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ABSTRACT

Background

The a-thalassaemias are the commonest genetic disorders of humans. It is generally believed
that this high frequency reflects selection through a survival advantage against death from
malaria; nevertheless, the epidemiological description of the relationships between o-
thalassaemia, malaria, and other common causes of child mortality remains incomplete.

Methods and Findings

We studied the o-thalassaemia-specific incidence of malaria and other common childhood
diseases in two cohorts of children living on the coast of Kenya. We found no associations
between of-thalassaemia and the prevalence of symptomless Plasmodium falciparum
parasitaemia, the incidence of uncomplicated P. falciparum disease, or parasite densities
during mild or severe malaria episodes. However, we found significant negative associations
between o-thalassaemia and the incidence rates of severe malaria and severe anaemia
(haemoglobin concentration < 50 g/l). The strongest associations were for severe malaria
anaemia (> 10,000 P. falciparum parasites/ul) and severe nonmalaria anaemia; the incidence
rate ratios and 95% confidence intervals (Cls) for of-thalassaemia heterozygotes and
homozygotes combined compared to normal children were, for severe malaria anaemia, 0.33
(95% Cl, 0.15,0.73; p = 0.006), and for severe nonmalaria anaemia, 0.26 (95% Cl, 0.09,0.77; p =
0.015).

Conclusions

Our observations suggest, first that selection for a'-thalassaemia might be mediated by a
specific effect against severe anaemia, an observation that may lead to fresh insights into the
aetiology of this important condition. Second, although o'-thalassaemia is strongly protective
against severe and fatal malaria, its effects are not detectable at the level of any other malaria
outcome; this result provides a cautionary example for studies aimed at testing malaria
interventions or identifying new malaria-protective genes.
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Introduction

Although malaria causes more than 200 million episodes of
fever among young African children every year, fewer than
1% of these episodes are fatal [1,2]. The reasons that some
children die, whereas most survive are complex and poorly
understood; however, one approach that may help to under-
stand this process more fully is to study the effects of natural
host malaria-resistance factors.

The o'-thalassaemias are some of the best-recognised
malaria-protective polymorphisms [3], having risen to such
high frequencies in many populations (as high as 80%) that
they are now considered the commonest monogenic disor-
ders of humans [4]. Nevertheless, both the mechanisms of
protection and their specificity for malaria remain unknown.
We recently described the effect of of-thalassaemia on the
prevalence, incidence, and density of P. falciparum infections
in children living in a malaria-endemic area on the coast of
Kenya, and showed that these effects may be attenuated when
coinherited with the sickle cell trait [5]. In the current article
we aimed to further describe the effects of o' -thalassaemia on
the subtypes of severe falciparum malaria and on the
incidence of other childhood illnesses.

Methods

Mild Disease Cohort

The mild disease cohort study has been described in detail
previously [5-7]. Briefly, participants were recruited from an
age-stratified population sample and monitored subsequently
by active weekly surveillance for clinical events from
September 1998 until August 2001. Intercurrent clinical
events were monitored through a dedicated research out-
patient clinic. Children born into study households were
recruited at birth, and participants exited if informed
consent was withdrawn, if they moved away for more than 2
months, or if they died. In addition, we conducted four cross-
sectional surveys, in March, July, and October 2000 and in
June 2001, to assess the prevalence of P. falciparum parasites.
This analysis is limited to 301 children who were under 5y old
for more than 1 wk during the study period, and on whom full
data were available on both o'-thalassaemia genotype and
haemoglobin (Hb) S phenotype.

Birth Cohort

The design and conduct of the birth cohort study has also
been described in detail previously [8-10]. Briefly, between
May 1992 and April 1995 we recruited all children born
within a defined rural study area to the north of our research
unit, a larger part of the same geographic area in which the
mild disease cohort study was conducted, into a fixed birth
cohort. We recorded all admissions to the paediatric wards at
Kilifi District Hospital (the closest hospital facility to the
study area) from participants of this cohort until December
1997. Although routine blood sampling was not a part of the
original design, between May and October 2000 we succeeded
in identifying 2,695 resident surviving members of this cohort
and invited them to provide a blood sample for haemato-
logical typing. Full typing for both HbS and o-thalassaemia
was completed on 2,104 children.

Clinical Definitions
Throughout both studies, trained clinicians assessed all
participants as they presented, and collected clinical data
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onto standard proformas. Although we recorded up to three
diagnoses on each child, our current analysis is limited to
primary or secondary diagnoses.

