretion
is one of the key determinants of foetal growth, acting mainly
in the third trimester when the weight of the foetus increases
greatly. This is seen in pregnant women with diabetes when
foetal sensing of maternal hyperglycemia drives insulin
secretion, insulin-mediated growth, and subsequent macro-
somia. In addition to such environmental factors, mutations
in the genes involved in insulin secretion are also known to
affect birthweight. Mutations that cause hyperinsulinaemic
hypoglycaemia of infancy [3–10] are associated with increased
birthweight. Conversely, genes in which mutations cause
neonatal diabetes [11,12] and some forms of maturity-onset
diabetes of the young (MODY) [13,14] are associated with
decreased birthweight.

The transcription factors hepatocyte nuclear factor-4a
(encoded by the HNF4A gene), and hepatocyte nuclear factor-
1a (encoded by HNF1A, approved gene name TCF1) play a key
role in the regulation of pancreatic insulin secretion. HNF4A
andHNF1Amutations cause monogenic diabetes (MODY 1 and
MODY3, respectively) due to decreased insulin secretion [15,16]
and are key parts of an important b-cell network [17,18]. In the
pancreas, HNF1A and HNF4A form part of a common tran-
scriptional network, which has been proposed as an explanation
of the shared pancreatic phenotype seen in patients with
mutations in these genes [18]. Variants in theHNF4A pancreatic
promoter have also been associatedwithType 2 diabetes [19,20].

A recent study reported mildly reduced blood glucose and
increased insulin levels in adult b-cell Hnf4a–deficient mice
[21]. As a result of this animal study, we hypothesized that
mutations in the human gene HNF4A might increase foetal
insulin secretion and birthweight, and cause neonatal hyper-
insulinaemia and hypoglycaemia. We therefore studied birth-
weight and reported hypoglycaemia in HNF4A-mutation
carriers and unaffected family members. As a comparison,
we also studied the families of patients with mutations in the
closely associated pancreatic transcription factor HNF1A. To
investigate the mechanism of neonatal hypoglycaemia and
increased birthweight, we also studied foetal and neonatal
mice lacking both copies of Hnf4a in the pancreas.

Methods

Birthweight and Reported Hypoglycaemia in Hnf4a-
Mutation Carriers

One hundred and eight members (54 mutation carriers) of
15 families who had been found to have MODY due to an
HNF4A mutation, were contacted. This group included 13
families where the mutation had previously been identified as
well as two families, found after screening for HNF4A, where
there was both neonatal hypoglycaemia and diabetes in a
family member (see below). Where mutation status of an
individual within a family had not previously been deter-
mined, DNA was extracted from a buccal sample. HNF4A was
amplified and sequenced as previously described [22]. Birth-
weight and gestational age were primarily obtained by
maternal recall. Birth centiles and weight were corrected to
40 wk of gestation and for male sex, according to UK 1990
reference curves [23].

In assessment of neonatal hypoglycaemia, we report here
on three patients from two families described above in whom
HNF4A mutations had been identified due to coexistent
familial diabetes and neonatal hypoglycaemia. In addition, we
contacted 101 unselected members (48 mutation carriers) of
the 13 families described above who had been found
previously to have MODY due to an HNF4A mutation. In
babies born to mothers with diabetes during pregnancy,
hypoglycaemia that did not require intravenous glucose and
lasted for less than 24 h was not considered exceptional. Any
other reported incidence of hypoglycaemia at birth was
followed up by case-note review. An episode of hypoglycae-
mia was established only if venous plasma glucose of less than
2.5 mmol/l was documented. All investigations for hyper-
insulinaemic hypoglycaemia were done by the referring
clinician at the time of diagnosis using their local laboratory.

HNF4A Mutations in Families with both Diabetes and
Hypoglycaemia
After our initial observations in families with knownHNF4A

mutations, we went on to sequence the HNF4A gene in the
probands of five further families who had been referred to the
ExeterMolecular Genetics Laboratory with hyperinsulinaemic
hypoglycaemia, and who had at least one first-degree relative
with diabetes. No monogenic cause had been found for the
hypoglycaemia or diabetes in these families: three of the
hypoglycaemic probands had been sequenced for activating
GCK and/or KCNJ11 mutations and, in one family, members
with diabetes had been sequenced for HNF1A mutations.

Birthweight and Reported Hypoglycaemia in HNF1A-
Mutation Carriers
One hundred and thirty-four members (85 mutation

carriers) from 38 families with known MODY due to an
HNF1A mutation were contacted. Reported birthweight and
hypoglycaemia were recorded in the same way as for HNF4A-
mutation carriers.

