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More than 1 million women 
worldwide develop breast 
cancer every year [1]. For 

many of them, surgical removal of 
the breast remains the fi rst line of 
treatment for this potentially deadly 
disease. Because breast cancer cells 
spread via lymph vessels, at the time 
that the breast is resected, locally 
involved lymph nodes in the armpit 
and part of the axillary lymphatic 
network are usually also removed. 
Consequently, normal drainage of 
lymph is often interrupted, causing 
swelling of the affected arm due to 
lymph accumulation—a condition 
termed lymphedema. Acquired 
lymphedema in humans may also result 
from irradiation, trauma, or (parasitic) 
infection. 

While the swelling causes discomfort 
and disability, an even greater health 
threat lies hidden in the structural 
and functional changes inside the 
chronically lymphedemic tissue. 
Adipocytes, keratinocytes, and 
fi broblasts accumulate, transforming 
the initially soft swollen tissue 
into a hard fi brotic mass with fatty 
degeneration and a stiff, thickened skin 
[2–4]. In addition, there is reduced 
traffi cking of antigen-presenting and 
other immune cells to the lymph 
nodes, and so these cells are less likely 
to be able to perform their immune 
surveillance function to defend the host 
against foreign antigens. As a result, 
the tissues affected by lymphedema 
are prone to persistent infl ammation 
and infection [2,4]. The increased 
interstitial tissue pressure may collapse 
the veins, further aggravating the 
condition and in severe cases even 
necessitating amputation. 

Almost unimaginably, close to 
400 years after the discovery of 
lymph vessels, there is still no cure 
for lymphedema, and current 

medical practice still relies on 
ancient procedures, such as manual 
lymph drainage via massage. A 
better knowledge of the molecular 
cues underlying the abnormalities 
that characterize the infl ammatory 
tissue response to lymph stagnation 
is thus urgently needed to provide 
novel perspectives for lymphedema 
treatment. However, research progress 
in the fi eld has been hampered by 
the lack of suitable experimental 

animal models. The new mouse model 
of acquired lymphatic insuffi ciency 
reported by Tabibiazar et al. in PLoS 
Medicine [5] may help to overcome 
some of these obstacles.

The New Mouse Model

How did the authors develop and 
characterize the model? Microsurgical 
ablation of the lymph vessels in 
the tail of the mouse resulted in 
lymph stagnation, lymph vessel 
dilation (with a marked increase 
in tail volume), accumulation of 
fi broblasts, fat, and skin cells, impaired 
clearance of immune cells from the 
tail, and profound accumulation 
of infl ammatory cells. This novel 
model thus closely recapitulates 
several hallmark features of acquired 
lymphedema in humans. 

The model also differs from the 
human disease in certain aspects, 
however. For instance, a mouse 
tail lacks lymph nodes, which may 
play a critical role in fostering the 
immune response and infl ammation 
in the edematous tissue in human 
lymphedema [6]. It remains to be 
assessed whether the absence of lymph 
nodes infl uences the tissue response 
to lymph stasis in the mouse tail. The 

hydrodynamic and cellular mechanisms 
and the rate of lymph drainage in a 
horizontally positioned mouse tail also 
differ from those in a supine human 
limb, in which positional changes and 
muscle contractions determine lymph 
drainage [7]. It is unclear to what 
extent these differences infl uence the 
disease course and severity. Moreover, 
it will be interesting to characterize the 
long-term chronic structural changes in 
the lymphedemic mouse tail. 

Interestingly, not only were lymph 
vessels dilated in the mouse tail model, 
but there were also 10-fold more 
lymphatic vessels in the lymphedemic 
tail than in control tails. It remains 
to be determined whether this 
increase in the number of lymphatic 
vessels in the lymphedemic tissue is a 
peculiarity of the mouse tail model, 
as very little information about 
lymphatic hyperplasia in humans 
with lymphedema is available. While 
the precise reason for this increased 
lymphatic vessel density remains 
unclear, it is conceivable that the large 
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accumulation of infl ammatory cells and 
the release of infl ammatory cytokines 
may have stimulated lymphangiogenesis 
[8,9]. Another unresolved issue is to 
what extent infl ammatory cells are 
merely trapped in the edematous 
tissue as silent bystanders or, instead, 
actively determine disease progression. 
The role of infl ammation in the 
tissue response to lymphedema in this 
mouse model could be readily tested 
by using immunocompromised mice 
or knockout mice lacking specifi c 
infl ammatory mediators, or by treating 
mice with anti-infl ammatory agents. 

Comparison with Previous Models

To what extent does this new model 
differ from existing ones? Is the new 
model any better? 

Several models of lymphedema 
have been previously developed. Some 
were developed via surgical ablation 
or irradiation of the lymphatics in 
the rabbit ear or mouse tail [10–13], 
others via inactivation or mutation of 
lymphangiogenic genes in mice, such 
as the Chy mice carrying a heterozygous 
Vegfr3 mutation [14]. These models 
have been generally used to study the 
physiological regulation of lymph fl ow 
and to assess the therapeutic potential 
of VEGF-C to stimulate lymphatic 
revascularization.

However, apart from the Prox1+/− 
mouse, which accumulates fat as a 
consequence of lymphatic vascular 
leakage [15], none of these models 
has been used to study the chronic 
secondary tissue changes in response to 
lymphedema. Thus, unlike the previous 
models, Tabibiazar and colleagues’ new 
mouse model of acquired lymphedema, 
in combination with powerful mouse 
genetics, offers exciting opportunities 
to dissect the molecular basis of the 
response to lymphedema. In addition, 
this new model should be valuable to 

evaluate the therapeutic potential of 
novel anti-lymphedema drugs. 

Clinical Implications

One of the reasons why treatment of 
lymphedema is still in its infancy relates 
to our lack of understanding of the 
changes induced by lymph stagnation. 
Previous studies primarily focused on 
identifying the gene programs switched 
on in lymphatic endothelial cells in 
response to lymphangiogenic stimuli 
[16,17]. However, more cell types 
participate in the complex response to 
lymph stasis than lymphatic endothelial 
cells alone. For instance, chyle itself 
stimulates adipogenesis [15], and it 
is conceivable that yet unidentifi ed 
chemokines and growth factors 
in lymph affect other cell types in 
edematous tissues as well. 

As Tabibiazar et al. show, their 
new model provides opportunities 
to identify sets of genes previously 
unsuspected to be involved in acquired 
lymphedema. Their current analysis 
has already identifi ed genes regulating 
infl ammation, immunity, complement 
activation, fi brosis, oxidative stress, and 
angiogenesis. Obviously, the functional 
signifi cance of the current gene profi le 
will need to be further validated. 
Other small animal models, such as 
the recently generated Xenopus laevis 
tadpole model of lymphangiogenesis, 
may accelerate the functional screening 
of such candidates [18]. Overall, 
the new mouse model of acquired 
lymphedema promises to increase 
our understanding of this largely 
unexplained disease, and hopefully 
accelerate the development and testing 
of new treatments for this devastating 
disorder. �
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