In the mild disease cohort study, we defined symptomless
parasitaemia on the basis of a slide positive for P. falciparum
malaria in the absence of fever or other symptoms of clinical
illness. We used two definitions for clinical malaria. Defi-
nition 1 included fever (axillary temperature > 37.5 °C) in
conjunction with a slide positive for blood stage asexual P.

falciparum parasites at any density at all ages. Definition 2 was

fever in conjunction with a positive slide at any density in
children under 1y old or at a density of 2,500 parasites/pl in
children over 1 y old. Definition 2, which was derived by
multiple logistic regression as described previously [6],
accorded with a sensitivity and specificity for clinical malaria
of greater than 85% in the population as a whole; however,
because we have no data that allow us to confirm that these
definitions remain appropriate for children with o"-thalas-
saemia, we have reported our analyses based on both this
definition and the more inclusive definition 1.

Malaria was considered the primary diagnosis on hospital
admission if P. falciparum parasites were found in the
peripheral blood and other likely causes for clinical presenta-
tion could be excluded. Based on reference [11] with some
modifications, we used the following definitions to describe
severe malaria: (1) cerebral malaria, which included coma (the
inability to localize a painful stimulus, assessed more than 1 h
after a seizure or after the administration of anticonvulsants,
and following correction of hypoglycaemia) or prostration
(the inability to breast feed or sit without assistance); (2)
multiple seizures, which included two or more seizures within
24 h of admission; and (3) hyperparasitaemia, a parasite
density at which over 20% of red cells were infected.

We used two different definitions for severe malaria
anaemia (SMA): (1) definition 1, which accorded with that
used by the WHO [11]—a haemoglobin under 50 g/l in
association with a parasite density of more than 10,000/ul, and
(2) definition 2—a haemoglobin under 50 g/l, in association
with a parasitaemia of any density. We defined severe
nonmalaria anaemia as haemoglobin below 5.0 g/dl in the
presence of a negative malaria blood smear. Upper respira-
tory tract infection, lower respiratory tract infection, gastro-
enteritis, and helminth and skin infection were defined as
described previously [12]. In the mild disease cohort study,
slide-negative fever was defined as a temperature higher than
37.5 °C, in the presence of a negative malaria slide, in a
participant who had not received treatment with an
antimalarial drug within the preceding 21 d. This definition
took no account of the primary or secondary diagnosis, and
therefore encapsulated febrile episodes from a range of
nonmalaria causes. Fever of unknown cause was a diagnosis of
exclusion, allocated to children with a negative malaria slide
and no obvious explanation for their fever.

Laboratory Procedures

Blood smears were examined for malaria parasites using
standard methods. Parasite densities were recorded as a ratio
of parasites to white blood cells, and densities (parasites/pl of
whole blood) were calculated with reference to the white cell
count if available, or by assuming a count of 8 X 10%/ul if not.
Haemoglobin types (HbA, HbS) were characterized by
electrophoresis using cellulose acetate gels (Helena Labora-
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tories, Beaumont, Texas, United States), while participants
were typed for the common African 3.7-kb o-globin deletion
by PCR as described previously [13,14] to assign them
thalassaemia genotypes. On the basis of previous work, we
have found no evidence of B-thalassaemia in the population
under study [15,16]; further f-globin typing was not therefore
conducted in these cohorts. Full blood counts were con-
ducted using an automated cell counter (MDII; Beckman
Coulter, Fullerton, California, United States) by standard
methods.

Statistical Analysis

We estimated the effects of categorical variables on disease
outcomes through the calculation of odds ratios by both
univariate and multivariate logistic regression. Continuous
data were compared by linear regression. Variables that were
not normally distributed were log-transformed prior to
analysis. We estimated the effect of explanatory variables on
the incidence of malaria and other diseases using Poisson
regression. We used the Wald or likelihood ratio tests, as
appropriate, to test for interactions between explanatory
variables, and included interaction terms in our final models
where significant evidence was found. Where a single
individual contributed more than one data point, we took
account of potential within-patient clustering of events using
the sandwich estimator (as described by Armitage and
colleagues [17]), which inflates confidence intervals and
adjusts significance values as appropriate. All analyses were
conducted using STATA v 8.0 (Timberlake, London, United
Kingdom).

Ethical permission for both studies was granted by the
Kenya Medical Research Institute National Ethical Review
Committee. Individual written informed consent was pro-
vided by all study participants or their parents.

