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A B S T R A C T
Background

Reliable and timely information on disease-specific treatment burdens within a health system
is critical for the planning and monitoring of service provision. Health management information
systems (HMIS) exist to address this need at national scales across Africa but are failing to
deliver adequate data because of widespread underreporting by health facilities. Faced with
this inadequacy, vital public health decisions often rely on crudely adjusted regional and
national estimates of treatment burdens.

Methods and Findings

This study has taken the example of presumed malaria in outpatients within the largely
incomplete Kenyan HMIS database and has defined a geostatistical modelling framework that
can predict values for all data that are missing through space and time. The resulting complete
set can then be used to define treatment burdens for presumed malaria at any level of spatial
and temporal aggregation. Validation of the model has shown that these burdens are
quantified to an acceptable level of accuracy at the district, provincial, and national scale.

Conclusions

The modelling framework presented here provides, to our knowledge for the first time,
reliable information from imperfect HMIS data to support evidence-based decision-making at
national and sub-national levels.

The Editors’ Summary of this article follows the references.

PLoS Medicine | www.plosmedicine.org June 2006 | Volume 3 | Issue 6 | e2710825

PLoSMEDICINE



Introduction

Public health decision-makers require accurate and timely
information on disease-specific treatment burdens within a
health system to monitor and plan resource needs [1–4]. A
basic requirement is reliable national and sub-national data
detailing the number of treatment events for a given disease
or condition occurring at health facilities each month or year.
In most African settings, this requirement is addressed with a
health management information system (HMIS) that coor-
dinates the routine acquisition of treatment records from
health facilities and the transfer, compilation, and analysis of
these data through district, regional, and national levels.

A perfect HMIS requires all health facilities to report
promptly in all months, allowing a comprehensive quantifi-
cation of treatment events through time and space across the
health system. The reality of HMIS in Africa and elsewhere
stands in marked contrast to this ideal [5–9]. Typically, many
facilities never report, or report only intermittently, resulting
in spatially and temporally incomplete national data [10–13].
Following several decades of donor investment in HMIS
across Africa, the incomplete nature of routine national
reporting has shown little improvement [3,14].

Faced with poor data coverage, national treatment burdens
are often estimated using rudimentary methods to account
for missing values. The objective of this paper is to present a
geostatistical model that predicts missing data in order to
provide more reliable estimates of national outpatient
treatment burdens with known accuracy. The model has
been developed and tested using the example of presumed
malaria cases in the Kenyan government’s formal health
sector.

Methods

The Kenyan HMIS Dataset
Data were obtained from the Department of Health

Management Information Systems of the Kenyan Ministry
of Health. These data consisted of monthly records of
diagnoses made at outpatient departments of health facilities
across Kenya over an 84-mo period (January 1996–December
2002). Each record included the total number of all-cause
diagnoses made at a given facility during a given month. An
additional 11 diagnostic codes were available for each
monthly record per facility. We selected malaria as the
diagnostic code for model development for a number of
reasons: (a) it accounted for over a third of all diagnoses made
during the period of observation; (b) malaria is a disease that
demands accurate quantification for health system planning
in the light of increased donor assistance [9], particularly in
the era when new expensive therapeutics are being adopted
[9,15]; and (c) malaria exhibits considerable spatial [16,17] and
temporal [18,19] heterogeneity across Kenya. The records
available within the routine HMIS data were not structured
by age or sex, nor were they distinguished as initial or follow-
up visits, and diagnoses were generally not slide-confirmed.
The data, therefore, represent total cases (TC) or presumed
malaria cases (MC) seen as outpatients each month at health
facilities identified by a unique facility code.

Data for each facility were matched to an independent
database indicating the longitude and latitude of formal
government, mission, and private health facilities nationwide.

Details of how this spatial database was constructed are
provided elsewhere [20] and were updated in 2005 [21]. In this
paper, we focus on the government providers of routine
outpatient care in order to assess treatment burdens within
this sector, although the techniques presented can be
extended to include georeferenced facilities within any given
sector. Government health facilities at the district level are
structured according to the levels of service they provide,
with the most sophisticated being the general hospitals
supporting a network of health centres that in turn act as
referral points from dispensaries at the periphery.