Transgenic Mice
b-cell–specific Hnf4a mutations (b-Hnf4a-KO) were gener-

ated by crossing Hnf4aLoxP/LoxP mice (Jackson Laboratory,
http://www.jax.org) [24] with InsPr-Cre mice, a transgenic line
expressing Cre recombinase driven by the rat insulin 2
promoter [25]. Both lines were bred on a C57BL/6J genetic
background. An almost complete efficiency of recombination
of Hnf4a LoxP alleles in b-cells was verified by: (1) real-time
PCR quantitation in RNA from isolated islets showing an 80%
reduction ofHnf4amRNA relative to control mice (Figure S1);
(2) absent Hnf-4a staining in .90% b-cells on immunoflur-
oescence analysis (unpublished data); and (3) recombination of
a Rosa26LoxP-Stop-LoxP-Lacz allele in .90% of b-cells when
crossed with InsPr-Cre (unpublished data). Blood insulin and
glucose were obtained after decapitation of timed embryos or
neonatal mice (15–20 mice per genotype and stage). Glucose
was measured with a glucose meter (Accu-Chek, Roche [http://
www.roche.com]). Plasma insulin levels were determined by
ELISA (Mercodia, http://www.mercodia.com). Genotyping was
performed by PCR analysis using genomic DNA isolated from
the tail tips of embryos and newborn mice.

RNA Analysis
Isolated islets from 6–8-wk-old b-HNF4a-KO mice and

control Hnf4aLoxP/LoxP littermates were used for RNA extrac-
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tion with Trizol reagent (Invitrogen, http://www.invitrogen.
com). RNA integrity was verified with the 2100 Bioanalyzer
(Agilent Technologies, http://www.agilent.com) prior to re-
verse transcription and real-time PCR quantitation as
described [26]. Oligonucleotide sequences are available upon
request.

Statistical Analysis
Owing to the non-normal distribution of birthweight data,

non-parametric analysis was used. Median centiles and
birthweights were compared using the Mann-Whitney U-test.
For the discordant sibling analysis, the median birthweight
corrected for sex and gestation for all mutation carriers and
non-mutation carriers within a sibship were compared using
the Wilcoxon signed rank test. Hypoglycaemia and macro-
somia categorical data were compared using Fisher’s Exact
test. Data from the mouse studies are presented as mean 6

standard error of the mean, and were compared by the two-
tailed Student’s t-test.

Ethical Approval
This study was approved by the North and East Devon

Regional Ethics Committee, UK and the Animal Ethics
Committee of the University of Barcelona School of Medicine,
Spain. All patients or carers gave informed consent.

Results

Birthweight in HNF4A-Mutation Carriers
The characteristics of all the HNF4A-mutation carriers and

their unaffected family members are shown in Table 1. The
median birthweight of the HNF4A-mutation carriers was the
96th centile (interquartile range 75–100) compared with the
58th centile (interquartile range 33–76) in unaffected family
members, giving a difference in corrected median birth-
weight of 790 g, p , 0.001 (Figure 1A). A difference in
birthweight was seen both when the mutation was inherited
from the father, p , 0.001 (Figure 1B) or from the mother, p
, 0.001 (Figure 1C). There was no effect of offspring
genotype on gestational age at delivery (p ¼ 0.29). The
influence of HNF4A genotype on birthweight remained
significant if the individuals from the two families referred
with hyperinsulinaemia were excluded (p , 0.001). Nineteen

mothers who were mutation carriers and one mother who was
not a mutation carrier had diabetes during pregnancy; 11 of
the 20 offspring from these pregnancies were mutation
carriers. Finally, to allow for any impact of maternal hyper-
glycaemia, corrected median birthweight was compared in 18
sibling pairs discordant for the presence of the HNF4A
mutation. The median birthweight of the mutation-carrying
siblings was 4,660 g compared with a median birthweight of
the non-mutation-carrying siblings of 3,640 g, p ¼ 0.001
(Figure 1D).
Macrosomia, defined as a birthweight of more than 4,000 g,

was present in 56% of HNF4A-mutation carriers but in only
13% of non-mutation carriers (p , 0.001). The prevalence of
macrosomia was 64% if the HNF4A mutation was inherited
from the mother and 46% if the HNF4A mutation was
inherited from the father. In contrast in an unaffected foetus,
the equivalent rates were 25% with an affected mother (p ¼
0.07), and 6% with an affected father (p¼ 0.003). Macrosomia
is associated with increased foetal and maternal morbidity,
and this was seen in some of the patients. The deliveries of the
two siblings from family 1,023 were both complicated by
severe shoulder dystocia, with 1,023–1 developing an Erb’s
palsy. The prevalence of extreme macrosomia, defined as a
birthweight of .5,000 g, which is associated with increased
neonatal mortality [27], was 15% (four neonates) in HNF4A-
mutation carriers with an affected mother and 7% (two
neonates) in HNF4A-mutation carriers with an affected
father. No non-mutation carriers had extreme macrosomia.