Results

In the mild disease cohort study, 4,296 clinic visits were
made by 382 participants during 520.39 child years of follow-
up (cyfu). Of these participants, 96 (25.1%) were of normal
o'-thalassaemia genotype (aooo), 149 (39%) were hetero-
zygotes (—ofoar), and 56 (14.7%) were homozygotes (—o/—o). An
additional 81 children (21.2%) participated in the study, but
no samples were available for genotyping for them. These
children were therefore excluded from the current analysis.
Of the 301 participants with o-thalassaemia genotypes
available, 39 (13%) were heterozygotes for Hb type (i.e,
HDbAS). The mean age (standard deviation [SD]) of partic-
ipants during the period of study was 2.38 (1.50) y. The
following seven diagnoses accounted for over 90% of
consultations: malaria (by definition 1) (942/4,296 [27%]),
upper respiratory tract infection (1,190 [28%]), lower
respiratory infection (499 [12%]), gastroenteritis (490
[11%]7), skin infection (478 [11%]), fever of unknown cause
(135 [3%]), and helminth infection (199 [3%]). Consultations
with other diagnoses and hospital admission events were too
few to permit meaningful between-genotype comparisons.

In the birth cohort study, a total of 876 admissions were
recorded among 2,104 participants during 8,181 cyfu. Of this
cohort, 739 (35%) participants were of normal o"-thalassae-
mia genotype, 1,017 (48%) were heterozygotes, and 348 (17%)
were homozygotes. Of the 2,104 participants, 309 (15%) were
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Hb type heterozygotes, HbAS. The mean duration (SD) of
follow-up of children contributing data to this analysis was
3.89 (1.02) y. Between them, malaria (434/876 [50%]), lower
respiratory tract infections (236 [27%]), and gastroenteritis
(68 [8%]) accounted for 85% of all admissions. Amongst the
children admitted with malaria, 146/434 (34 %) showed one or
more signs of severity (as defined above). Of these episodes
60/146 (41%) could be defined according to one of two
categories, cerebral malaria or severe malaria anaemia. The
number of participants admitted with other diagnoses or
malaria syndromes were too few to allow for meaningful
comparisons.

o-Thalassaemia and the Risk of Malaria

We found no evidence for any effect of o'-thalassaemia on
the prevalence of symptomless parasitaemia. During the four
cross-sectional surveys combined, the prevalence was 59/320
(18.4%) in normal children, 100/543 (18.4%) in heterozygotes
and 23/171 (13.5%) in those with homozygous ot-thalassae-
mia, giving adjusted odds ratios for parasitaemia of 0.92 (95%
CL 0.62,1.38; p = 0.695) and 0.71 (0.37,1.39; p = 0.367) for
heterozygotes and homozygotes, respectively, compared to
normal children. Similarly, although the incidence of
uncomplicated malaria (by either definition) was lower in
both heterozygotes and homozygotes for o'-thalassaemia
than in normal participants involved in the mild disease
cohort study, these differences were not significant either
individually (Table 1) or for both o"-thalassaemia genotypes
combined (incidence rate ratio [IRR] for definition 1, 0.83
[95% CI, 0.63,1.11; p = 0.206], and for definition 2, 0.90
[0.67,1.21; p = 0.471]). Nevertheless, o'-thalassaemia was
associated with significant reductions in the rate of admission
to hospital with malaria and severe malaria measured
through the birth cohort study. Homozygotes were admitted
to hospital with malaria, with or without signs of severity,
significantly less frequently than normal children (Table 2).
Similarly, heterozygotes were admitted significantly less
frequently with severe malaria, cerebral malaria, and severe
malaria anaemia. In the case of both genotypes, the lowest
IRRs were for SMA. Although the incidence of cerebral
malaria was lower in heterozygous than in normal children, of
note, this result was true only when cerebral malaria was
accompanied by anaemia: although numbers were small, we
found no evidence for protection against cerebral malaria
that was not complicated by anaemia. For comparison, the
IRRs for each diagnosis by HbS category are shown in both
Tables 1 and 2.

We found no significant associations between ot-thalassae-
mia genotype and parasite density during incident infections,
either when symptomless (detected through cross-sectional
surveys) or when clinically apparent (detected through either
the mild disease or birth cohort studies) (Figure 1). This
observation was also true after adjustments for age, season,
and location.