Space–Time Geostatistics
A straightforward technique for predicting national MC

totals using incomplete data is to scale up the tally of cases
from available records in proportion to the number of
missing data. This simplistic approach neglects any hetero-
geneity in the pattern of MC through space and time across
the country. A more sophisticated approach is to predict each
missing record individually from existing data. In the
presence of spatial and temporal heterogeneity in MC, it is
intuitive to allow data that are proximate to the record being
predicted to have more influence on its prediction than those
that are distant. In a traditional geostatistical approach
[22,23], the nature of spatial heterogeneity in the variable of
interest is modelled explicitly using a variogram function that
relates dissimilarity (quantified using semivariance) to spatial
separation (termed lag). This function is then used to
determine optimal data weightings in an interpolation
exercise such as ordinary kriging, which predicts missing
values using a weighted linear average of proximate data.
Space–time kriging (STK) is an extension of ordinary kriging
that considers simultaneously spatial and temporal hetero-
geneity and can provide more accurate predictions when the
variable of interest is distributed through time as well as a
space [24–27]. The one-dimensional spatial variogram func-
tion is replaced with a two-dimensional space–time vario-
gram, and the kriging algorithms are adapted to make
predictions using spatially and temporally proximate data
(Protocol S1).

Model Development
We used STK to predict MC values at facilities where

monthly records were missing. The accuracy of geostatistical
predictions is greatly influenced by the amount of spatial
correlation present in the variable of interest, that is, the
extent to which values vary smoothly through space. The
spatial structure of MC values at different facilities is
confounded by facility-specific factors such as their type,
catchment population size, and utilisation. These factors are
not constrained spatially in the same way as malaria risks and
may vary widely between facilities, regardless of their spatial
proximity. To increase the predictive accuracy of STK it was
necessary to increase the spatial correlation of the predicted
variable by standardising MC by these facility-specific factors.
This standardisation was achieved by dividing each monthly
MC value by the mean monthly TC (MMTC) at each facility.
MMTC was used as a proxy measure of facility catchment
populations, reflecting broad utilization rates driven by the
facility type and catchment population densities.
The modelling framework therefore consisted of several

components (Figure 1). A completed set of TC values was
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required for each facility (i.e., 84 continuous months) in order
to estimate MMTC. This set was provided by a separate STK
procedure that predicted missing TC values, *TC (where the
asterisk denotes a prediction), using the existing data. The
mean of the combined set of TC data and *TC predictions for
each facility, *MMTC, was then calculated. *MMTC was
considered a more reliable proxy of catchment population
than individual monthly TC values, representing a 7-y average
less susceptible to both prediction bias and short-term
fluctuations in utilisation. The monthly MC data were then
standardised by dividing each by the corresponding *MMTC
value to estimate a new variable, standardised MC (SMC). This
new variable displayed a greater amount of spatial correla-
tion than the raw MC data. SMC data were then used in a
second STK exercise to predict *SMC at all missing points.
These predictions were then back-transformed to *MC by
multiplication by the relevant *MMTC value. Details of the
methodological steps involved in the STK exercises to predict
*TC and *SMC are detailed in Protocol S1.

The above modelling framework resulted in predictions of
MC at all facilities and for all months for which data were
missing. In combination with the original data, this set
represented a complete picture of the treatment burden for
presumed malaria at all facilities for all months. This set
could be aggregated to provide treatment burdens at any
spatial level from the individual facility through to the
district, provincial, and national levels for the 7-y period.
Further, averaging could be applied to estimate values for any
month or year in the set.

Model Testing
A validation procedure was carried out to test the

performance of the model in terms of the accuracy of
predictions of MC at different levels of spatial and temporal
aggregation. A test set of 6,349 monthly records (representing
a 10% sample) was selected from the full dataset using a
stratified random sampling that ensured representative
proportions of each facility type. The test set was removed
from the database, and the STK modelling procedure was
repeated in its entirety using the remaining 90% of data to

predict MC values for the test set. The resulting predictions
were then compared to the reference values to provide a set
of known prediction errors that could be considered a sample
of the (unknown) errors of the main prediction exercise.
The total prediction error for the test set was calculated,