Neonatal Hyperinsulinaemic Hypoglycaemia in HNF4A-
Mutation Carriers
Transient neonatal hypoglycaemia is a feature of some

HNF4A-mutation carriers. Two out of five families referred to
Exeter, with hypoglycaemia and a first-degree family member
with diabetes, were shown to have novel HNF4A mutations
(M364R, IVS4nt-2A.G). Three out of the six mutation
carriers in these families had documented neonatal hypo-
glycaemia (Figure 2; Table 2). In addition, five out of 48
HNF4A-mutation carriers in families previously identified
with MODY had hypoglycaemia at or soon after birth lasting
. 24 h and requiring treatment (Table 2). So, overall, eight
out of 54 mutation carriers had neonatal hypoglycaemia

Table 1. Characteristics of Patients

Gene Characteristic Mutation Carrying (NM) Familial Controls (NN)

HNF4A Number 54 54

Mutations Y16X, S34X, R127W, D206Y, E276Q, R303H, I314F, L332P,

M364R, IVS5ntþ1G.A, IVS4nt-2A.G, t(3;20)

Current age, y (range) 33.2 (0–70) 23.5 (3–60)

Number with diabetes (%) 38 (70) 0

Mean age diagnosed, y (range) 25 (8–72) N/A

Current age without diabetes, y (range) 22 (0–57) N/A

HNF1A Number 85 49

Mutations R229Q, R171X, H143Y, P447L, P291fsinsC, IVS8ntþ1G.A,

W267R, 1414G415fsinsC, W267X, E132K, IVS2ntþ1G.A

Current age, y (range) 40 (11–84) 42 (12–77)

Number with diabetes (%) 71 (93) 0

Mean age diagnosed, y (range) 20 (4–70) N/A

Current age without diabetes, y (range) 21 (14–52) N/A

doi:10.1371/journal.pmed.0040118.t001

PLoS Medicine | www.plosmedicine.org April 2007 | Volume 4 | Issue 4 | e1180762

HNF4A: Macrosomia and Hyperinsulinaemia



compared to none of the 54 non-mutation carriers (p¼0.003).
If the patients from the two additional families are excluded,
there is still a significant excess of hypoglycaemia in the
mutation carriers (p ¼ 0.02).

The clinical features of the eight cases with established
hypoglycaemia during infancy associated with HNF4A muta-

tions are shown in Table 2. Their pedigrees (Figure 2) show
that hypoglycaemia was often described only in a single
family member with other carriers of the same HNF4A
mutation presenting with diabetes. The prevalence of
hypoglycaemia was similar if the mutation was inherited
from the father (four out of 27 patients) or from the mother

Figure 1. Birthweight (Adjusted for Sex and Gestational Age) according to Foetal Genotype

(A) All offspring; (B) HNF4A mutation inherited from the father; (C) HNF4A mutation inherited from the mother, and (D) siblings discordant for HNF4A genotype.
Foetal genotype: NM, heterozygous HNF4A mutation; NN, normal HNF4A. For (A) to (C), bars represent median, the box represents interquartile range,
and the whiskers represent the range, with outliers shown as circles. Comparing NM birthweight with NN birthweight by Mann-Whitney U-test: p ,
0.001 for (A) all offspring; p¼0.001 for (B) father affected and for (C) mother affected. In (D), those pairs where the father has the mutation are shown as
filled circles; those pairs where the mother has the mutation are shown as filled triangles. The red bars represent median birthweight.
doi:10.1371/journal.pmed.0040118.g001
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(four out of 27 patients), suggesting that persisting neonatal
hypoglycaemia is independent of maternal glycaemia in
pregnancy. In six patients, the hypoglycaemia was treated
with intravenous glucose and enteral feeding, but two
patients (1,018–1 and 1,309) required treatment with diazo-
xide and chlorothiazide for 1 and 6 mo, respectively. In both
cases, there was documented inappropriate hyperinsulinae-
mia in the presence of hypoglycaemia (Table 2).