Nonmalaria Diseases

With only two exceptions, we found no significant
association between o -thalassaemia genotype and the pres-
ence of clinical syndromes other than malaria (Tables 1 and 2,
Figure 2). First, in the birth cohort study, the incidence of
severe anaemia leading to hospital admission was significantly
lower in heterozygotes than in normal individuals (IRR 0.28
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Table 1. The Incidence of Mild Clinical Malaria and Other Diseases by o-Thalassaemia Genotype

Category Diagnosis Episodes Incidence a-Thalassaemia Haemoglobin®
(Episodes/cyfu)
Genotype IRR (95% Cl) p-Value Genotype IRR (95% Cl) p-Value
All clinic visits 1,473 10.46 0L0L/ 0oL 1
2,096 9.17 —o/ooL 0.89 (0.75,1.05) 0.153 AA 1
727 8.88 —o/—a 0.83 (0.68,1.01) 0.059 AS 0.76 (0.59,0.98) 0.032
Nonmalaria clinic visits Upper respiratory tract infection 382 271 0oL/ 0oL 1
607 2.65 —oi/atoL 0.99 (0.82,1.21) 0.961 AA 1
201 246 —o/—o 0.88 (0.66,1.17) 0.367 AS 0.83 (0.62,1.11) 0.213
Lower respiratory 201 143 0101/ 0oL 1
tract infection
223 0.98 —o/oo 0.76 (0.56,1.02) 0.072 AA 1
75 0.92 —a/—o 0.63 (0.43,0.91) 0.015 AS 0.95 (0.65,1.41) 0.813
Gastroenteritis 168 1.19 010/ 0L0L 1
224 0.98 —ot/oo 0.99 (0.73,1.34) 0.950 AA 1
98 1.20 —o/—o 1.07 (0.73,1.55) 0.734 AS 1.14 (0.73,1.79) 0.557
Skin infection 186 1.32 010/ 0oL 1
214 0.94 —ot/oLoL 0.76 (0.56,1.04) 0.084 AA 1
78 0.75 —o/—o 0.71 (0.48,1.04) 0.076 AS 0.90 (0.59,1.39) 0.645
Fever of unknown cause 59 0.42 010/ 0oL 1
113 0.49 —ot/oLo 1.19 (0.87,1.63) 0.286 AA 1
41 0.50 —a/—o 1.17 (0.72,1.91) 0.521 AS 0.64 (0.37,1.11) 0.113
Helminth infection 43 0.31 010/ 0oL 1
65 0.28 —at/ot 0.87 (0.57,1.34) 0.540 AA 1
27 0.33 —o/—o 1.07 (0.63,1.83) 0.803 AS 0.82 (0.45,1.49) 0.512
Slide-negative fever® 250 1.09 010,/ 0oL 1
424 1.11 —ot/oo 1.12 (0.91,1.38) 0.272 AA 1
134 0.98 —o/—o 0.98 (0.75,1.27) 0.864 AS 0.93 (0.69,1.25) 0.630
Malaria-specific clinic visits Malaria definition 1 310 2.28 0L0L/ 0oL 1
462 2.10 —o/ooL 0.86 (0.64,1.16) 0.242 AA 1
152 1.96 —o/—a 0.75 (0.52,1.08) 0.188 AS 0.56 (0.37,0.83) 0.001
Malaria definition 2 181 133 010/ 0oL 1
285 1.29 —a/atoL 0.94 (0.69,1.28) 0.705 AA 1
88 1.14 —o/—o 0.76 (0.51,1.14) 0.181 AS 0.49 (0.32,0.76) 0.001

Mild disease events were identified at the study outpatient clinic during the mild disease cohort study. Diagnoses represent those recorded as either the primary or secondary diagnoses at each visit by the consulting
clinician. IRRs were calculated by Poisson regression analysis including each diagnosis separately as the dependent variables and the explanatory variables haemoglobin type (HbAS or HbAA), age (as a continuous
variable), sex, season (defined as 3-mo blocks), and ethnic group. For the purpose of this analysis, patients were considered not at risk of malaria (and dropped from both numerator and denominator populations) for 21 d
after receiving treatment with an antimalarial drug. We found significant evidence for an interaction between haemoglobin type and o-thalassaemia genotype on the incidence of mild clinical P. falciparum malaria (3> =
6.99; p = 0.0305; Wald test). As a result, we included an interaction term between haemoglobin type and o "-thalassaemia genotype in our final malaria model. Confidence intervals and significance (p) values were adjusted
to account for potential within-patient clustering of events using the sandwich estimator [17] as described in the text.

°Children may be represented under other nonmalaria diagnostic categories.