along with the mean and standard deviation error nationwide
at the level of individual facility-months. A series of subsets
was then created from the test set by aggregating records
together over space–time units (district-months, district-
years, province-months, province-years, and so on), and the
magnitude of errors was compared between subsets. The
variance of these errors was found to decrease in inverse
proportion to the number of records aggregated together in
each subset (Figure S1). This relationship was then used, along
with the sample errors, to estimate the total prediction error
and associated variance in each space–time unit. Monte Carlo
simulation was used to estimate the combined distribution of
total prediction errors for all space–time units in each
aggregation level. This procedure resulted in, for example,
estimates of the range (expressed as a 95% confidence
interval) of percentage errors that could be expected for
predictions of total MC for all facilities in a district over a
month, all facilities in a province over a year, and so on.

Results

Data Coverage
A total of 2,165 government facilities were identified

through consultation with district health management teams
and other service providers ([20,21]; A. M. Noor and P. W.
Gikandi, unpublished data). It was possible to generate a
longitude and latitude from various sources for over 92% of
these facilities [21]. These included 129 hospitals, 474 health
centres, and 1,399 dispensaries (Table 1). The importance of
establishing a comprehensive database was demonstrated by
the identification in the above exercise of an additional 400
government facilities that were not included in the central
HMIS database. A total of 163 facilities were included in this
study that could not be georeferenced. Missing MC values for
these facilities were estimated using the local district mean
for that month.

Reporting Rate
Underreporting was found to be widespread, although

there was considerable variation spatially and temporally
(Figure 2) and between facility types (Table 1). No facilities
reported in all 84 mo, whilst 546 facilities (25%) did not
report in any month. A complete 84-mo dataset for each of
the 2,165 facilities would consist of 181,860 facility-months.
There were 63,642 records, representing an overall reporting
rate of 35%. The overall reporting rate varied both within
and between years, with a minimum of 6% in December 1997
(this coincided with a nationwide industrial dispute by
nurses) and a maximum of 44% in February 1996. The
reporting rate also displayed a seasonal pattern, with
generally more facilities reporting during the first three
quarters of each year (36%) than in the last quarter (31%).
A total of 18.67 million cases of presumed malaria were

reported, with a mean of 293.4 cases per facility-month. The
totals (means) were 3.36 million (716.9) for hospitals, 6.05
million (323.4) for health centres, and 9.26 million (230.2) for
dispensaries.

Figure 1. Schematic Diagram of the Modelling Framework

Four stages were used to predict the count of outpatients treated for
malaria (MC) for each facility-month with missing data: (1) MMTC was
estimated for each facility using both existing and predicted values of TC;
(2) existing MC data at each facility were standardised by the
corresponding MMTC value to create SMC values; (3) STK was used to
predict all missing values of SMC; and (4) MMTC values were used to
back-transform the predicted SMC values in order to obtain final
predictions of MC.
DOI: 10.1371/journal.pmed.0030271.g001
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Prediction of Treatment Burdens
The mean annual total of presumed malaria cases (i.e., the

combined total of data plus predictions) at all government
facilities between 1996 and 2002 was 6.79 million cases, with a
mean of 261.5 cases per facility-month (Table 2). The
corresponding values for each facility type were 1.11 million
for hospitals, 1.74 million for health centres, and 3.95 million
for dispensaries, with means of 716.0, 300.3, and 211.8 cases
per facility-month, respectively. Mean annual totals for each
district (Figure 3) displayed a pattern of spatial heterogeneity
that corresponded broadly to a combination of malaria
ecology [17,28], population distribution [29], and facility
locations [20].

Model Testing
Comparison of data with predictions for 6,349 randomly

selected MC data points in the test set yielded mean
prediction errors for hospitals, health centres, and dispensa-
ries of 58.2,�8.8, and�4.7 cases per facility-month. The true
and predicted sums of the entire national test set were

1,899,234 and 1,891,136, respectively, representing an overall
prediction error of �0.4%.
The predictive accuracy of the model increased as

predictions were made over larger aggregated space–time
units (Table 3). It was estimated that 95% of MC totals for
district-months would be predicted to within 35.3% of the
true value and that three-quarters would be predicted to
within 15.1%. The equivalent errors for predictions of annual
totals at the provincial level were 12.2% and 5.5% and at the
national level were �1.3% and �0.9%.