b-Cell Deletion of Hnf4a in Mice
To directly test whether Hnf4a deficiency affects insulin

secretion in utero, mice with b-cell–specific Hnf4a deletion (b-
Hnf4a-KO) were examined during late gestation (E18.5–E20).
Late-gestation b-Hnf4a-KO embryos exhibited significantly
elevated insulin concentrations (118.14 6 16.62 pmol/l versus
69.75 6 11.03 pmol/l in b-Hnf4a-KO versus controls, p¼0.019)
(Figure 3A). Glucose concentrations, which are regulated by
the mother, were similar in both groups (Figure 3A). Birth-
weight, which in mice does not exhibit insulin dependence as

in humans [28], did not differ in b-Hnf4a-KO mice. During the
neonatal period, blood glucose values were low relative to
control littermates (1.35 6 0.35 mmol/l versus 2.50 6 0.28
mmol/l, respectively, p ¼ 0.018) (Figure 3B). Blood glucose
levels below 1.1 mmol/l were observed at least seven times
more frequently in neonatal b-Hnf4a-KO neonatal mice than
in controls (8/15 versus 2/28, respectively, p , 0.001). This
hypoglycaemia was due to increased insulin secretion, as the
insulin/glucose ratio values in b-Hnf4a-KO versus control mice
were 29.8 6 12.0 versus 5.6 6 1.5 (p¼0.01), while insulin values
were 23.9 6 6.9 pmol/l versus 11.1 6 3.3 pmol/l (p ¼ 0.053),
respectively (Figure 3B). The expression of genes causing
human hyperinsulinaemic hypoglycaemia, namely Kcnj11
(encoding Kir6.2), Abcc8 (encoding Sur1), Schad, Gck, and Glud1,
was unaltered in Hnf4a-deficient islets (Figure S1). In
summary, these findings indicate that Hnf4a deficiency causes
hyperinsulinism during foetal and neonatal life, supporting
the suggestion that this is the underlying cause of macrosomia
and hypoglycaemia in HNF4A-mutation carriers.

Figure 2. Pedigrees of Families with Hypoglycaemia

Patients with hypoglycaemia are shaded with bold diagonal stripes; patients who had hypoglycaemia but have progressed onto diabetes are shaded
with half black/half diagonal stripes; and patients with diabetes are coloured black. Probands are indicated with an arrow. Where available, below each
symbol is recorded genotype (NM, HNF4A-mutation carrier; NN, unaffected), birth centile adjusted for sex and gestation, age at which diabetes
developed, and the patient’s treatment.
doi:10.1371/journal.pmed.0040118.g002
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Birthweight and Hypoglycaemia in HNF1A-Mutation
Carriers

The characteristics of the HNF1A-mutation carriers and
their unaffected family members are shown in Table 1. Unlike
HNF4A, mutations in HNF1A are not associated with an
increased birthweight (Figure 4A), with a median difference
of 10 g (p¼ 0.86) and a mean difference in the analysis of 24
discordant sibling-pairs (Figure 4B) of 3g (p¼ 0.91). Only one
HNF1A-mutation carrier had neonatal hypoglycaemia requir-
ing intravenous glucose and persisting for longer than 24 h;
however, his mother had diabetes during pregnancy, and he
required less than 48 h of this treatment. Hypoglycaemia was
more common in HNF4A-mutation carriers (eight out of 54)
than in HNF1A-mutation carriers (one out of 77), p ¼ 0.004.

Discussion

We have shown that increased birthweight and macrosomia
are common features of patientswithHNF4Amutations and, in
addition, that some individuals with HNF4A have neonatal
hypoglycaemia. Although in young adults the same genetic
defect results in diabetes due to reduced insulin secretion
[15,22], we have shown that the mechanism for the phenotype
in newborns is likely to be increased insulin secretion in utero
and in the neonatal period. This is supported by hyper-
insulinaemia in some affected infants with HNF4A mutations,
and studies in mice with b-cell deletion of Hnf4a clearly show

hyperinsulinaemia in utero and hyperinsulinaemic hypogly-
caemia in the early neonatal period.
HNF4A-mutation carriers are, on average, 790 g heavier

than their family members who do not carry the mutation,
and 56% are born with macrosomia (.4,000 g). The increase

Table 2. Clinical Features of Patients with HNF4A Mutations and Documented Hypoglycaemia

Patient Details Reported Hypoglycaemia in

Known HNF4A Families (Family Number)

Hyperinsulinemic Hypoglycaemia

and Familial Diabetes (Family Number)