Data for Hb type shown for comparative purposes: The data derive from a total of 301 participants (oot/ow0, 96; —at/at0r, 149; —a/—0, 56), each followed for a mean (standard deviation [SD]) of 1.50 (0.74) y, whose mean age

(SD) during the period of analysis was 2.38 (1.50) y.
DOI: 10.1371/journal.pmed.0030158.t001

[95% CI, 0.09,0.90; p = 0.033]). Whereas in homozygotes, the
numbers were too few to reach significance, the IRR for both
genotypes combined was 0.26 (0.09,0.77; p = 0.015). Second,
the incidence of lower respiratory tract infections, detected
during the mild disease cohort, was significantly lower in both
heterozygous and homozygous than in normal children
(Table 1); however, the same was not true for lower
respiratory infections detected through the birth cohort
study (Table 2). IRRs by HbS phenotype for each diagnosis are
shown for comparison. An analysis of the incidence rates for
both malaria and nonmalaria diseases in the group of 81
study participants without o*-thalassaemia genotypes did not
suggest that their exclusion introduced any significant bias.

Haematological Indices

Haemoglobin concentration was significantly lower in both
heterozygotes and homozygotes for ot-thalassaemia both at
steady state and during clinical episodes of P. falciparum
malaria (Figure 2). However, this association was reversed
during episodes of more severe malaria presenting to
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hospital, both when uncomplicated and when complicated
by any of the standard criteria we use to define severe malaria
(Figure 2).

Discussion

In two large cohort studies conducted on the coast of
Kenya, we found no associations between o -thalassaemia and
the prevalence of symptomless P. falciparum parasitaemia, the
incidence of uncomplicated P. falciparum disease, or parasite
densities during mild or severe malaria episodes. However, we
found significant negative associations between o -thalassae-
mia and the incidence rates of severe malaria and severe
anaemia, the strongest associations being for severe malaria
anaemia and severe nonmalaria anaemia.

The evidence for malaria protection by the o-thalassae-
mias is now overwhelming [14,18-22]. Because of this
protection, these genes have been selected to population
frequencies that are higher than those of any other human
genetic polymorphism described to date, yet the mechanisms
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Table 2. The Incidence of Severe Clinical Events by o-Thalassaemia Genotype

Category Diagnosis Episodes Incidence a-Thalassemia Haemoglobin
(Episodes/
1,000 cyfu)
Genotype IRR (95% Cl) p-Value Genotype IRR (95% ClI) p-Value
Non-malaria 156 54.44 olot/olo 1
admissions
All non-malaria admissions 229 58.02 —ol/o0 1.12 (0.84,1.50) 0.447 AA 1
57 41.64 —o/—a 0.79 (0.52,1.19) 0.251 AS 0.92 (0.63,1.35) 0.680
77 26.87 oor/oto 1
Lower respiratory tract infections 128 3243 —ot/oor 1.35 (0.91,1.99) 0.132 AA 1
31 22.64 —o/—o 0.89 (0.51,1.54) 0.670 AS 0.98 (0.60,1.61) 0.940
20 6.98 aoL/ooL 1
Gastroenteritis 37 9.38 —o/ooL 1.31 (0.76,2.25) 0.334 AA 1
11 8.04 —o/—a 1.06 (0.51,2.20) 0.886 AS 0.58 (0.25,1.33) 0.195
10 3.49 oo/ oot 1
Severe anaemia without malaria parasites 4 1.01 —ot/oiol 0.28 (0.09,0.90) 0.033 AA 1
1 0.73 —o/—o 0.20 (0.03,1.60) 0.131 AS 0.44 (0.06,3.34) 0.426
Malaria-specific 174 60.72 oo/ oot 1
admissions
All malaria admissions 196 49.66 —ol/ooL 0.82 (0.63,1.08) 0.159 AA 1
64 46.75 —o/—a 0.65 (0.45,0.95) 0.026 AS 0.21 (0.09,0.50) <0.001
67 23.38 olot/olo 1
All severe malaria 55 13.94 —ol/ooL 0.59 (0.39,0.90) 0.015 AA 1
22 13.60 —o/—a 0.54 (0.30,0.99) 0.045 AS 0.00 a
10 349 olot/otoL 1
Cerebral malaria® 9 2.28 —o/o0 0.48 (0.24,0.97) 0.040 AA 1
5 3.65 —o/—a 0.60 (0.24,1.50) 0.278 AS 0.00 °
5 1.74 oot/oo 1
Cerebral malaria without anaemia 9 2.28 —ol/oo 1.14 (0.37,3.59) 0.817 AA 1
5 3.65 —o/—o 1.99 (0.57,6.89) 0.275 AS 0.00 a
21 7.33 oot/otoL 1
Severe malaria anaemia (definition 1) 10 2.53 —ol/o0 0.33 (0.14,0.78) 0.011 AA 1
5 3.65 —o/—a 0.35 (0.11,1.18) 0.090 AS 0.00 a
29 10.12 oor/oo 1
Severe malaria anaemia (definition 2) 14 3.55 —ol/oo 0.30 (0.14,0.64) 0.002 AA 1
5 3.65 —o/—a 0.25 (0.08,0.80) 0.020 AS 0.00 @