Discussion

Between 1996 and 2002 the Kenyan HMIS contained only
35% of the expected monthly records from government
clinics providing outpatient care nationwide. This seriously
limits the direct use of these data for planning health service
needs, including staffing and disease-specific commodities
such as anti-malarial drugs. Inadequate spatial and temporal
coverage of information is compounded by a lack of

Table 1. Summary of Government Health Facilities in Kenya and Their Reporting Behaviour during the 84-mo Study Period January
1996 to December 2002

Characteristic Subcategory Facility Type

Hospitals Health Centres Dispensaries All

Number of facilities in upgraded Ministry of Health list Total 129 482 1,554 2,165

Georeferenced 129 (100.0%) 474 (98.3%) 1,399 (90.0%) 2,002 (92.5%)

Facility reporting rate (percent of months reported) 100% 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

.75% to 100% 19 (14.7%) 74 (15.4%) 154 (9.9%) 247 (11.4%)

.50% to 75% 31 (24.0%) 164 (34.0%) 322 (20.7%) 517 (23.9%)

.25% to 50% 45 (34.9%) 132 (27.4%) 299 (19.2%) 476 (22.0%)

.0% to 25% 24 (18.6%) 59 (12.2%) 296 (19.0%) 379 (17.5%)

0% 10 (7.8%) 53 (11.0%) 483 (31.1%) 546 (25.2%)

Overall reporting Records expected 10,836 40,488 130,536 181,860

Records present 4,680 (43.19%) 18,719 (46.23%) 40,243 (30.83%) 63,642 (35.00%)

The original list of facilities held by the Ministry of Health was incomplete, and an exercise was undertaken to update this list and to provide georeferencing coordinates for facilities where
possible [20,21]. Facilities are shown disaggregated by type, georeferencing status, and reporting rate. The expected and actual number of monthly records are also given for each facility type.
DOI: 10.1371/journal.pmed.0030271.t001

Figure 2. Percentage of Government Health Facilities in Each Kenyan District (Fourth Level Administrative Unit) Submitting a Monthly Outpatient

Morbidity Report to the HMIS

The 2 mo shown are (A) the most complete (February 1996) and (B) the least complete (December 1997) during the 84-mo study period January 1996–
December 2002.
DOI: 10.1371/journal.pmed.0030271.g002
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information on precisely where service providers are located:
only 82% of government health facilities were included in the
national HMIS database. We have recently upgraded the
Ministry of Health’s service provider lists and have provided
spatial coordinates for each health facility, and in this paper
we provide a geostatistical model to improve the interpreta-
tion of incomplete data of presumed malaria cases reported
to the centralised national HMIS database.

Our model accurately predicts national annual treatment
burdens for presumed outpatient malaria within the govern-
ment sector with an estimated margin of error of 1.3% and a
predicted average of 6.8 million cases per annum over the
period of observation. This demonstrates a tangible improve-
ment over the more traditional approach of simply multi-
plying nationally available data by a proportion of
underreporting, which results in a crude estimate of 7.6
million cases. The incidence of malaria and the proportion of
individuals with the illness who seek treatment have large
spatial and temporal heterogeneity, and failing to account for
this heterogeneity leads inevitably to a distortion in estimates
of national treatment burden. STK is a method used in
atmospheric [30,31] and earth sciences [24,32] that we have
adapted for use in our models. It is likely to provide a more
precise estimation of national treatment burdens for pre-
sumed malaria at outpatient clinics, consequently allowing a

more realistic approximation of treatment requirements,
including new expensive anti-malarials, in this sector.
One prerequisite for STK that might limit wider applica-

tion outside Kenya is that a ministry of health must have a
spatially referenced map of its service providers. In Kenya,
this has been made possible by the development of a
geographic information system, which is applied in this
paper—to our knowledge for the first time in Africa—to
national HMIS data. Rather than thinking of this as a
limitation to the generalisability of our approach outside
Kenya, we would argue that knowing where service providers
are located is a must for any health planning agency and that
geographic information system frameworks for health serv-
ices should be developed everywhere.
The predictive power of the proposed model decreases as