271 1,023–1 1,023–2 1,309 1,365 1,018–1 1,018–2 1,415

Mutation D206Y IVS5ntþ1G.A IVS5ntþ1G.A R303H R303H M364R M364R IVS4nt-2A.G

Nucleotide change c.616G.T c.621þ1G.A c.621þ1G.A c.908G.A c.908G.A c.1091T.G c.1091T.G c.466–2A.G

Mutation inheritance Paternal Maternal Maternal Paternal Paternal Maternal Maternal Paternal

Sex Male Female Female Male Female Female Male Female

Mother developed

diabetes during

pregnancy

No No Yes No No No Yes No

Birthweight, g

(wk gestation)

4,536 (39) 4,476 (40) 4,282 (38) 4,600 (41) 4,763 (40) 4,710 (40) 4,630 (38) 4,252 (40)

Time of hypoglycaemia

diagnosis, h

48 h ,24 h ,24 h ,24 h ,24 h ,24 h ,24 h ,24 h

Presentation at

diagnosis

Sleepy, septic — Sepsis Jittery Unsettled

Glucose investigations,

mmol/l

0.3 1.1 Undetectable 2.4 1.2 0.6 1.0 1.8

Insulin investigations,

pmol/l

— — 51 — 276 117

Ammonia — — Normal Normal

(age 12 y)

Normal

Type of treatment IV glucose;

enteral feeding

IV glucose IV glucose,

7 mg/kg/min

IV glucose,

12 mg/kg/min

IV glucose;

enteral feeding

IV glucose,

12.5mg/kg/min

IV glucose IV glucose

Oral treatment No No No Diazoxide and

chlorothiazide

No Diazoxide and

chlorothiazide

No No

Age treatment stopped 3 d 1 d 6 d 9 mo 7 d 1 mo 3 d 9 d

Age, y 0.25 18 15 5 9 16 15 6

Diabetes?

Age diagnosed, y

No Yes: 14 Yes: 14 No Yes: 8 Yes: 12 Yes: 14 No

Hypoglycaemia defined as less than 2.6 mmol/l, lasting for longer than 24 h.
IV, intravenous.
doi:10.1371/journal.pmed.0040118.t002

Figure 3. Deletion of Hnf4a in b-Cells Results in Hyperinsulinaemia and

Hypoglycaemia in Mice

(A) Blood glucose, plasma insulin, and insulin/glucose ratio of E18.5–E20
embryos. (B) Blood glucose levels, plasma insulin levels, and insulin/
glucose ratio of newborn mice. Data from b-Hnf4a-KO and controls is
shown in white and black bars, respectively. Values are mean 6 standard
error of the mean.
doi:10.1371/journal.pmed.0040118.g003
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in birthweight is similar to that seen in the offspring of
patients with maternal diabetes which is the commonest
recognized cause of macrosomia. Forty-six percent of
children with an HNF4A mutation born to affected fathers
had macrosomia. This is a clear example that macrosomia
may result from foetal genetics as well as from the maternal
intra-uterine environment. Consideration of this should be
taken into account when determining macrosomia risk, and
we recommend that, in addition to maternal diabetes, a
history of young-onset non-insulin-requiring paternal dia-
betes should prompt assessment of foetal size.

We have described eight patients with HNF4A mutations
who had one or more episodes of hypoglycaemia in the
neonatal period; there was hyperinsulinaemia in all three
patients who were tested. Five patients required treatment
with intravenous glucose only, with resolution within 1 mo;
this finding was consistent with a transient hyperinsulinae-
mia. Two patients had more persistent hypoglycaemia which
responded well to treatment with diazoxide and chlorothia-
zide and subsequently resolved. Therefore, the loss of HNF4A
function causes a relatively mild form of hyperinsulinaemic
hypoglycaemia that is transient and diazoxide-responsive.
Transient hypoglycaemia is often not investigated and as a
result is understudied. We propose that neonates presenting

with hypoglycaemia who have a father with diabetes, or a
mother with young-onset non-insulin-requiring diabetes,
should be screened for HNF4A mutations. However, three
out of the five unselected HNF4A-mutation carriers with
neonatal hypoglycaemia presented before their respective
parent developed diabetes. Therefore, we also suggest that
HNF4A mutations should be considered in any child with
persistent hypoglycaemia (.24 h).
We encountered two problems resulting from the retro-

spective nature of this study. Firstly, hospital records were
not readily available so birthweight and gestational age were
ascertained by parental recall in the majority of cases.
However, all this data collection was done blind to genotype
and therefore any error should apply to both offspring
groups. Secondly, the hypoglycaemia was often not well
investigated at the time of presentation, presumably because
of its transient nature. Hence, hyperinsulinaemia at birth was
looked for only in three out of the eight patients presenting
with hypoglycaemia, and other causes of hyperinsulinaemia
were not excluded. It also means that we are uncertain
whether the 46 patients with HNF4A mutations in whom
hypoglycaemia was not described had undetected hypogly-
caemia or were not hypoglycaemic. A prospective study of
neonates born to HNF4A-mutation carriers is required for a
complete assessment of the hyperinsulinaemic hypoglycaemia
seen in these patients.
The increased birthweight and risk of macrosomia in