Admissions to the paediatric ward at Kilifi District Hospital were identified through the birth cohort study. IRRs were calculated by Poisson regression analysis as above, but with the additional explanatory variables bed net
usage (by randomisation arm), proximity to the nearest health centre, and access to hospital by bus. We found significant evidence for an interaction between haemoglobin type and o-thalassaemia genotype both on the
incidence of all malaria admissions (x> =7.33; p = 0.0256; Wald test) and on the incidence of severe malaria (x> = 13.10; p = 0.0014). We therefore included an interaction term between these variables in our final malaria

model.

“Significance values could not be computed, as no events occurred in children with the two-locus genotype HbAS plus ao/oo.
PThese categories were mutually exclusive: the hierarchy for classification was cerebral malaria, then severe malaria anaemia. The data derive from a total of 2,014 participants (ox/a0r, 739; —/aa, 1,017; —a/—a, 348).

DOI: 10.1371/journal.pmed.0030158.t002

of protection are poorly understood. Although several
mechanisms are supported by studies conducted in vitro
(summarized in [23]) it is difficult to gauge their relevance in
the absence of clear descriptions of the effects of ot-
thalassaemia in populations naturally exposed to malaria.
To date, such descriptions have proved confusing. For
example, although o"-thalassaemia confers protection against
both severe [14,21,22] and fatal [14] malaria, until now the
evidence has tended to suggest a raised, rather than a
reduced, incidence of uncomplicated malaria in such
children [24,25]. Furthermore, data from a case-control study
conducted in Papua New Guinea suggested that the selective
advantage of o -thalassaemia may not be confined to malaria,
but may also extend to other diseases [21].

We aimed to clarify some of these issues through
epidemiological studies of both malaria and non-malaria
diseases conducted in a malaria-endemic area on the coast of
Kenya. As expected, we found significant evidence for
protection against the more severe forms of P. falciparum
malaria that result in hospital admission. In keeping with data
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from recent case control studies [14,22], these effects were
most marked for the most severe forms, particularly SMA.
Moreover, in keeping with previous studies [26,27], we found
no effect of o -thalassaemia either on parasite density or on
the prevalence of symptomless parasite carriage. We did see
some evidence towards a reduced incidence of uncompli-
cated malaria in o'-thalassaemic children (Table 1), although
this result was not significant, either in children of each
genotype individually or in both genotypes combined. This
observation contrasts with that from an earlier study,
conducted on the Pacific islands of Vanuatu, in which we
found that the incidence of uncomplicated malaria was
paradoxically raised in children with both heterozygous and
homozygous o-thalassaemia [25]. Those findings led us to
speculate that a predisposition to mild clinical malaria might
result in the accelerated acquisition of protective immunity
through a natural form of vaccination. Although our current
study does not appear to support this hypothesis, it does not
exclude it for several reasons. For example, there are marked
differences in the epidemiology of malaria between the two

May 2006 | Volume 3 | Issue 5 | €158



g 140,000 4 Oao/oa
E B -o/oo -
; 120,000 4 O-w/-a
o
g 100,000 -+
(]
£ 80,000 - i
=
w
c 60,000 4
@
pe]
Q 40,000 4
2
a 20,000 A -
o
(| I==Su : :
P d 2
\0"}% \‘5‘\ ‘\é\ \'é‘\
& 2 &P @
O & 3 &
S & K &
oS

Figure 1. Parasite Densities by Clinical Status and o'-Thalassaemia
Genotype

Geometric mean parasite densities are shown with 95% Cls. Data on
symptomless parasitaemia reflect 59 measurements on normal (/o)
children, 100 on heterozygotes (—o/aa), and 23 on homozygotes (—o/—a1)
for o -thalassaemia. The equivalent figures for mild, hospital, and severe
malaria are described in Tables 1 and 2. Between-genotype differences
were tested using linear regression both with and without adjustments
for age, season, and within-patient clustering. No significant differences
were found.