predictions are required at finer spatial and temporal
resolutions. Although under- and overpredictions tended to
balance out when areas are aggregated, errors at individual
facilities were substantial in places. Thus, different models
with additional parameters, including facility drainage,
facility characteristics, and competition between facilities,
are likely to be required to estimate incomplete data at this
level [33–35]. Nevertheless, the model probably performs with
a margin of accuracy acceptable for health service planning
at provincial and district levels, allowing for sub-national
setting of priorities and resources.
The model development and results presented in this study

raise several important questions that require further
attention. The current lag time between data being generated
(patients treated at a facility) and nationwide HMIS data
being available for analysis is approximately 2 y. If predic-
tions of treatment burden are to be made current, then the
modelling framework must be extended to enable predictions
at times with no contemporary data. A possible approach is to
integrate the nationwide HMIS data with data from a much
smaller number of ‘‘sentinel’’ facilities, where systems are put
in place to obtain reliable data on a month-by-month basis,
and to use these up-to-date data to inform the prediction
from the full dataset. A second question is how many of these
sentinel facility sites would be needed to achieve this purpose
with an acceptable level of accuracy, and how their locations
might be chosen so as to optimise their utility.
The Kenyan HMIS is typical of those found in many sub-

Saharan African countries. Complex national health surveil-
lance systems require substantial financial support and a
motivated workforce within the health sector. In many

Figure 3. Number of Outpatients Treated for Malaria at Government

Facilities

Predicted mean annual totals for each district for the period 1996–2002.
Values represent the combined sum of existing and predicted values.
DOI: 10.1371/journal.pmed.0030271.g003

Table 3. Expected Percentage Errors (95% Confidence Intervals)
in Predictions of Total Outpatients Treated for Malaria over
Different Levels of Spatial and Temporal Aggregation

Spatial Aggregation Temporal Aggregation

Month Year

District �32.72% to 35.31% �15.71% to 21.25%

Province �15.78% to 20.36% �5.65% to 12.19%

National �3.73% to 2.98% �1.25% to 0.58%

Errors were calculated from a validation exercise in which 6,349 monthly records (10%)
were removed from the dataset and predicted using the remaining 90%.
DOI: 10.1371/journal.pmed.0030271.t003

Table 2. Predicted Mean Annual Counts of Outpatients Treated
for Malaria at All Kenyan Government Hospitals, Health Centres,
and Dispensaries for the Period 1996–2002

Facility Type Data Predictions Combined Total

Dispensaries 1,323,271 2,625,968 3,949,239

Health centres 864,945 872,214 1,737,159

Hospitals 479,331 628,992 1,108,324

All 2,667,547 4,127,175 6,794,722

Totals are given for data, predictions, and the combined total.
DOI: 10.1371/journal.pmed.0030271.t002
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resource-poor countries, ministries of health may be con-
fronted with decisions between, say, buying drugs and
printing HMIS forms. The quality of Kenya’s HMIS is a
symptom of an underfunded government sector. There is an
urgent need to upgrade HMIS across Africa to provide
reliable and timely data that are absolutely critical to
planning and monitoring health service provision for
disease-specific priorities [3,14,36,37]. In the short term, we
believe that the utility of even grossly incomplete HMIS data
for planning national and sub-national needs can be greatly
enhanced using appropriate statistical models.

Supporting Information

Figure S1. Empirical Relationship between the Size of Subsets of the
Test Dataset and the Standard Deviation of Their Mean Prediction
Errors

Subsets of different sizes n were created from the test set by
aggregating across space (by district, province, and nationally) and
through time (by month and year), and the mean prediction error le

of each subset was calculated. These subsets were then placed in bins
according to their size n, and the standard deviation of the mean
errors in each bin, r(le), was calculated. The x-axis position of each
point represents the mean subset size in that bin. The theoretical
relationship rðleÞ ¼ r=

ffiffiffi

n
p

is shown (line). The purpose of the
exercise was to validate the use of this equation as a model for the
effect of aggregation on the variance of prediction error.

Found at DOI: 10.1371/journal.pmed.0030271.sg001 (142 KB EPS).