HNF4A-mutation carriers is likely to be secondary to foetal
hyperinsulinaemia. Although no measures of foetal insulin or
cord insulin were available to confirm this mechanism in
humans, two lines of evidence support it. Firstly, in humans,
we have documented hyperinsulinaemia soon after birth in
the three patients in whom it was tested, and hypoglycaemia
in eight. Secondly, we have shown that mice lacking
pancreatic Hnf4a have increased insulin concentrations in
utero, and hyperinsulinaemic hypoglycaemia as newborns.
The increased birthweight and neonatal hypoglycaemia in

HNF4A-mutation carriers seems paradoxical for a gene that is
associated with a b-cell–deficient form of young-onset
diabetes [15,22], particularly as the decreased b-cell function
has been explained by decreased expression of pancreatic b-
cell genes involved in glucose metabolism [29,30]. It is in
contrast to other monogenic causes of diabetes—for example,
GCK [13], IPF1 [31], HNF1B [14], or activating KCNJ11 [32,33]
and ABCC8 mutations [12,34] where birthweight is reduced.
In these cases, the low insulin secretion that causes diabetes
later is associated with decreased insulin-mediated foetal
growth. In HNF4A-mutation carriers, in contrast, there would
need to be a switch from increased insulin secretion in utero
and neonatal life to decreased insulin secretion in later life.
The closest example of this is patients with hyperinsulinaemia
of infancy due to recessive and dominant mutations in KATP

channel subunits, who have a high rate of diabetes at long-
term follow-up even when they do not receive pancreatic
surgery [8,35,36]. It has been postulated that diabetes in
SUR1-deficient patients reflects increased apoptosis, in
addition to abnormal regulation of secretion due to lack of
KATP channels [37]. Compared to SUR1 deficiency, HNF-4a
deficiency results in less severe hyperinsulinism, yet gives rise
to a more highly penetrant and severe diabetic phenotype. It
is interesting, however, that of the eight patients who
developed established hypoglycaemia at birth, five developed

Figure 4. Birthweight in HNF1A-Mutation Carriers

(A) Median centile (adjusted for sex and gestation) in mutation carriers
(NM) and non-mutation carriers (NN) (p ¼ 0.86). Error bars show
interquartile range. (B) Discordant sib-pair analysis. Those pairs where the
father has the mutation are shown as filled circles; those pairs where the
mother has the mutation are shown as filled triangles. Median
birthweight: NM 3,490 g; NN 3460 g (p¼ 0.91).
doi:10.1371/journal.pmed.0040118.g004
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diabetes by the age of 14 y (mean age 12.4 y), suggesting a
possible earlier progression to diabetes in this group.

Two recent studies surprisingly showed that b-cell Hnf4a
deficiency does not cause diabetes in mice [21,38]. One study
paradoxically reported mildly reduced blood glucose and
increased insulin levels in adult b-cell Hnf4a-deficient mice,
and ascribed this to diminished expression of Kcnj11
encoding the KATP channel subunit Kir6.2 [21]. Another
study failed to confirm abnormal blood glucose and insulin
levels, and reported normal Kcnj11 expression [38]. This
discrepancy, together with the unexpected failure to develop
hypoinsulinaemic diabetes, led us to question whether
hyperinsulinaemia was an important feature of Hnf4a
deficiency. In the current study, we have shown that, in
parallel with the human findings, Hnf4a–deficient mice
exhibit hyperinsulinaemia in the foetal and neonatal stage,
as well as overt neonatal hypoglycaemia as opposed to only
mildly reduced glucose at later ages as recently reported [21].
Importantly, our studies showed no abnormal expression of
Kcnj11. While discrepancies in phenotype might be explained
by small differences in genetic background, the current data
suggest that the hyperinsulinaemic phenotype in Hnf4a
deficiency is not related to KATP channel expression.