DOI: 10.1371/journal.pmed.0030158.g001

study areas. Unlike Kilifi, where most malaria episodes are
caused by P. falciparum, P. vivax accounted for roughly half the
episodes in Vanuatu [25,28,29]. Similarly, the relative in-
cidence of malaria caused by the two dominant species varied
with age: P. vivax predominated in the early years of life and
was not superseded by P. falciparum until after the age of 2y,
an observation suggesting that there might be a biological
interaction between the two species [30]. Moreover, there are
striking differences between the two areas in terms of the
genetic background of both the human and the parasite
populations [31,32]. Finally, our current study of mild clinical
disease included relatively few children in the youngest age
classes, and it is therefore possible that it lacked statistical
power to show a significant interaction between malaria
protection and age. Further studies will be required to dissect
this important question.

With only two exceptions, we found no significant
associations between o' -thalassaemia and nonmalaria disease.
First, the incidence of lower respiratory tract infections,
diagnosed in the outpatient clinic during the mild disease
cohort study, was significantly lower in homozygotes than in
normal children (Table 1). There was no significant difference
in the incidence of lower respiratory infections in hetero-
zygotes overall, nor did we find any associations with the
incidence of more severe lower respiratory tract infections
that resulted in hospital admission (Table 2). While it seems
possible, therefore, that the observation regarding respira-
tory infections in the mild disease cohort represents a chance
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Figure 2. Haemoglobin Concentrations at Steady State and During
Episodes of Clinical P. falciparum Malaria

Values are means (with standard errors). 1 g/dl = 10 g/| Data for steady
state, all malaria admissions, and severe malaria admissions derive from
the birth cohort study. Severe malaria was defined as described in the
text. Study participants (and genotypes) numbered as follows: steady
state n = 2,104 (oot/oo, 739; —a/oo, 1,017; —o/—o, 348); all malaria
admissions n = 434 (ao/ao, 174; —o/oo, 196; —au/—0, 64); and severe
malaria admissions n = 146 (ao/ao, 67; —o/oe, 55; —o/—a, 24). Data for
uncomplicated malaria derive from the mild disease cohort study. Data
for ao/aor reflect 420 measurements in 96 study participants; for —o/oo
are from 701 in 149; and for —a/—a are from 212 in 56. Amongst children in
steady state, mean difference () =—2.6 g/l (95% Cl, —4.1,-1.1; p =0.001)
and —5.6 (—7.8,— 3.8; p < 0.001) for —a/aar and —o/—a,, respectively. The
equivalent B values for uncomplicated malaria were —3.2 (-5.6,~7.7; p =
0.010) and —6.8 (—10,—3.4; p < 0.001); for hospital-admitted malaria were
8.4 (2.8,14.1; p = 0.003) and 0.97 (0.29,1.65; p = 0.005); and for severe
malaria were 1.08 (—0.10,2.25; p = 0.072) and 13.8 (0.60,26.9; p = 0.041).
These figures were adjusted for age (as continuous) and sex, and for
potential within-person clustering where children contributed more than
one data point.

DOI: 10.1371/journal.pmed.0030158.g002

finding, it remains plausible that a true effect exists for two
reasons: (1) The observation was based on a large number of
episodes, and the strength of the effect was of the same order
as that observed for malaria in the same cohort; and (2)
because in the birth cohort information was available only
regarding the disease experience of children who survived to
5 to 8 y of age (the age at which blood samples were collected
for genotyping), it is possible that the lack of effect of of-
thalassaemia on the incidence of respiratory tract infections
in this cohort might be biased by our study design. These
observations are pertinent in light of the protective associ-
ation against nonmalaria hospital admissions that we found
in Papua New Guinea [21]. That finding seemed plausible for
a number of reasons: it could have been mediated through
the prevention of acute malaria episodes, which may be
accompanied by some degree of immunosuppression [33], or
possibly through the improved acquisition of nonspecific,
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antidisease immunity to malaria that might also protect
against the consequences of other infections [34]. A further
possibility is that it could have resulted from some degree of
misclassification, as in most tropical settings it is difficult to
differentiate common causes of childhood illness on the basis
of clinical criteria alone. Our current study is inconclusive
with regard to respiratory tract infections: Further work
addressing specific syndromes, such as pneumonia or invasive
bacterial disease, will be required to address these issues
definitively.