Protocol S1. Space–Time Kriging

Found at DOI: 10.1371/journal.pmed.0030271.sd001 (27 KB DOC).
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Editors’ Summary

Background. In order to allocate health-care resources (such as doctors,
nurses, hospital beds, and drugs), public health officials need to know
when and where in their country people are getting sick with which
diseases. In most African countries, a country-wide health management
information system (HMIS) compiles records about how many patients
are being diagnosed with and treated for certain diseases. The actual
data are meant to be collected and reported monthly by the individual
health-care facilities. The HMIS compiles and analyzes these records,
giving a picture of which patients are being treated across districts,
regions, and the entire country. Ideally, all facilities report their data
promptly and comprehensively every month. This allows the construc-
tion of a matrix that shows which treatments are used across the country
through space (where) and time (when). However, many of the facilities
operate under difficult circumstances, and keeping detailed records and
reporting them every month is not always at the top of the priority list.
As a result, data from many of the facilities are missing for any given
month, and the overall national picture is inevitably incomplete.

Why Was This Study Done? Almost any survey has to deal with some
missing data, and there are various methods to estimate this missing
data. Such estimates get harder the more data are missing. When it
comes to reports on using health services in Africa, often more than half
of the data are missing for a given month. Using sophisticated statistical
methods instead of crude estimates is likely to make a big difference
when such a big part of the data is missing. The researchers who did this
study have adopted a statistical method called kriging to estimate
missing data on health service usage. Kriging was originally developed in
the earth sciences (such as geology and soil science) for estimating
mineral concentrations at locations where no sampling had been done.
This study was done to see whether kriging could be used to estimate
the missing data on malaria cases in the Kenyan public health system. A
better estimate of the missing data would be helpful for allocating
malaria treatments to the right places.

What Did the Researchers Do and Find? They obtained the monthly
records of diagnoses made at outpatient departments of 2,165 health
facilities across Kenya for an 84-month period from January 1996 to
December 2002. The records included the number of outpatients and
their diagnoses. The researchers chose to focus on malaria, for three
reasons: (1) malaria is common (accounting for over one-third of the
overall diagnoses in Kenya), (2) there is great variation in where and
when it occurs across Kenya, and (3) donors are willing to provide
additional support for malaria treatment and prevention but require
documentation that such help is needed and reaches patients. The
numbers of people diagnosed with malaria at each facility for a given
month were matched to an independent database that contains
information on where every health-care facility is located. Reporting
rates varied from month to month and facility to facility, but the overall

reporting rate was only 35%, with 25% of the facilities never reporting.
The authors then adopted a version of kriging called space–time kriging
to fill in missing data (space–time kriging assumes that for a given month
a facility that didn’t report is likely to be similar to its neighbors, and
likely to be more similar to its own and its neighbors’ recent numbers
than to those further removed in space or time). The calculations
resulted in a number of estimates. To test whether these estimates were
accurate, the researchers randomly removed a test set of 10% of the
monthly records from the full dataset and repeated the estimates based
on the remaining 90% of reports. They found that the real and predicted
cases across the country differed by less than 1%. At the district level
(which is arguably the most useful for most planning purposes), the
researchers found that their method can estimate 95% of the malaria
cases within 35% of the true value. For 75% of the districts the estimates
would be within 15% of the actual numbers.

What Do These Findings Mean? In this case, space–time kriging
provided a more precise estimate of missing data on diagnoses at the
district and provincial levels than other estimates. This is likely to be true
not just for malaria but for other diagnoses for which the number and
the proportion of patients who have the disease and seek treatment vary
by place and time of year. One caveat is that space–time kriging requires
a detailed map of where exactly a country’s health-care facilities are
located. A database based on such a map existed for Kenya (and was
used in this study) but doesn’t exist in all countries that might benefit
from a method like the one described here. The authors argue that
knowledge about where health services are located is a must for any
health planning agency, and that databases with that information should
be developed everywhere.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0030271.
� Wikipedia’s page on kriging (Wikipedia is a free Internet encyclopedia

that anyone can edit)
� Description of, and access to, a publication entitled ‘‘Developing

Health Management Information Systems: A Guide for Developing
Countries’’ from the World Health Organization
� The Health Metrics Network, a global collaboration focused on

strengthening health information systems
� The Roll Back Malaria Global Partnership, a multilateral initiative with

the stated goal of halving the burden of malaria by 2010
� The Partnership in Statistics for Development in the 21st Century

Description, a global initiative to promote a culture of evidence-based
policymaking and monitoring
� The Kenyan Ministry of Health
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