Further studies will need to address how Hnf-4a-dependent
transcription in b-cells is linked to the dual phenotype
reported here. Large-scale profiling shows that Hnf-4a-
deficient b-cells exhibit abnormal expression of more than
10% of all islet genes (unpublished observations), many of
which need to be examined as plausible candidates for the
HNF4A-deficient hypersecretory phenotype. It is tempting to
hypothesize that the initial defect that causes b-cell hyper-
secretion might eventually lead to b-cell exhaustion and
diabetes, in analogy to what is observed in some patients with
SUR1 mutations as described above [8,35,36]. However, the
broad transcriptional phenotype of Hnf4a-deficient mice
offers an alternative potential explanation, whereby one
HNF-4a-dependent gene-expression defect causes hyper-
secretion early in life, while a separate gene-expression
defect is responsible for the development of severe b-cell
failure several years after birth.

The birthweight and incidence of hypoglycaemia in
heterozygous HNF1A-mutation carriers were not different
from their unaffected family members. This finding suggests
that foetal insulin secretion is not increased in HNF1A-
mutation carriers. Previous data had supported a common
phenotype of HNF1A- and HNF4A-mutation carriers, due to a
regulatory transcription factor circuit in the b-cell with
positive feedback on expression between HNF-1a and HNF-
4a [18,22,39,40]. Our findings suggest that, at least in foetal
life, there are clearly independent functions of these two
transcription factors in the foetal b-cell. Our data therefore
suggest that, in humans, the proposed transcription-factor
network is not critically required in foetal development and
early post-natal life.

To conclude, we have shown that heterozygous HNF4A
mutations are associated with a 790 g increase in birthweight,
on average, and considerable risk of macrosomia. The
increased birthweight is probably mediated by increased
foetal insulin secretion and, in some cases, is associated with
transient neonatal hyperinsulinaemia. Because HNF4A defi-
ciency is also known to cause hypoinsulinaemic diabetes, this
study shows for the first time that HNF-4a has dual opposing

roles in the b-cell during different periods of life. This study
also has important implications for clinical practice (see Box
1). Firstly, pregnancies where a parent is known to have an
HNF4A mutation should be monitored closely during
pregnancy and the immediate post-natal period to minimize
complications of macrosomia and neonatal hypoglycaemia.
Secondly, neonates with transient or persistent hypoglycae-
mia and/or macrosomia and a family history of young-onset
diabetes should be considered for HNF4A molecular genetic
testing. Thirdly, since the foetal genotype has a considerable
impact on determining birthweight, in addition to maternal
factors, paternal factors (including history of diabetes) should
be considered when assessing macrosomia risk.

Supporting Information

Alternative Language Abstract S1 Translation into Spanish Prepared
by the Authors

Found at doi:10.1371/journal.pmed.0040118.sd001 (29 KB DOC)

Figure S1. mRNA Levels of Genes Known to Cause Human Hyper-
insulinism in Control and b-Hnf4a-KO Mice

Data are mean 6 standard error of the mean from three different
control and mutant mice, except for Kcnj11 where six control and six
mutant mice were analysed.

Found at doi:10.1371/journal.pmed.0040118.sg001 (28 KB PPT)

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/Genbank) iden-
tification numbers for the genes and gene products discussed

Box 1. Practical Clinical Points for Diagnosis and
Management of Patients with HNF4A Mutations

Management of pregnancy in families known to have

diabetes due to HNF4A mutations
Serial antenatal scans should be performed in any pregnancy in which

the father or mother is a mutation carrier and early induction of labour is
considered. This is true when the mother does not have diabetes, but
particularly applies when the mother has diabetes or impaired glucose
tolerance in pregnancy.

All offspring of pregnancies where the father or mother is an HNF4A-
mutation carrier should be tested for neonatal hypoglycaemia at birth
and also 24 h after birth.

Diagnosing MODY
In families where there is autosomal dominant inheritance of young-

onset diabetes with features consistent with a diagnosis of MODY,
details of birthweight and neonatal hypoglycaemia should be specifi-
cally asked for.

When macrosomia or neonatal hypoglycaemia (.24 h) is described,
HNF4A should be sequenced before other genes when performing
diagnostic genetic testing.

Diagnosing and managing neonatal hypoglycaemia
HNF4A should be sequenced in children with neonatal hypoglycae-

mia, particularly if the hypoglycaemia is relatively mild or transient, or if
a family member (parent or grandparent) has young-onset diabetes
(,35 y).

In patients diagnosed as having HNF4A, resolution of symptoms
should be expected in the first year, but diabetes should be expected to
develop in adolescence or in early adulthood and should be screened for
annually after the age of 10 y.