The second significant observation regarding o/'-thalassae-
mia and nonmalaria disease was the reduced incidence of
severe nonmalaria anaemia in children admitted to hospital.
In light of the reduced incidence of SMA, we speculated that
even in the absence of detectable parasites at the time of
admission, the aetiology of this anaemia might also relate to
malaria. With a view to investigating these relationships
further, we stratified haemoglobin concentration by o'-
thalassaemia genotype, both in study participants at steady
state and in those affected by clinical episodes of P. falciparum
malaria. In keeping with previous reports [27,35-37], we
found a significant negative correlation between o*-thalas-
saemia and haemoglobin concentration at steady state
(Figure 2). While this correlation held up in children
presenting with mild clinical malaria, it was reversed in
children presenting with the more severe forms, either
resulting in admission to hospital or classifiable as severe
according to standard criteria (Figure 2). This finding
suggests the possibility that o"-thalassaemia may protect
against the progression of anaemia during the course of
clinical episodes of P. falciparum disease.

Anaemia is a common sequel of malaria infections, but is
often clinically silent [38,39]. As such, it likely makes a large
but hidden contribution to overall malaria mortality,
especially in young children [38]. Mortality is greatest when
anaemia is severe (Hb < 50 g/l), and complicated by other
signs of severity [40]. Two factors correlate best with the
development of severe anaemia: haemoglobin concentration
preceding the malaria transmission season, and the parasite
density achieved during incident infections [41]. We found no
evidence for an effect of of-thalassaemia on either of these
parameters. Consistent with observations in other malaria-
endemic populations, we found a negative correlation
between o -thalassaemia genotype and haemoglobin concen-
tration at steady state [35,36,42]. Similarly, in keeping with
previous studies [14,21,22,26,27,42,43], we found no effect of
o -thalassaemia on parasite densities during malaria infec-
tions. Moreover, it seems unlikely that anaemia protection
was mediated by a favourable iron status in o"-thalassaemic
children, as we found no correlation between o"-thalassaemia
genotype and biochemical markers of iron status in a recent
study conducted in the same area [44]. We suggest, therefore,
that our observations reflect protection against the progres-
sion of individual malaria infections to the point at which
they result in severe anaemia.

Severe malaria anaemia is probably mediated by a number
of processes that may include both acute haemolysis and
suppression of normal eythropoiesis [38,45]. It is not clear
how o -thalassaemia might prevent progression to SMA;
however, recent observations by Cockburn and colleagues
[46] regarding the expression of complement receptor 1
(CR1) on the surface of o -thalassaemic red blood cells might
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prove relevant. In an extension of a previous case control
study conducted in Papua New Guinea [21], these workers
made two related observations. First, they found a protective
association between a promoter polymorphism of red cell
CR1 and severe falciparum malaria, and second, they found
an independent negative association between the expression
of red cell CR1 and o'-thalassaemia genotype. Previous work
suggests that CR1 is an important receptor for rosetting, a
phenomenon whereby uninfected red blood cells bind to P.
falciparum-infected erythrocytes in vitro and that is implicated
in the pathogenesis of severe and complicated disease [47-
50]. These observations therefore provide potential mecha-
nism for both the protective effect of o' -thalassaemia and the
earlier observation that o -thalassaemic red cells are less able
to form rosettes in vitro [51,52]. The enhanced expression of
antigens on the surface of late-stage P. falciparum-infected red
blood cells that has been identified in a number of studies
[63,54], may provide an alternative mechanism—by resulting
in their early or enhanced removal from circulation.
However, we would anticipate that if this were the mecha-
nism, it would be reflected in reduced parasite densities as are
seen in participants with an HbAS genotype [12]. Further
studies investigating the relationships between o'-thalassae-
mia, red cell CR1 expression, rosetting, immune clearance,
and the various clinical phenotypes of severe malaria may
therefore be informative regarding the pathophysiological
processes involved.

The implications of our study for the interpretation of
malaria intervention studies, particularly those based on
vaccines, and for studies that aim to identify new malaria-
protective genes, are worthy of note. It is clear from both our
current (Table 2) and previous studies [14,21,22], that o-
thalassaemia is strongly protective against severe and
complicated malaria, but has no effect at all on either the
prevalence of symptomless parasitaemia or on parasite
densities during incident malaria infections. Furthermore,
despite an apparently well-powered study capable of demon-
strating a marked effect of HbAS, we found no significant
effect of o'-thalassaemia on the incidence of mild, uncom-
plicated malaria disease events (Table 1). These observations
argue for careful consideration of which disease phenotype to
measure when designing studies of this sort. They suggest that
wherever possible, well-characterized phenotypes of severe
and complicated disease or, even better, malaria-specific
mortality, are the outcomes of choice.
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