Investigating macrosomia
HNF4A should be sequenced as part of an investigation of

unexplained macrosomia, particularly when the macrosomia is extreme,
is accompanied by hypoglycaemia, or there is a family history of early-
onset diabetes.
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in this paper are HNF1A/TCF1 (NM_000545.3) and HNF4A
(NM_000457.3).
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Editors’ Summary

Background. MODY, or maturity-onset diabetes of the young, is a
particular subtype of diabetes; only a few percent of people with
diabetes are thought to have this subtype. The condition comes about as
a result of a mutation in one of six genes. Generally, people with MODY
have high glucose (sugar) levels in the blood, and the typical symptoms
of diabetes, such as increased thirst and urination, typically develop
when the person is below the age of 25 y. Two of the genes that are
known to cause MODY are mutant forms of HNF4A and HNF1A. The
proteins that are encoded by these two genes control insulin levels
produced by the pancreas; when these genes are mutated, not enough
insulin is produced. Without enough insulin to control blood sugar,
levels rise, leading to the symptoms of diabetes. However, MODY can be
managed by many of the same interventions as other types of diabetes,
such as diet, exercise, drug treatments, and insulin injections.

Why Was This Study Done? Although the evidence shows that
individuals who carry mutations in HNF4A and HNF1A do not produce
enough insulin and therefore have higher glucose levels in their blood,
there were some tantalizing suggestions from mouse experiments that
this might not be the whole story. Specifically, the researchers suspected
that during embryonic development, mutations in HNF4A or HNF1A
might actually cause higher insulin levels. Too much insulin during
development of a fetus is known to cause it to gain weight, resulting in a
baby that is larger than the average size for its age. Larger babies are
risky for both the baby and the mother. The researchers doing this study
wanted to understand more precisely what the links were between the
forms of MODY caused by HNF4A and HNF1A mutations, and birth-
weight and blood-sugar levels.

What Did the Researchers Do and Find? In this study, the researchers
examined 15 families in which some family members had MODY caused
by a mutation in HNF4A. They compared the birthweight for family
members carrying the mutation (54 people) against the birthweight for
those who did not (54 people). A similar comparison was done for 38
families in which some members had a different form of MODY, this time
caused by a mutation in HNF1A. The results showed that the birthweight
of family members who carried a mutation in HNF4A was, on average,
790 g higher than the birthweight of family members who didn’t carry
the mutation. Low blood-sugar levels at birth were also more common in
people carrying the HNF4A mutation as compared to people who did
not. However, the HNF1A mutation did not seem to be associated with
greater birthweight or low blood-sugar levels at birth. Finally, in order to

understand these findings further, the researchers created embryonic
mice carrying mutations in the mouse equivalent of HNF4A. These
embryos produced more insulin than normal mouse embryos and, after
birth, were more likely to have low blood-sugar levels.

What Do These Findings Mean? These findings show that there is a link
between mutations in HNF4A, but not in HNF1A, and increased
birthweight. The increase found in this study is quite substantial (a
median weight of 4,660 g in the affected babies; a birthweight of more
than 4,000 g is generally considered large). The results suggest that in
human embryos with a mutated form of HNF4A, too much insulin is
produced during development, causing faster growth and a higher
chance of the baby being born with low blood-sugar levels. This is an
unexpected finding, because later in life the HNF4A mutation causes
lower insulin levels. Therefore, the biochemical pathways causing this
type of MODY seem to be quite complicated, and further research will
need to be done to fully understand them. Crucially, the research also
suggests that pregnant women carrying HNF4A mutations should be
closely followed to check their baby’s growth and minimize the chance
of complications. Doctors and families should also consider doing a
genetic test for HNF4A if a baby has low blood-sugar levels and if there is
a family history of diabetes; this would increase the chance of diagnosing
MODY early.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed
0040118.
� In a related Perspective in PLoS Medicine, Benjamin Glaser discusses

causes of type 2 diabetes mellitus in the context of this study’s
findings
� The US National Institute of Diabetes and Digestive and Kidney

Diseases has pages of information on different types of diabetes
� Wikipedia has an entry on Maturity Onset Diabetes of the Young

(MODY) (note that Wikipedia is an internet encyclopedia that anyone
can edit)
� Diabetes Research Department, Peninsula Medical School, Exeter, UK

provides information for patients and doctors on genetic types of
diabetes; the website is maintained by the research group carrying out
this study
� Information from the Centers for Disease Control and Prevention on

diabetes and pregnancy
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